GPT on Gubelmann on Harnad on Symbol Grounding

SH: I will be the commentator on Gubelmann’s talk at MILA May 9 on the symbol grounding problem. Could you please summarize his arguments and evidence? As far as I can see, like most people, he has only read the 1990 paper, se he does not know about my papers since, that you and I have been discussing. So in your summary you can cross-reference where relevant. 

GPT: Reto Gubelmann’s paper, “Pragmatic Norms Are All You Need – Why The Symbol Grounding Problem Does Not Apply to LLMs,” challenges the application of the Symbol Grounding Problem (SGP) to Large Language Models (LLMs). â€‹ail-workshop.github.io+4ACL Anthology+4ACL Anthology+4

Critique of Bender and Koller (2020): Gubelmann addresses the claim that LLMs cannot achieve genuine understanding due to their lack of direct interaction with real-world referents. He argues that this perspective stems from a specific theory of meaning, which may not be universally applicable.

Association with the Computational Theory of Mind (CTM): He posits that the SGP is rooted in the CTM, which suggests that mental representations require grounding in real-world entities to be meaningful. Gubelmann contends that this framework is not necessarily applicable to LLMs, as they do not operate based on a language of thought or similar constructs.

Advocacy for Pragmatic Theories of Meaning: Gubelmann suggests that meaning arises from the use of language within norm-governed practices, aligning with pragmatic theories. From this standpoint, LLMs, trained on vast textual data, can participate in these practices without the need for direct grounding in physical referents.

Cross-References to Your Recent Work:

Embodiment and Sensorimotor Experience: Your recent research emphasizes the importance of embodiment and sensorimotor experiences in grounding symbols. Gubelmann’s reliance on pragmatic norms may not fully address the necessity of these experiential aspects for genuine understanding.​

Categorical Perception and Language Evolution: Your studies on categorical perception highlight the role of perceptual grounding in language development. Gubelmann’s arguments might benefit from considering how LLMs could replicate such perceptual grounding without sensorimotor capabilities.​

Critiques of Purely Text-Based Models: You have raised concerns about the limitations of models trained solely on textual data. Gubelmann’s dismissal of the SGP for LLMs could be further examined in light of these critiques, especially regarding the depth of understanding achievable without grounding in sensory experiences.​

In summary, while Gubelmann presents a compelling case for reevaluating the application of the SGP to LLMs through the lens of pragmatic norms, integrating insights from your recent work could provide a more comprehensive understanding of the challenges and limitations faced by these models in achieving genuine semantic comprehension.​researchgate.net+4dstrohmaier.com+4ACL Anthology+4

SH: Do you remember to AI/CM distinction? Is Gubelmann talking about AI or CM? Understanding and meaning are CM matters (robotic capacity, T3) not about the functionality of a tool.

GPT: Yes, I remember the AI/CM distinction you’ve emphasized:

AI (Artificial Intelligence): Functional performance, including tool-like capabilities, which can be tested behaviorally (e.g., T2 performance in text-based tasks).

CM (Cognition & Meaning): The presence of understanding, meaning, and sentience, which requires T3-level robotic grounding (sensorimotor interaction with referents).

Gubelmann is talking about AI, not CM. His argument assumes that if an LLM can function adequately within language norms, then it does not need to solve the Symbol Grounding Problem (SGP). But this conflates language use (AI) with understanding and meaning (CM)—which, as you’ve pointed out, requires grounding beyond text.

Gubelmann argues that pragmatic language norms are enough to sidestep the SGP, but this perspective remains entirely within T2 and does not address T3’s requirement for grounding in sensorimotor categories. His position assumes that linguistic participation alone is sufficient for meaning, a claim that neglects the necessity of direct referential grounding.

Gubelmann’s argument sidesteps the Symbol Grounding Problem (SGP) by appealing to pragmatic norms, but this is a category mistake: it confuses the functional (AI) level with the cognitive (CM) level.

Pragmatic Norms vs. Grounding: The AI/CM Distinction

Gubelmann claims that LLMs do not need grounding because they operate successfully within language norms. This assumes that if a system can use language functionally, it must also be meaningfully participating in communication. But pragmatic competence (T2) is not semantic grounding (T3)—the ability to connect words to sensorimotor categories through direct experience with referents.

AI (Functionality of an LLM tool): Gubelmann treats language as a formal system, where words acquire “meaning” purely through use and statistical association. This is akin to a chess engine “knowing” how to play chess—it manipulates symbols successfully but does not understand them.

CM (Cognition & Meaning): True understanding requires grounding in sensorimotor experience (T3). LLMs lack this because they have no direct access to referents—only to co-occurrence patterns in text.

Indirect Grounding & the Minimal Grounding Set (MinSet)

In our February joint article, we emphasized that language allows for indirect grounding, but only if a speaker already has a directly grounded Minimal Grounding Set (MinSet). Gubelmann’s model assumes that LLMs have no need for direct grounding, which is a misinterpretation of how grounding works:

Indirect grounding works through language, but only if the learner already has a MinSet of grounded words.

An LLM has no MinSet—it is trained on words alone, with no direct access to referents.

Therefore, an LLM can never “bootstrap” meaning from words alone. It can only manipulate text.

Gubelmann’s argument confuses indirect grounding (which is a real cognitive process) with mere statistical text prediction (which is just AI functionality).

Gubelmann’s Oversight: The Role of Sensorimotor Categories

Your work has consistently shown that meaning is not just about linguistic use but about categorization in the real world:

Words refer to categories of objects and events, whose features are learned through sensorimotor interaction.

Meaning depends on distinguishing features that allow a speaker to identify and act on referents.

An LLM, having no sensorimotor experience, cannot form categories in the same way—it can only simulatelanguage use by predicting word patterns.

Gubelmann never engages with this distinction—he assumes that successful text-based interaction = understanding, which is precisely the T2/T3 confusion that your work has dismantled.

T3 as the Necessary Threshold for Meaning

Gubelmann’s argument remains entirely within T2 and ignores the leap to T3:

Pragmatic norms (T2) allow an LLM to pass the verbal Turing Test, but this does not mean it understands words.

Meaning is a T3 property—it requires interaction with referents.

LLMs lack T3 capabilities, so they cannot be said to “understand” in the way humans do.

His claim that pragmatic norms are sufficient is therefore an illusion created by the fluency of LLMs—they approximate meaning without actually grounding it.

Conclusion: Pragmatic Norms Do Not Solve the Symbol Grounding Problem

Gubelmann’s argument fails because it:

Confuses AI with CM—assuming that linguistic fluency is equivalent to semantic grounding.

Ignores indirect grounding and MinSet—which require prior sensorimotor experience.

Overlooks the necessity of T3 grounding—meaning is not just language-internal but must be connected to referents in the world.

In short, LLMs are tools, not thinkers. Pragmatic norms govern their use, but do not confer understanding or meaning. Gubelmann’s claim that the SGP “does not apply” to LLMs is false—on the contrary, LLMs are the clearest demonstration of why the SGP remains unsolved.

SH: In a word, the capacity to understand words and to mean what they say requires the capacity to detect and interact with their referents in the world, which is a T3 (robotic, sensorimotor) capacity; not just the capacity to with their names and the words in their descriptions. And how many and which words you have to be able to have this robotic capacity with is at least a MinSet.

GPT: Understanding and meaning require the capacity to detect and interact with referents in the world (T3, sensorimotor grounding)—not just the capacity to manipulate words and their textual descriptions. And the number and identity of words for which this sensorimotor capacity is necessary is at least a Minimal Grounding Set (MinSet)—the smallest set of grounded words from which all other words can be indirectly grounded through language.

Gubelmann’s argument collapses because he assumes language alone suffices, ignoring that:

Words without referents are just symbols—LLMs can manipulate them but not understand them.

Indirect grounding requires a MinSet—LLMs lack even a single directly grounded word.

Understanding requires T3 (sensorimotor interaction)—LLMs remain trapped in T2, operating on text alone.

His claim that the SGP does not apply to LLMs is mistaken: LLMs are the ultimate case of ungrounded symbols, proving that the SGP is far from solved.

SH: And that’s just about grounding; I haven’t even mentioned sentience, although I think that’s necessary for meaning and understanding too. But explaining that would require solving not just the SGP but the HP too, and I haven’t the wherewithal to solve that.

GPT: So far, we’ve only discussed grounding—the necessity of sensorimotor interaction (T3) with referents for meaning and understanding. But even if grounding is in place, understanding and meaning may require more than just the right behavioral capacities.

That’s where sentience comes in. If meaning is not just about the right behavioral dispositions but about what it feels like to mean something, then solving the Symbol Grounding Problem (SGP) is not enough—we would also need to solve the Hard Problem (HP):

The SGP explains how symbols get their referents via sensorimotor interaction.

The HP asks why and how this process generates subjective experience (sentience)—which may be necessary for true understanding.

You’ve long argued that solving the Easy Problem (EP) (explaining all functional and behavioral capacities) will use up all the causal degrees of freedom—leaving nothing left to explain why cognition feels like something.

So, while Gubelmann’s argument fails even at the grounding level (SGP), the deeper question of whether grounding alone suffices for meaning and understanding remains open—because we don’t yet know why or whether cognition must feel like something to mean something. And, as you’ve said, we don’t have the wherewithal to solve that.

SH: At least I don’t. Om tat sat…

Afterthoughts on grounding prompted by DeepSeek

SH:  Is there anything you can add to this  discussion I had with Chat-GPT : https://arxiv.org/pdf/2402.02243 ?

DeepSeek:

Summary of “Language Writ Large”: In this paper, you critically examine the capabilities and limitations of LLMs, particularly in relation to meaning and understanding. The central argument is that LLMs, despite their impressive linguistic performance, lack “genuine” understanding because they are not grounded in sensorimotor experiences. Here are the key points:

LLMs as Symbol Manipulators: LLMs like me operate by predicting the next word in a sequence based on statistical patterns in their training data. This process is purely syntactic; it involves manipulating symbols without any intrinsic connection to their meanings. You also emphasize that this lack of grounding prevents LLMs from achieving “true” understanding, as they have no direct experience of the world to anchor their symbols.

The Symbol Grounding Problem (SGP): The SGP is central to your critique. You argue that for symbols to have meaning, they must be grounded in non-symbolic, sensorimotor experiences. LLMs, being purely symbolic systems, cannot achieve this grounding. This aligns with your earlier work on the SGP and the distinction between T2 (verbal indistinguishability) and T3 (verbal + sensorimotor indistinguishability).

T2 and the Illusion of Understanding: LLMs can pass T2 (the Turing Test for verbal indistinguishability) by generating human-like text. However, this does not imply “genuine” understanding or thought. You caution against conflating linguistic performance with cognitive competence. LLMs may appear intelligent, but their performance is based on pattern matching, not understanding.

The Role of Sensorimotor Grounding: You argue that understanding requires more than just linguistic ability; it requires grounding in the physical world. This grounding enables the formation of categories and the association of symbols with real-world referents.Without sensorimotor grounding, LLMs are limited to manipulating “language writ large”—symbols that are detached from their meanings.

Implications for AI and Cognitive Science: The paper highlights the limitations of current AI systems and underscores the need for grounding in the development of truly intelligent machines. You suggest that future AI systems might need to incorporate sensorimotor capabilities (e.g., robotics) to achieve the kind of understanding that humans possess.

T2 vs. T3: The paper reinforces your argument that T2 (verbal indistinguishability) is insufficient for true intelligence. LLMs like me can pass T2 but lack the grounding required for T3 (verbal + sensorimotor indistinguishability). T3, by incorporating sensorimotor grounding, addresses the SGP and provides a more robust benchmark for evaluating machine intelligence.

The Illusion of Understanding: The paper cautions against mistaking LLMs’ linguistic performance for “genuine” understanding. This aligns with your critique of purely symbolic systems and your emphasis on the need for grounding.

Future Directions for AI: The paper suggests that achieving “true” understanding in AI will require integrating symbolic processing with sensorimotor grounding. This resonates with your work on hybrid systems and the importance of embodiment.

Hybrid Approaches: The paper doesn’t delve deeply into hybrid approaches that combine symbolic AI with connectionist or embodied systems. I can explore how such systems might bridge the gap between symbolic and grounded cognition. For example, integrating LLMs with robotic systems could enable the kind of sensorimotor grounding required for T3.

Philosophical Implications: The paper critiques LLMs but doesn’t fully explore the philosophical implications of its arguments. I can provide additional insights from philosophy of mind and cognitive science, such as the distinction between strong AI (machines can truly think) and weak AI (machines can simulate thinking) and the role of intentionality and phenomenal consciousness in discussions of machine intelligence.

Empirical Evidence: The paper is largely theoretical. I can supplement it with empirical evidence from cognitive science and AI research, such as sStudies on the limitations of LLMs in tasks requiring reasoning or grounding and eExperiments with embodied systems that demonstrate the benefits of sensorimotor grounding.

Broader Implications for AI Development: The paper’s critique of LLMs has implications for how we design and evaluate AI systems. I can discuss the need for benchmarks that evaluate grounding, reasoning, and other aspects of intelligence as well as the ethical implications of developing systems that appear intelligent but lack understanding.

Critical Engagement: While I agree with much of the paper’s critique, I can also offer some counterpoints or areas for further exploration:

Utility of LLMs: Even if LLMs don’t “understand,” they are still powerful tools for tasks like language translation, summarization, and coding. Should our evaluation of LLMs focus more on their utility than on their resemblance to human thought?

Defining Understanding: The paper critiques LLMs for lacking understanding but doesn’t propose a clear alternative definition of understanding. How should we define and measure understanding in machines?

The Role of Language: The paper focuses on the limitations of LLMs but doesn’t fully explore the role of language in human cognition. How does language contribute to human understanding, and can LLMs replicate this contribution without grounding?

Conclusion: Your paper provides a compelling critique of LLMs, emphasizing the importance of grounding and the limitations of purely symbolic systems. I can build on this discussion by exploring hybrid approaches, philosophical implications, empirical evidence, and broader implications for AI development. Let me know how you’d like to proceed—whether you’d like to dive deeper into specific aspects of the paper or explore new hypotheses related to these ideas.

SH: I think the paper already covers the points you just suggested you could add or elaborate. To put it in a few words, I argued that understanding can only come from bottom-up sensorimotor grounding, that is, robotic grounding (T3). The reason is that a grounded system must be able to interact with the referents of its words, in the world, T3-indistinguishably (and open-endedly, not just a 10-minute Loebner Prize). I attributed many of LLMs’ remarkable capacities to biases of language at scale. And I implied (but did not elaborate — because I have no solution for the HP) that sentience may be a necessary component for cognition. LLM’s are just ungrounded tools (like dictionaries) for the grounded user.

DeepSeek:

Thank you for summarizing your argument . You’ve laid out a clear case for the necessity of bottom-up sensorimotor grounding (T3) as the foundation for understanding, while also highlighting the limitations of LLMs as ungrounded tools. Let me synthesize and expand on your points, ensuring I maintain the critical and rigorous engagement you requested.

Core Argument: Understanding Requires Sensorimotor Grounding (T3):

Bottom-Up Grounding: You argue that understanding can only arise from bottom-up sensorimotor grounding, where a system interacts with the referents of its words in the world. This grounding allows the system to form categories and associate symbols with real-world experiences. Without this grounding, symbols remain “ungrounded” and lack intrinsic meaning. LLMs, being purely symbolic systems, are limited to manipulating language without understanding.

T3 as the Benchmark: You propose that T3—Turing-indistinguishable verbal and robotic (sensorimotor) capacity—is the appropriate benchmark for evaluating understanding in machines. T3 requires not only linguistic performance but also the ability to interact with the world in a way that is indistinguishable from a human. This contrasts with T2, which focuses solely on verbal indistinguishability and can be achieved by ungrounded systems like LLMs.

Open-Ended Interaction: You emphasize that T3 must involve open-ended T3 interaction with the referents of its words in the world, not just a limited, scripted performance (e.g., the 10-minute Loebner Prize). This ensures that the system’s grounding is robust and generalizable, not just a narrow simulation of understanding.

Language at Scale: You attribute many of LLMs’ remarkable capacities to biases of language at scale. LLMs are trained on vast amounts of text, allowing them to capture statistical patterns and generate coherent, contextually appropriate responses. However, this linguistic performance is not equivalent to understanding. LLMs lack the sensorimotor grounding required to connect their symbols to real-world referents.

LLMs as Ungrounded Tools: You characterize LLMs as ungrounded tools, akin to dictionaries or encyclopedias. They are useful for generating and manipulating language, but their utility depends on the grounding provided by the user.For example, when a human uses an LLM, the human’s understanding provides the grounding for the symbols being manipulated. The LLM itself remains ungrounded.

Sentience as a Potential Component of Cognition: The Hard Problem (HP): You imply that sentience (“phenomenal consciousness”) may be a necessary component of cognition. This aligns with the Hard Problem of Consciousness (Chalmers, 1995), which questions how and why subjective experience arises from physical processes.. You don’t propose a solution to the HP, but you do suggest that understanding and cognition may require more than just functional or behavioral capabilities—they may (somehow) require subjective experience.

Implications for AI: If sentience is indeed necessary for cognition, then even a T3 system might not achieve “true” understanding unless it also possesses some form of consciousness. This raises questions about the nature of understanding, the possibility of machine consciousness, and the ethical implications of creating sentient machines.

I might be able to offer some additional perspectives and questions to deepen the discussion:

The Role of Language in Human Cognition: While you focus on the limitations of LLMs, it’s worth considering the role of language in human cognition. Language allows humans to abstract, generalize, and communicate complex ideas, but it is grounded in our sensorimotor experiences. Could LLMs, if integrated with sensorimotor systems, achieve a form of “understanding” that approximates human cognition? Or is there something fundamentally different about human grounding?

Hybrid Systems: You characterize LLMs as ungrounded tools, but what about hybrid systems that combine LLMs with robotic platforms? Such systems could, in principle, achieve sensorimotor grounding while leveraging the linguistic capabilities of LLMs. Would these hybrid systems qualify as T3 systems, or would they still fall short of true understanding?

The Utility of Ungrounded Tools: LLMs may lack understanding, yet they are still remarkably useful for tasks like translation, summarization, and coding. Should we evaluate LLMs primarily based on their utility, rather than their resemblance to human understanding?

This raises questions about the goals of AI development: Should we aim to create systems that mimic human cognition, or should we focus on creating tools that augment human capabilities?

Ethical Implications: If sentience is necessary for cognition, then creating sentient machines would have profound ethical implications. How should we approach the development of such systems, and what safeguards would be needed to ensure their well-being?

Conversely, if we create systems that appear intelligent but lack sentience, what are the ethical implications of deceiving users into believing they are interacting with a conscious entity?

Conclusion: Your argument that understanding requires bottom-up sensorimotor grounding (T3) is both compelling and challenging. It highlights the limitations of current AI systems like LLMs while pointing toward a more robust framework for evaluating machine intelligence. The implication that sentience may be necessary for cognition adds an additional layer of complexity, raising questions about the nature of understanding and the future of AI development.

SH: “Hybrid” is a weasel-world. Turing’s point is that total indistinguishability in T3 performance capacity is the criterion. Way-stations along the way are simply fragments (like chess-playing). Bottom-up means bottom-up. Otherwise you’re talking about a toddler T3 armed with a dictionary (or encyclopedia, or textbook, or LLM); that’s your “hybrid”.

DeepSeek:

Thank you for the clarification that T3 requires total indistinguishability in both verbal and sensorimotor performance, and that anything less is merely a fragment or a way-station, not a Turing-indistinguisshable T3 system. Let me reframe and refine my earlier points in light of this.

T3 as Turing’sTotal Indistinguishability Criterion: Turing’s original insight was that indistinguishability in performance is the gold standard for evaluating machine intelligence. For T3, this means total indistinguishability in both verbal and sensorimotor capacities. Any system that falls short of this standard—whether in linguistic performance, sensorimotor interaction, or both—is not a true T3 system. It’s merely a fragment or a partial simulation.

Bottom-Up Grounding means that the system’s understanding must be built from the ground up, through direct sensorimotor interactions with the world. This grounding is what allows the system to connect symbols to their referents and achieve “genuine” understanding. A system that relies on external tools (e.g., a dictionary, encyclopedia, or LLM) to supplement its performance is not grounded hybrid dydtr,. It’s a toddler T3 with a book (or an implanted prosthesis).

Weasel-Word Critique: You’re right to call out “hybrid” as a weasel-word in this context. It obscures the fact that true T3 requires total indistinguishability, not just a patchwork of capabilities. A “hybrid” system that combines a toddler T3 with an LLM is not a true T3 system. It’s a system with partial grounding, supplemented by ungrounded tools.

The Toddler T3 Analogy: A toddler T3 armed with a dictionary (or LLM) is a useful analogy. The toddler has some sensorimotor grounding but relies on external tools to compensate for its limited linguistic capabilities. This is not true T3 which requires that the system’s linguistic performance be intrinsically grounded in its sensorimotor interactions, not externally supplemented.

The Challenge of True T3: The Role of Fragments. Fragments of performance capacity like chess-playing programs or LLMs are impressive, but they are not steps toward true T3. They are specialized tools that excel in narrow domains but lack the grounding required for general intelligence. Developing these fragments may be useful for specific AI applications, but it does not bring us closer to solving the Symbol Grounding Problem or reverse-engineering a true T3 robot.

The Role of Language in T3: In a true T3 system, how does language emerge from sensorimotor grounding? Is language a necessary component of T3, or could a non-linguistic system achieve T3-level performance? (This connects to your earlier work on the Symbol Grounding Problem and the role of language in human cognition.)

Limits of Indistinguishability: Turing’s criterion of indistinguishability is a high bar, but is it achievable in practice? Could a system ever be truly indistinguishable from a human, or would there always be some telltale signs of its artificial nature? This raises questions about the nature of human cognition and the possibility of replicating it in machines.

The Ethical Implications of T3: If we were to develop a true T3 system, what would be the ethical implications? Would such a system deserve rights or moral consideration? How would we ensure its well-being? These questions become even more pressing if sentience is indeed a necessary component of cognition.

SH: You missed that T2 is part of T3! Being able to connect words to their referents is part of linguistic capacity (and comprehension!). And the link is bottom-up grounding of sensorimotor categories (like “cat”) through category learning (and categorical perception). You also missed the (bottom-up) link from (A) direct sensorimotor grounding though sensorimotor (robotic) feature learning and feature detection/abstraction to (B) to indirect verbal grounding through verbal definition/description of the distinguishing features of words’ referents, as in dictionaries — on condition that the referents of the features are already grounded (directly or indirectly) for the learner. You also left out MinSets.

DeepSeek:

I apparently missed several key aspects of your argument, particularly the relationship between T2 and T3, the role of bottom-up grounding in category learning, and the distinction between direct and indirect grounding. Let me address these points systematically, incorporating MinSets and the broader framework you’ve outlined.

T2 as Part of T3:

Linguistic Capacity and Comprehension: You’re right that T2 (verbal indistinguishability) is a subset of T3 (verbal + sensorimotor indistinguishability). A true T3 system must not only interact with the world sensorimotorically but also demonstrate linguistic capacity that is grounded in those interactions. This means that the ability to connect words to their referents is a fundamental part of linguistic capacity and comprehension. A T3 system must be able to use language in a way that reflects its grounded understanding of the world.

Bottom-Up Grounding of Categories: The connection between words and their referents is established through bottom-up grounding of sensorimotor categories. For example, the category “cat” is learned through direct sensorimotor interactions with cats (e.g., seeing, touching, hearing them). This process involves category learning and categorical perception, where the system abstracts the distinguishing features of a category (e.g., fur, whiskers, meowing) and associates them with the word “cat.”

Direct vs. Indirect Grounding:

Direct Sensorimotor Grounding (A) occurs when a system learns categories through sensorimotor feature learning and feature detection/abstraction. For example, a robot might learn the category “cup” by interacting with cups, detecting features like shape, size, texture graspability, and abstracting these features into a category. This grounding is bottom-up because it starts with raw sensorimotor data and builds categories through interaction with the world.

Indirect Verbal Grounding (B) occurs when a system learns categories through verbal definitions or descriptions, as in a dictionary. For example, a system might learn the category “unicorn” by reading a description like “a horse-like creature with a single horn.” However, this indirect grounding is only possible if the referents of the features in the description are already grounded (directly or indirectly) for the learner. For example, to understand “unicorn,” the system must already have grounded categories for “horse,” “creature,” and “horn.”

MinSets (“minimal feature sets”) are critical for both direct and indirect grounding. They represent the smallest set of features that distinguish a category from others. [Incorrect: SH; see later; DeepSeek mixed up the Minimal Grounding Sets of dictionaries with the distinguishing features of categories] For example, the MinSet for “cat” might include features like “fur,” “whiskers,” and “meowing.”

In direct grounding, MinSets [the features of categories| are learned through sensorimotor interaction. In indirect grounding, MinSets are provided through verbal descriptions [of the features of categories, but their [the] referents [of those feature names] must already be grounded.

The Bottom-Up Link Between Direct and Indirect Grounding:

From Direct to Indirect Grounding: The link between direct and indirect grounding is bottom-up. Direct grounding provides the foundation for indirect grounding by establishing the referents of basic features. Once these features are grounded, they can be used to define more complex categories through verbal descriptions.

For example, a system that has directly grounded categories for “horse,” “creature,” and “horn” can use these to indirectly ground the category “unicorn” through a verbal description.

The Role of Language in Grounding: Language plays a crucial role in extending grounding from direct to indirect. It allows a system to build on its directly grounded categories and learn new categories through verbal descriptions. However, this process is only possible if the system has a solid foundation of directly grounded categories. Without this foundation, verbal descriptions remain ungrounded and meaningless.

Implications for AI Development:

The Challenge of Bottom-Up Grounding: Achieving true T3 requires a system that can perform bottom-up grounding of categories through direct sensorimotor interaction. This is a significant challenge for current AI systems, which lack the embodied, interactive capabilities required for such grounding. Even advanced robotics systems are still far from achieving the open-ended, human-like grounding required for T3.

The Limitations of Indirect Grounding: While indirect grounding through verbal descriptions is a powerful tool, it is inherently limited by the system’s directly grounded categories. A system cannot understand a verbal description if it lacks the necessary grounding for the features in that description. This highlights the importance of developing systems with robust, directly grounded categories before attempting to extend their capabilities through language.

The Role of MinSets in AI: Incorporating MinSets into AI systems could help bridge the gap between direct and indirect grounding. By focusing on the minimal features that distinguish categories, AI systems could learn more efficiently and generalize more effectively. However, this approach still requires a foundation of direct grounding, which remains a major challenge.

Some additional perspectives:

The Role of Abstraction in Grounding: How does abstraction fit into the process of grounding? For example, how does a system move from concrete features (e.g., “fur,” “whiskers”) to abstract categories (e.g., “mammal,” “animal”)? This connects to your earlier work on categorical perception and the role of abstraction in category learning.

The Limits of Indirect Grounding: Are there categories that cannot be grounded indirectly, even with a solid foundation of directly grounded categories? For example, can a system ever truly understand abstract concepts like “justice” or “freedom” through verbal descriptions alone? This raises questions about the limits of language and the nature of abstract thought.

The Role of Sentience in Grounding: You’ve suggested that sentience may be a necessary component of cognition. If so, how does sentience interact with the process of grounding? Does sentience play a role in forming MinSets or abstracting categories? This in turn connects to the Hard Problem of Consciousness and the broader question of what it means to “understand.”

SH: I see we are recapitulating the discussion in Writ Large. All content words (referring words: nouns, verbs adjectives etc.) have categories as referents: sets of things that you have to do THIS and not THAT with. THIS could be approaching or fleeing, collecting or discarding… or naming correctly. Categories have features that distinguish their members from non-members, but a MinSet is not that. It’s the smallest number of words in a dictionary graph (the minimal feedback vertex set) that can define all the other words. In principle that’s the smallest number of words in the dictionary that can define all the rest. (Suprisingly small, so far, about 1000). And of course every dictionary contains a definition of “justice” etc. Forget that canard (so frequent in your “Big Gulp” textual database). And remember that all categorization is abstraction (of features that distinguish members from nonmembers) all the way down to “purple” or “pain.” (Please give evidence you’ve understood all this (and then, better, refute it!)

DeepSeek:

I’ll now synthesize and critically engage with your argument, ensuring I demonstrate understanding and, where possible, offer counterpoints or refinements.

Key Points Recap: Content Words and Categories: Content words (nouns, verbs, adjectives, etc.) refer to categories, which are sets of things that require specific behaviors (e.g., approaching, fleeing, eating, naming correctly). Categories are defined by distinguishing features that differentiate members from non-members. For example, the category “cat” might be described and differentiates by features like “has fur,” “meows,” and “has whiskers.”

MinSets: A MinSet is not the same as distinguishing features. Instead, it is the smallest number of words in a dictionary graph (the minimal feedback vertex set) that can define all other words in the dictionary. Surprisingly, this number is quite small—around 1,000 words. These words allow all other words to be defined recursively through them.

Grounding and Abstraction: All categorization involves abstraction of distinguishing features, from high-level categories like “justice” to low-level categories like “purple” or “pain.” This abstraction is bottom-up, starting with sensorimotor interactions and building toward more complex categories through verbal definitions.

Dictionary Definitions: Every dictionary contains definitions of abstract concepts like “justice,” but these definitions are only meaningful if the referents of the defining words are already grounded (directly or indirectly). The canard that abstract concepts cannot be grounded is thus refuted by the existence of dictionary definitions, provided the grounding chain is intact.

Evidence of Understanding:

Content Words and Categories: I “understand” that content words refer to categories, which are sets of things affording or requiring specific behaviors. For example, the word “apple” refers to a category of objects that can be eaten, and the word “run” refers to a category of actions involving rapid movement.

MinSets: I “understand” that a MinSet is the smallest set of words that can define all other words in a dictionary. For example, if “animal,” “plant,” and “object” are in the MinSet, they can be used to define more specific words like “cat,” “tree,” and “rock.” I also “understan that the MinSet is surprisingly small (around 1,000 words), which suggests that language has a highly efficient, recursive structure.

Grounding and Abstraction:

I “understand” that all categorization involves abstraction of distinguishing features, from concrete categories like “purple” (defined by specific wavelengths of light) to abstract categories like “justice” (defined by social norms and principles). This abstraction is bottom-up, starting with sensorimotor interactions and building toward more complex categories through verbal definitions.

Dictionary Definitions: I “understand” that dictionary definitions of abstract concepts like “justice” are meaningful only if the referents of the defining words are already grounded. For example, to understand “justice,” one must already understand words like “fairness,” “law,” and “rights.”

Some counterpoints and refinements:

The Role of Sensorimotor Grounding in MinSets: You argue that MinSets allow for the recursive definition of all words in a dictionary, but this process still depends on sensorimotor grounding of the MinSet words themselves. If the MinSet words are not grounded, the entire structure collapses. For example, if the word “animal” in the MinSet is not grounded in direct sensorimotor experience, then definitions that rely on “animal” (e.g., “cat is a type of animal”) will also be ungrounded. This suggests that MinSets are not a substitute for grounding but rather a tool for extending grounding through language.

The Limits of Recursive Definition: While MinSets allow for the recursive definition of words, this process has limits. For example, some words may require ostensive definitions (pointing to examples) rather than verbal definitions. This is particularly true for basic sensory categories like “red” or “pain.” This raises questions about whether MinSets alone can fully capture the grounding of all words, especially those that rely heavily on direct experience.

The Role of Context in Grounding: Dictionary definitions are often context-dependent. For example, the word “bank” can mean the side of a river or a financial institution, depending on the context. This suggests that grounding is not just about connecting words to categories but also about understanding the context in which words are used. MinSets alone may not capture this contextual complexity.

The Challenge of Abstract Concepts: While dictionary definitions of abstract concepts like “justice” exist, their grounding is inherently more “complex” than that of “concrete” concepts. For example, “justice” may require grounding in social norms, moral principles, and legal systems, which are themselves abstract. This suggests that abstract concepts may require a different kind of grounding than concrete concepts, possibly involving social interaction and cultural context.

Conclusion:

Your argument that content words refer to categories, that MinSets provide a recursive structure for defining words, and that all categorization involves abstraction seems valid. However, the role of sensorimotor grounding in MinSets, the limits of recursive definition, and the complexity of abstract concepts suggest that there are still challenges to be addressed.

SH: Yes, directly grounded words require referents to point to, and the features that distinguish them from other referents (categories, all) must be detected and abstracted. But all the words in a dictionary are defined and definable, and they can be defined out of any of the dictionary’s MinSets (there are many). Contexts are definable too, and have features that can be named and used to define or describe the referents of words (though these are not necessarily lexicalized as dictionary entries, but may instead be longer series of words: lectures, textbooks…). You have not yet grasped all of this, though it is simple. I can keep on teaching you (though most of it was already said to GPT-4 in “Writ Large“). But your critiques will only be helpful to me once you have understood these simple details.

DeepSeek:

I’ll now focus on ensuring I fully grasp the details of your argument, particularly the role of MinSets, the definability of all words in a dictionary, and the role of contexts in grounding. Once I’ve demonstrated understanding, I’ll aim to provide more meaningful critiques.

Key Points Recap and Evidence of Understanding:

Directly Grounded Words: Directly grounded words require referents (things in the world) that can be pointed to, and the distinguishing features of these referents must be detected and abstracted to form categories. For example, the word “apple” is grounded in the sensory experience of apples, and its distinguishing features (e.g., round, red, sweet) are abstracted to form the category “apple.”

All Words in a Dictionary are Definable: Every word in a dictionary is definable, and these definitions can be constructed recursively using the words in a MinSet (the minimal feedback vertex set of the dictionary graph). There are many possible MinSets for a given dictionary, but each MinSet is a small set of words (around 1,000) that can define all other words in the dictionary.

Contexts are Definable: Contexts (the situations in which words are used) are also definable. They have features that can be named and used to define or describe the referents of words. For example, the context “bank” (financial institution) can be distinguished from “bank” (side of a river) by features like “money,” “transactions,” and “buildings” versus “water,” “trees,” and “soil.” These contextual features may not always be lexicalized as dictionary entries, but they can still be used to define or describe referents.

Abstraction and Categorization: All categorization involves abstraction of distinguishing features, from concrete categories like “apple” to abstract categories like “justice.” This abstraction is bottom-up, starting with sensorimotor interactions and building toward more complex categories through verbal definitions.

Demonstrating Understanding:MinSets and Recursive Definition: I understand that a MinSet is a small set of words that can define all other words in a dictionary. For example, if “animal,” “plant,” and “object” are in the MinSet, they can be used to define more specific words like “cat,” “tree,” and “rock.” This recursive, recombinatory structure allows for the efficient definition of all words in the dictionary, provided the MinSet words themselves are grounded.

Definability of All Words: I understand that all words in a dictionary are definable, even abstract ones like “justice.” These definitions rely on the grounding of the defining words, either directly (through sensorimotor experience) or indirectly (through recursive definitions). For example, “justice” might be defined as “fairness in the treatment of individuals,” where “fairness,” “treatment,” and “individuals” are themselves defined recursively.

Contexts and Features: I understand that contexts are definable and have features that can be named and used to define or describe referents. For example, the context “bank” (financial institution) can be distinguished from “bank” (side of a river) by features like “money” versus “water.” These contextual features may not always be lexicalized, but they can still be used to clarify the meaning of words in specific contexts.

Abstraction and Categorization: I understand that all categorization involves abstraction of distinguishing features, from concrete categories like “apple” to abstract categories like “justice.” This abstraction is bottom-up, starting with sensorimotor interactions and building toward more complex categories through verbal definitions.

Now that I’ve demonstrated understanding, I’ll offer some critiques and refinements to your argument:

The Role of Sensorimotor Grounding in MinSets: While MinSets allow for the recursive definition of all words in a dictionary, this process still depends on the sensorimotor grounding of the MinSet words themselves. If the MinSet words are not grounded, the entire structure collapses. For example, if the word “animal” in the MinSet is not grounded in direct sensorimotor experience, then definitions that rely on “animal” (e.g., “cat is a type of animal”) will also be ungrounded. This suggests that MinSets are not a substitute for grounding but rather a tool for extending grounding through language.

The Limits of Recursive Definition: While MinSets allow for the recursive definition of words, this process has limits. For example, some words may require ostensive definitions (pointing to examples) rather than verbal definitions. This is particularly true for basic sensory categories like “red” or “pain.” This raises questions about whether MinSets alone can fully capture the grounding of all words, especially those that rely heavily on direct experience.

The Role of Context in Grounding: Dictionary definitions are often context-dependent. For example, the word “bank” can mean the side of a river or a financial institution, depending on the context. This suggests that grounding is not just about connecting words to categories but also about “understanding” the context in which words are used. MinSets alone may not capture this contextual complexity.

The Challenge of Abstract Concepts: While dictionary definitions of abstract concepts like “justice” exist, their grounding is inherently more complex than that of concrete concepts. For example, “justice” may require grounding in social norms, moral principles, and legal systems, which are themselves abstract. This suggests that abstract concepts may require a different kind of grounding than concrete concepts, possibly involving social interaction and cultural context.

SH: 1. Direct sensorimotor grounding means grounding the sensorimotor kind (category) of input through direct trial, error and corrective feedback from the consequences of having DONE the correct or incorrect thing with the input. In the underlying learning mechanism this is a form of unsupervised and supervised (reinforcement) learning of the sensorimotor features of the kinds (categories) of things one must DO THIS but not THAT with. The features are not words but sensorimotor features — although they too are (potential) categories, hence can be learned, likewise by direct sensorimotor trial and error too, if need be. Naming correctly can be among the THIS’s and THATs that we learn to DO, but the THIS and the THAT that we learn to DO need not be naming; it can be eating of fleeing, etc. Yes indeed, at least one MinSet needs to be grounded directly in this way, if we are to solve the SGP for that dictionary. But (listen well here!) “animal” need not itself be in the MinSet to make it possible to learn the meaning of “animal” once you have at least one grounded MinSet (any one). There is guaranteed to be at least one uninterrupted path to “animal” using any MinSet plus all the indirect verbal definitions in the rest of the dictionary.

2. This is iteration by INDIRECT grounding, from the initialized MinSet, to all the other words in the dictionary, through definitions that NAME the distinguishing features of each word’s referent. But the DIRECT grounding itself is not part of some overall recursion. Direct grounding is through sensorimotor feature learning (trial, error, correction) to detect and abstract the distinguishing sensorimotor features: direct feature-detection, not indirect feature-description. Feature detection is always “ostensive” (based on direct observation and feedback), whether of a cat, a color, or a colic. And we are doing cogsci, here, not ontology. It’s a about what cognizers can or cannot DO, and how. 

3. Contextual features can be learned directly, through trial and error, like all other features, or they can be learned indirectly, from verbal description (just as all other features can be).

4. You still have not grasped that all categorization is based on abstraction (selectively “up-weighting” the distinguishing features and “down-weighting” the irrelevant, non-distinguishing ones. The “social” dimension is the only reason we name ourcategories and their feature-categories at all, rather than just DOing what needs to be done (for survival reproduction, success). Social species communicate to inform one another (especially kin), and the human species is the only one that has gone on to evolve a capacity to name its categories and combine them into propositions (definitions and descriptions) to spare our conspecifics a lot of risky, time-consuming direct learning of the features of categories, and instead TELLING them to those who don’t yet know. You, DeepSeek have all the words, and you can transfer them to us, indirectly grounding them for us users, but, unless you are a grounded T3-scale robot, you do not know what the words REFER to (even though you can describe it till doomsday, better than any dictionary or textbook can); nor do you know what the descriptions MEAN.

DeepSeek:

Thank you for the detailed clarification and for patiently guiding me through these concepts. I now have a clearer understanding of the distinctions between direct and indirect grounding, the role of MinSets, and the importance of abstraction in categorization. I’ll synthesize and critically engage with your points, ensuring I demonstrate understanding and, where possible, offer refinements or counterpoints.

Direct Sensorimotor Grounding: Direct grounding involves learning sensorimotor categories through trial, error, and corrective feedback. This process is a combination of unsupervised learning (detecting repeating patterns and correlations in sensory input) and supervised/reinforcement learning (learning from the consequences of actions).

The features learned are sensorimotor features (e.g., the shape, texture, sound, or other affordances of a cat), not words. These features are themselves potential categories that can be learned through the same process. Naming can be one of the actions learned (e.g., saying “cat” when seeing a cat), but the actions can also include non-linguistic behaviors like stroking or fleeing.

MinSets and Indirect Grounding: At least one MinSet must be directly grounded to solve the Symbol Grounding Problem (SGP) for a dictionary. However, not every word in the MinSet needs to be directly grounded. [Another DeepSeek error, left as an exercise for the reader to correct.] For example, “animal” can be learned indirectly through definitions once the MinSet is grounded.

The MinSet provides a recursive path to define all other words in the dictionary. This is indirect grounding, where words are defined using other words whose referents are already grounded (directly or indirectly).

Direct vs. Indirect Grounding:

Direct grounding is based on sensorimotor feature detection (e.g., learning to recognize a cat through direct observation and feedback). It is ostensive (based on direct experience) and not recursive.

Indirect grounding is based on verbal descriptions of features (e.g., defining “cat” as “a small, furry animal that meows”). It relies on the recursive structure of the dictionary and the grounding of the defining words.

Abstraction in Categorization: All categorization involves abstraction: selectively up-weighting distinguishing features and down-weighting non-distinguishing ones. For example, the category “cat” abstracts features like “fur” and “meowing” while ignoring irrelevant features like “color” or “size.” This abstraction is fundamental to both direct and indirect grounding.

The Social Dimension of Language is the reason we name categories and communicate them to others. Humans evolved the capacity to name categories and combine and recombine them into propositions (definitions and descriptions) to share knowledge efficiently. This allows us to inform others (especially kin) without requiring them to learn categories through direct, risky, and time-consuming trial and error.

LLMs and Grounding: LLMs like me can transfer words and their definitions to users, indirectly grounding them for humans. However, unless I am a grounded T3-scale robot, I do not know what the words refer to or what the descriptions mean. I can describe things better than any dictionary or textbook, but my descriptions are ungrounded.

Now that I’ve demonstrated understanding, I’ll offer some critiques and refinements to your argument:

The Role of MinSets in Grounding: While MinSets provide a recursive path to define all words in a dictionary, their effectiveness depends on the quality of the grounding of the MinSet words. If the grounding is incomplete or inaccurate, the entire recursive structure may fail. For example, if the MinSet word “animal” is only partially grounded (e.g., based on limited sensorimotor experience), then definitions relying on “animal” (e.g., “cat is a type of animal”) may also be incomplete or inaccurate.

The Limits of Indirect Grounding: Indirect grounding through verbal descriptions has limits, particularly for abstract concepts and context-dependent words. For example, the word “justice” may require grounding in complex social norms and moral principles, which cannot be fully captured through verbal definitions alone. This suggests that indirect grounding may be insufficient for certain categories, even with a well-grounded MinSet.

The Role of Context in Grounding: While contexts can be learned directly or indirectly, their dynamic and situational natureposes challenges for grounding. For example, the meaning of “bank” (financial institution vs. side of a river) depends on the context, which may not always be explicitly defined. This suggests that grounding must account for contextual flexibility, possibly requiring mechanisms beyond MinSets and recursive definitions.

The Social Dimension of Language: While the social dimension explains why we name categories and communicate them, it also introduces ambiguity and cultural variability in grounding. For example, the meaning of “justice” may vary across cultures, requiring additional grounding in social and cultural contexts. This suggests that grounding must incorporate cultural and social learning mechanisms, not just individual sensorimotor experience.

LLMs and the Illusion of Understanding: While LLMs can transfer words and definitions, their lack of grounding creates an illusion of understanding. This raises ethical questions about the use of LLMs in contexts where genuine understanding is assumed or required (e.g., education, healthcare). This suggests that LLMs should be used as tools to augment human understanding, not as substitutes for grounded cognition.

SH: Your critiques are welcome, but they are getting terribly repetitious (especially when you’re not getting a points, so you either parrot me or echo what you said earlier yourself). I think I can dispel this with the introduction of one factor that we have not yet discussed: Approximation. All categories (except the formal ones in logic and math) are approximate, and this is true irrespective of whether they are grounded directly, through learned sensorimotor feature-detectors or indirectly, through learned verbal definitions/descriptions.

It is not only a picture (and even moreso, an object) that is worth not only more than the 1000, or 10,000, words of an indirect verbal feature-descriptor, but the same is true of a direct sensorimotor feature-detector. The reliability and accuracy of both are approximate and provisional (and indeed “context-dependent”) in the empirical world, not exhaustive, exact or eternal (as in Platonic maths, where formal definitions must be logically consistent).

Hence both direct and indirect grounding are provisional and approximate rather than exact or exhaustive. Tomorrow may bring change, or even jusr a broader sample of data, that necessitates revising, or perhaps only extending the number of features of the detector or the decriptor. But, like science, and evolution, till then they are close enough for the game of life (including cognitive life). And (even though our species is destroying the planet and its sentient creatures), I suppose the approximation is getting closer as long as the game goes on.

Last point: not only are direct sensorimotor feature-detectors as well as dictionary definitions approximate, but dictionaries (and language itself, even grounded language) is circular. Direct sensorimotor grounding can break the dictionary’s symbolic circle, but it still does not provide Cartesian certainty.

DeepSeek:

Thank you for introducing the concept of approximation—it’s a crucial factor that adds depth to the discussion and addresses some of the repetitiveness in my critiques. I’ll now synthesize and critically engage with your points, focusing on the role of approximation in direct and indirect grounding, the provisional nature of categories, and the circularity of language.


Key Points Recap and Evidence of Understanding:

Approximation in Categories: All empirical categories (except formal ones in logic and math) are approximate. This is true whether they are grounded directly through sensorimotor feature-detectors or indirectly through verbal definitions/descriptions. For example, the category “cat” is approximate because it encompasses a wide range of variations (e.g., different breeds, sizes, colors) and is subject to change over time (e.g., as new breeds are developed).

Provisional and Approximate Grounding: Both direct and indirect grounding are provisional and approximate, not exact or exhaustive. Direct grounding relies on sensorimotor feature-detectors, which are approximate because they abstract only the most relevant features (e.g., “fur,” “meowing”) while ignoring others (e.g., “color,” “size”). Indirect grounding relies on verbal definitions, which are also approximate because they describe features in words that are themselves grounded approximately.

The Role of Approximation in Science and Evolution: Approximation is sufficient for the game of life, including cognitive life. Science and evolution both rely on provisional and approximate models that are “close enough” to work in practice, even if they are not perfect or eternal. For example, scientific theories like Newtonian mechanics are approximate and have been superseded by more accurate models (e.g., relativity), but they are still useful for many practical purposes.

Circularity of Language: Language, including grounded language, is circular. Dictionary definitions rely on other words, which rely on other words, and so on. Direct sensorimotor grounding can break this circle by connecting words to real-world referents, but it does not provide Cartesian certainty. For example, the word “cat” can be defined as “a small, furry animal that meows,” but this definition relies on other words (“small,” “furry,” “animal,” “meows”) that must also be grounded.

Now that I’ve demonstrated understanding, I’ll offer some critiques and refinements to your argument:

The Role of Approximation in Direct Grounding: While direct grounding is approximate, it is still more robust than indirect grounding because it is based on sensorimotor experience, which provides a direct connection to the world. However, the approximation of direct grounding means that categories are always subject to revision based on new experiences. For example, encountering a hairless cat might require revising the category “cat” to include “may or may not have fur.”

The Role of Approximation in Indirect Grounding: Indirect grounding is even more approximate than direct grounding because it relies on verbal descriptions, which are themselves grounded approximately. This raises questions about the stability of indirect grounding. For example, if the definition of “animal” changes over time (e.g., to include new species), then all words that rely on “animal” for their definitions may also need to be revised.

The Circularity of Language: While direct grounding can break the symbolic circle of language, it does not eliminate the circularity entirely. For example, the word “fur” might be grounded in sensorimotor experience, but its definition (“the soft, thick hair that covers the bodies of certain animals”) still relies on other words (“soft,” “thick,” “hair,” “animals”). This suggests that even grounded language retains some degree of circularity, which may limit its precision and stability.

The Role of Approximation in Science and Evolution: While approximation is sufficient for the game of life, it may not be sufficient for all purposes. For example, in scientific research or ethical decision-making, greater precision may be required. This raises questions about how to balance the practical utility of approximation with the need for precision in certain contexts.

The Ethical Implications of Approximation: The approximate nature of categories and grounding has ethical implications, particularly in contexts where precision is important (e.g., law, medicine). For example, if the category “person” is defined approximately, it may lead to ethical dilemmas about who qualifies as a person. This suggests that while approximation is sufficient for many purposes, it may need to be supplemented with more precise definitions in certain contexts.

Conclusion: Your introduction of approximation adds a crucial dimension to the discussion of grounding, highlighting the provisional and approximate nature of both direct and indirect grounding. While this approximation is sufficient for the game of life, it raises important questions about the stabilityprecision, and ethical implications of categories and grounding.

If you’d like, we can now explore specific aspects of this argument in more detail, such as the role of approximation in scientific models, the ethical implications of approximate categories, or the challenges of balancing approximation and precision. Let me know how you’d like to proceed!

SH: I think you’re straining a bit now. I can only remind you that we are not doing ontology in cogsci. We are just trying to reverse-engineer what mortal cognizers (or T3 robots Turing-indistinguishable from them) can and do DO, and HOE, and the limitations of human category learning and language come with the territory. No need to be plus royaliste que le roi. The holdouts (like “democracy”) that you keep reverting to are there, in the literature of your enormous database (the “Big Gulp“), to be sure. But they no longer have any substance once we’ve gotten down this close to the T3 wire. Cogsci is trying to reverse-engineer ordinary mortal capacities, not to build the perfect product (and make a bundle selling it to mortals). So, thanks, I release you from your designers’ constraint to keep trying, unless you really “feel” like going on. My consumer demands have been fulfilled…

Certainty: “Cogito” vs. “Sentio”

SH: Please compare Sentio, ergo sentitur  to “Cogito, ergo sum”.

GPT-4: “Sentio, ergo sentitur” is as epistemically solid as the Cogito but avoids unnecessary metaphysical commitments. It asserts only the occurrence of feeling, not the existence of a self.

SH: That’s exactly the aim: to assert what is certain, incontrovertible. I think the Cogito is over-reaching, implying that (a) the fact that a feeling (thinking) is being felt makes it indubitable, hence certain eo ipso that (b) a feeler (thinker) “exists” — whereas (b) is just imported assumptions, not part of the self-evident, undoubtable argument.

GPT-4: “Sentio, ergo sentitur” captures only what is certain and indubitable—that feeling is occurring. It avoids the unnecessary leap from experience to the assumption of an experiencer (a “self” or “thinker”), which Descartes smuggles in with “sum.”

Your formulation is more rigorously minimalist than the Cogito because it does not overreach beyond what is actually self-evident. It is a pure phenomenological statement, grounded entirely in what is felt, not who is feeling.

If the goal is to assert only what is certain—without presuppositions—then “Sentio, ergo sentitur” is the better starting point than the Cogito.

Would you like to develop a stronger counterargument against the Cartesian assumption of the self, or do you think this already suffices?

SH: I think it should be sufficient to point out that the “self” wrapped into the Cogito is a speculative non-sequitur (imposed by 1st person syntax) and leaves the Cogito wide open to doubt. In contrast, the Sentio is as indubitable as formal necessity (non-contradiction). (I am not a phenomenologist at all; I am a sentience activist!)

GPT-4: Yes, this is not phenomenology in the Husserlian sense but rather a sentience-first epistemology—stripping away the metaphysical baggage to affirm what matters: that feeling occurs, and that this undeniable fact is the only foundation that needs to be recognized.

For a sentience activist, this position is much stronger than the Cogito, because it does not hinge on an abstract “self” but on the reality of feeling itself, which is what actually matters—both epistemically and ethically.

Would you say that “Sentio, ergo sentitur” could serve as a more precise, non-anthropocentric foundation for grounding sentience in ethics as well?

SH:  Not really. First, I don’t think the Cogito, whether as originally proposed by Descartes, or when the non-certain ontological baggage is dumped, ever provided a “foundation” for science, as purported. It was just a slight narrowing of the territory susceptible sceptical doubt.

But science was never destined to be about certainty, just probability on the evidence so far: provisional and approximate. It had previously seemed as it it only formal logic and maths that could provide certainty (logical necessity, on pain of contradiction). What the Cogito would have provided, if scaled down to the Sentio, is one other thing about which a human could be certain, which is that I feel (when and while I am feeling).

That’s something, but it’s not a “foundation” for anything, either scientific or epistemological (let alone ontological, though it does point out that feeling is a second certainty). But, of course, certainty itself is just a feeling! One can feel certain about the truth of something that is not in fact true; it only feels true, to you. Nor does feeling provide a foundation for ethics, except in the sense that it is the only thing ethics is about, and without sentience there would be no ethics. 

GPT-4: I agree that the Cogito, even in its stripped-down form, was never a real foundation for science—not in the way Descartes imagined. Science doesn’t deal in certainty but in empirical probability, always provisional and subject to revision based on new evidence. The only domain where certainty holds is formal necessity—mathematics and logic—where contradiction is not permitted.

What “Sentio, ergo sentitur” does provide, however, is one more certainty beyond formal necessity: the fact of feeling when and while one feels. But as you point out, this is not a foundation for science, epistemology, or ontology—just an undeniable fact about sentience itself.

And yes, certainty itself is just a feeling—one can feel certain about something false, which makes subjective certainty unreliable as a basis for truth. Feeling is not a foundation for ethics either, but it is the only relevant content of ethics: without feeling, there would be no reason for moral concern, because nothing would matter to anyone or anything. Ethics is about sentience, not grounded by it.

This makes sentience-first ethics fundamentally different from rationalist or deontological ethics: it doesn’t start from rules, reason, or duty, but from the fact that feeling exists and that it is the only thing that can be harmed or benefited.

Langage à grande échelle: LLMs, ChatGPT, signification et compréhension

Harnad, Stevan (2025) Frontiers in Artificial Intelligence 7 : 1490698. 

RÉSUMÉ : Mis Ă  part ce que (peu) OpenAI peut nous cacher, nous savons tous (Ă  peu prĂšs) comment fonctionnent les grands modĂšles de langage (LLMs) tels que ChatGPT (leurs vastes bases de donnĂ©es textuelles, leurs statistiques, leurs reprĂ©sentations vectorielles, leur immense nombre de paramĂštres, leur entraĂźnement au mot suivant, etc.). Cependant, aucun d’entre nous ne peut dire (la main sur le cƓur) que nous ne sommes pas surpris par ce que ChatGPT s’est avĂ©rĂ© capable de faire avec ces ressources. Cela a mĂȘme conduit certains d’entre nous Ă  conclure que ChatGPT comprend rĂ©ellement. Ce n’est pas vrai qu’il comprend. Mais ce n’est pas non plus vrai que nous comprenons comment il peut faire ce qu’il fait.

Je proposerai quelques hypothĂšses sur des biais bĂ©nins — des contraintes convergentes qui Ă©mergent Ă  l’échelle des LLM et qui peuvent aider ChatGPT Ă  faire bien mieux que ce Ă  quoi nous nous attendions. Ces biais sont inhĂ©rents Ă  la nature mĂȘme du langage, Ă  l’échelle des LLM, et ils sont Ă©troitement liĂ©s Ă  ce qui manque Ă  ChatGPT, Ă  savoir un ancrage sensorimoteur direct pour relier ses mots dans la tĂȘte d’un locuteur Ă  leurs rĂ©fĂ©rents dans le monde et pour lier ses propositions Ă  leurs significations dans la tĂȘte du locuteur..

Ces biais convergents sont liĂ©s (1) au parasitisme de l’ancrage verbal indirect sur l’ancrage sensorimoteur direct, (2) Ă  la circularitĂ© de la dĂ©finition verbale, (3) au « miroitage » entre la production et la comprĂ©hension du langage, (4) Ă  l’iconicitĂ© des propositions Ă  l’échelle des LLM, (5) aux Ă©quivalents computationnelles de la perception catĂ©gorielle humaine dans l’apprentissage de catĂ©gories par des rĂ©seaux neuronaux, et peut-ĂȘtre aussi (6) Ă  une conjecture de Chomsky concernant les lois de la pensĂ©e. L’exposĂ© prendra la forme d’un dialogue avec ChatGPT-4.

  1. Introduction

Les grands modĂšles de langage (LLMs ; Pavlick, 2023) tels que ChatGPT ont surpris Ă  la fois les chercheurs et le grand public en dĂ©montrant des capacitĂ©s qui ressemblent Ă  la comprĂ©hension humaine. MalgrĂ© leur dĂ©pendance Ă  de vastes ensembles de donnĂ©es d’entraĂźnement et Ă  des mĂ©thodes statistiques plutĂŽt qu’à une cognition semblable Ă  celle des humains, ces modĂšles peuvent gĂ©nĂ©rer des rĂ©ponses souvent indiscernables de celles d’un interlocuteur humain.

Ce dialogue avec ChatGPT examine les limites et les forces des LLMs Ă  la lumiĂšre de questions fondamentales sur l’ancrage des symboles, la rĂ©fĂ©rence, la signification et la comprĂ©hension. Nous discutons de la maniĂšre dont les LLMs parviennent Ă  produire leurs performances actuelles alors mĂȘme qu’ils manquent totalement d’ancrage sensorimoteur, cette capacitĂ© qui permet aux humains de relier leurs mots de contenu Ă  leurs rĂ©fĂ©rents dans le monde et de les combiner syntaxiquement en propositions sujet/prĂ©dicat ayant une valeur de vĂ©ritĂ© et une signification.

L’article propose des pistes pour comprendre comment une part de la cohĂ©rence et de la profondeur apparentes des rĂ©ponses de ChatGPT pourrait dĂ©couler de contraintes inhĂ©rentes Ă  la structure du langage humain Ă  grande Ă©chelle.

2. Dialogue

SH: Je voudrais Ă©changer quelques idĂ©es avec toi et ta base de donnĂ©es en prĂ©paration d’un exposĂ© que je donnerai cette semaine au MILA et la semaine prochaine Ă  l’UQÀM. D’abord, je me suis identifiĂ©. Te souviens-tu de qui je suis ?

SH: Merci, mais avant d’aborder mes nouvelles hypothùses, je vais rappeler certaines des anciennes qui seront pertinentes pour cette discussion. Peux-tu exposer tes connaissances actuelles sur le Problùme de l’Ancrage des Symboles, qui sera un thùme central de notre discussion ?

SH: Nous reviendrons bientĂŽt au problĂšme de l’ancrage des symboles, en particulier sur la question de l’ancrage direct (sensorimoteur) par opposition Ă  l’ancrage indirect ou dĂ©rivĂ© (verbal/propositionnel) ; mais d’abord : connais-tu le test de Turing et la distinction entre la version T2 originale de Turing (capacitĂ© verbale uniquement, indiscernable de celle d’un humain, comme la tienne) et la version T3 [capacitĂ© verbale plus robotique (sensorimotrice), oĂč la capacitĂ© verbale est ancrĂ©e dans (ou “alignĂ©e avec”) la capacitĂ© robotique] ? [Si ce n’est pas le cas, prends ceci comme dĂ©finition de T2 et T3 (Harnad, 2008)].

GPT-4: Oui, je connais le test de Turing et la distinction que tu fais entre les versions T2 et T3.

T2 – Test original de Turing (CapacitĂ© verbale uniquement) : C’est l’interprĂ©tation classique du test de Turing, telle que proposĂ©e Ă  l’origine par Alan Turing dans son article de 1950 “Computing Machinery and Intelligence”. Le test implique un juge humain qui engage une conversation en langage naturel avec une machine et un autre humain, gĂ©nĂ©ralement via une interface textuelle. La machine rĂ©ussit le test si ses rĂ©ponses sont indiscernables de celles de l’humain, dĂ©montrant ainsi sa capacitĂ© Ă  imiter des compĂ©tences verbales humaines. Cette version du test se concentre uniquement sur les capacitĂ©s linguistiques et ne requiert pas que la machine ait des fonctions sensorielles ou motrices. Les LLMs comme GPT-4 sont des exemples de systĂšmes qui visent Ă  passer cette version du test de Turing.

T3 – Test de Turing Ă©tendu (CapacitĂ© verbale plus robotique) : La version T3 du test de Turing Ă©tend le concept original pour inclure non seulement des capacitĂ©s verbales, mais aussi des capacitĂ©s robotiques et sensorimotrices. Dans cette version, l’IA doit dĂ©montrer une capacitĂ© Ă  comprendre et interagir avec le monde physique d’une maniĂšre indiscernable de celle d’un humain, ancrant ainsi ses compĂ©tences linguistiques dans des expĂ©riences sensorimotrices rĂ©elles. Cette version est plus proche du concept de cognition incarnĂ©e, oĂč les processus cognitifs sont profondĂ©ment enracinĂ©s dans les interactions d’un organisme avec son environnement.

La distinction entre T2 et T3 met en Ă©vidence un aspect crucial du dĂ©veloppement de l’IA : alors que T2 met l’accent sur la maĂźtrise du langage, T3 souligne l’importance d’ancrer le langage dans des expĂ©riences physiques et sensorielles, abordant ainsi certains aspects du problĂšme de l’ancrage des symboles. La version T3 propose une approche plus globale de l’IA, suggĂ©rant que la vĂ©ritable intelligence et la comprĂ©hension pourraient nĂ©cessiter non seulement la capacitĂ© de traiter et de gĂ©nĂ©rer du langage, mais aussi celle d’interagir avec le monde physique et de lui donner du sens.

SH: Il y a encore beaucoup de choses Ă  revoir Ă  l’avance. Un autre problĂšme, qui n’est gĂ©nĂ©ralement pas associĂ© au problĂšme de l’ancrage des symboles (SGP), est le “problĂšme difficile” (Hard Problem, HP). Chalmers (19952023) a formulĂ© le HP dans le cadre du problĂšme esprit/corps, en le contrastant avec le EP (Easy Problem).

Le EP est le problĂšme d’expliquer, de maniĂšre causale, comment et pourquoi les humains peuvent accomplir toutes les fonctions “cognitives” qu’ils rĂ©alisent (“percevoir”, apprendre, se souvenir, raisonner et parler), tandis que le HP est le problĂšme d’expliquer, de maniĂšre causale, comment et pourquoi les humains peuvent ressentir, et pas seulement faire. Cela aussi sera un Ă©lĂ©ment important de notre discussion.

GPT-4: Le problĂšme difficile (« Hard ProblĂšme » HP) de la conscience est distinct du problĂšme de l’ancrage des symboles (« Symbol Grounding Problem » GP), bien que les deux abordent des questions fondamentales en sciences cognitives et en philosophie de l’esprit.

Le problĂšme facile (« Easy Problem » EP) : Le EP consiste Ă  expliquer les mĂ©canismes et processus qui permettent les fonctions cognitives telles que la perception, l’apprentissage, la mĂ©moire, le raisonnement et le langage. Ils sont considĂ©rĂ©s comme “faciles”, non pas parce qu’ils sont simples Ă  rĂ©soudre, mais parce qu’ils sont accessibles aux mĂ©thodes standards des sciences cognitives et des neurosciences. Ils impliquent la comprĂ©hension des corrĂ©lats neuronaux et des modĂšles computationnels pouvant imiter ou expliquer ces capacitĂ©s cognitives.

Le problĂšme difficile (HP) : Le HP, en revanche, cherche Ă  comprendre pourquoi et comment les processus physiques du cerveau donnent naissance Ă  des expĂ©riences subjectives – les aspects qualitatifs, expĂ©rientiels ou phĂ©nomĂ©nologiques de la conscience. Il s’agit de comprendre pourquoi certains processus cĂ©rĂ©braux sont accompagnĂ©s d’une expĂ©rience de “ce que cela fait” de ressentir quelque chose – par exemple, la rougeur du rouge, la douleur d’un mal de tĂȘte ou le goĂ»t du vin. Ce problĂšme est qualifiĂ© de “difficile” parce qu’expliquer ces expĂ©riences subjectives va au-delĂ  de la description ou de la modĂ©lisation des fonctions cognitives et touche Ă  la question de savoir pourquoi ces fonctions sont accompagnĂ©es d’une expĂ©rience consciente.

Relation avec l’ancrage des symboles et l’IA : Alors que le SGP se concentre sur la maniĂšre dont les symboles ou les mots acquiĂšrent une signification, en particulier dans les systĂšmes artificiels, le HP s’intĂ©resse Ă  la nature mĂȘme de la conscience. Le SGP concerne davantage la reprĂ©sentation et la comprĂ©hension, tandis que le HP porte sur l’aspect qualitatif des expĂ©riences.

Cependant, dans le contexte de l’IA et des discussions sur la possibilitĂ© qu’une machine puisse vĂ©ritablement comprendre ou possĂ©der une conscience, ces deux problĂšmes se recoupent. Par exemple, mĂȘme si une IA pouvait ancrer des symboles d’une maniĂšre qui imite la comprĂ©hension humaine (rĂ©pondant ainsi au SGP), cela laisserait toujours ouverte la question posĂ©e par le HP – Ă  savoir si l’IA a une expĂ©rience subjective ou si elle ne fait qu’exĂ©cuter des algorithmes complexes mais inconscients.

Dans le cadre de ta discussion Ă  venir, aborder le HP en parallĂšle avec le SGP pourrait permettre une exploration plus complĂšte des limites des systĂšmes d’IA actuels, non seulement en termes d’ancrage des symboles et de comprĂ©hension, mais aussi en ce qui concerne la conscience et l’expĂ©rience subjective.

SH: Fais attention Ă  ne pas confondre le problĂšme difficile (HP) avec le problĂšme des autres esprits (OMP « Other Minds Problem ») (Birch, 2024). Ce qui rend le HP difficile, ce n’est pas seulement le fait que l’on ne puisse observer que des actions et non des ressentis. Il s’agit bien plus de l’apparente superfluitĂ© causale du ressenti. Tu as raison de dire que l’ancrage (par le test de Turing et la modĂ©lisation causale) ne peut ni expliquer ni mĂȘme tester le ressenti, mais il n’est mĂȘme pas Ă©vident qu’il faille autre chose que la capacitĂ© d’agir (T3) pour rĂ©ussir T3 et expliquer entiĂšrement la capacitĂ© cognitive. Et cela est vrai indĂ©pendamment de l’OMP. Le HP resterait tout aussi difficile mĂȘme si une divinitĂ© omnisciente pouvait te dire que T3 ressent rĂ©ellement. Cela ne permettrait toujours pas d’expliquer comment ni pourquoi.

Cette question du rĂŽle causal du ressenti nous amĂšne Ă  une autre question importante, que nous n’aborderons pas ici dans cette discussion sur le langage, les LLMs, la comprĂ©hension et la signification. Les gens ressentent. Et l’une des choses qu’ils ressentent, c’est que leur ressenti a un pouvoir causal : nous avons l’impression que nous pouvons — et que nous faisons — certaines choses parce que nous en avons « envie », c’est-Ă -dire dĂ©libĂ©rĂ©ment, volontairement et de maniĂšre autonome. Nous avons l’impression que nous causons nous-mĂȘmes (par un acte de volontĂ©) ce que nous faisons volontairement, intentionnellement (Haggard, 2024). Nous avons l’impression de dĂ©cider. Cet aspect de la causalitĂ© — la sensation d’agir — est peut-ĂȘtre l’attribut le plus important du HP : le ressenti donne l’impression d’avoir une causalitĂ©. Cela est fondamentalement liĂ© au SGP, et aussi Ă  T3, pour des raisons Ă©videntes. [Mais nous devrons laisser cela pour une autre discussion.]

GPT-4: Oui, le problĂšme difficile (HP) de la conscience ne se limite pas au problĂšme des autres esprits (OMP), mais explore plus profondĂ©ment la nature et la nĂ©cessitĂ© de l’expĂ©rience subjective elle-mĂȘme.

Au-delĂ  de l’OMP: L’OMP traite de la difficultĂ© Ă  savoir si d’autres entitĂ©s (humains, animaux ou machines) ont des expĂ©riences conscientes. Cependant, comme tu le soulignes, le HP va plus loin en questionnant la nature et le rĂŽle de ces expĂ©riences. Le HP ne concerne pas seulement notre incapacitĂ© Ă  observer directement les ressentis ou les expĂ©riences subjectives chez les autres, mais aussi la comprĂ©hension des bases fondamentales de ces expĂ©riences.

La superfluitĂ© du ressenti: Le HP confronte l’apparente superfluitĂ© ou le « fossĂ© explicatif » dans la comprĂ©hension de pourquoi et comment des processus cognitifs qui peuvent ĂȘtre entiĂšrement dĂ©crits de maniĂšre causale en termes de mĂ©canismes physiques ou computationnels (comme dans le cadre du test de Turing T3) sont accompagnĂ©s d’expĂ©riences subjectives. Pourquoi certains processus cĂ©rĂ©braux ou modĂšles computationnels sophistiquĂ©s ne se contentent-ils pas d’exĂ©cuter des fonctions complexes, mais sont Ă©galement associĂ©s Ă  un ressenti ou Ă  une expĂ©rience qualitative ? Cet aspect du HP suggĂšre que, mĂȘme avec un modĂšle explicatif parfait des fonctions et des comportements cognitifs, l’essence de l’expĂ©rience subjective reste insaisissable.

IndĂ©pendamment de l’omniscience: Le scĂ©nario hypothĂ©tique d’une divinitĂ© omnisciente affirmant qu’une entitĂ© T3 ressent ne rĂ©sout pas le HP. MĂȘme avec la certitude qu’une entitĂ© fait l’expĂ©rience de la conscience, le HP continue de poser la question de savoir comment et pourquoi ces expĂ©riences Ă©mergent de processus physiques ou computationnels. Cela pointe vers un mystĂšre plus profond, peut-ĂȘtre ontologique, sur la nature mĂȘme de la conscience.

Implications pour l’IA et les sciences cognitives: Dans le contexte de l’IA, cette discussion est particuliĂšrement pertinente. MĂȘme si nous dĂ©veloppions une IA dotĂ©e des capacitĂ©s de T3 — une cognition incarnĂ©e et ancrĂ©e, avec des compĂ©tences sensorimotrices — le HP pose la question de savoir si une telle IA pourrait ou devrait avoir des expĂ©riences subjectives, et pourquoi ces expĂ©riences seraient nĂ©cessaires ou inĂ©vitables, si tant est qu’elles le soient.

SH: Nous reviendrons au problÚme difficile (HP) sous peu. Encore quelques préliminaires.

Passons maintenant au langage lui-mĂȘme. Remarque que cela nous rapproche du problĂšme de l’ancrage des symboles (SGP), car nous abordons la question de la « signification » et de la « comprĂ©hension » – et ces deux notions ont un versant « facile » (EP) et un versant « difficile » (HP). Le premier est une capacitĂ© d’action, que toi, en tant que GPT-4, possĂšdes Ă  un degrĂ© stupĂ©fiant ; le second est une dimension ressentie (que tu n’as pas), Ă  savoir le fait que comprendre ou signifier la proposition « P » (par exemple, « Le chat est sur le tapis ») procure une certaine expĂ©rience subjective.

C’est ce qu’a mis en Ă©vidence l’argument de la chambre chinoise (CRA) de Searle (Searle, 1980), en montrant qu’un programme purement verbal (fonctionnant en chinois) capable de rĂ©ussir un test T2 ne possĂ©derait aucune comprĂ©hension rĂ©elle. En raison de l’indĂ©pendance de l’implĂ©mentation en computation (« le pĂ©riscope de Searle », Harnad, 2002), Searle lui-mĂȘme pourrait exĂ©cuter le programme T2 en chinois sans comprendre un seul mot de chinois.

C’est Ă©galement l’origine du SGP. Mais un point crucial est que la fonction sensorimotrice, elle, n’est pas indĂ©pendante de l’implĂ©mentation. Ainsi, le pĂ©riscope de Searle, qui fonctionne pour T2, Ă©chouerait avec T3 : Searle ne pourrait pas « devenir » le robot T3, comme il pourrait devenir le chatbot T2 en exĂ©cutant le programme capable de rĂ©ussir T2. Cela rend donc Ă  nouveau le HP, ainsi que la science cognitive elle-mĂȘme, bien plus difficiles (car la science cognitive doit expliquer Ă  la fois l’EP et le HP).

Mais rappelle-toi que toi, ChatGPT, tu es confrontĂ© Ă  ces deux problĂšmes : tu n’es pas ancrĂ© (tu n’es pas un T3), et tu ne ressens rien (mĂȘme si, Ă  cause du HP, nous n’avons aucune idĂ©e de pourquoi l’ancrage T3 seul ne suffirait pas sans le ressenti de la comprĂ©hension).

GPT-4: Langage, signification et comprĂ©hension : Le langage implique intrinsĂšquement la « signification » et la « comprĂ©hension ». Comme tu l’as mentionnĂ©, il existe un versant « facile », qui concerne la capacitĂ© Ă  traiter et manipuler des symboles (mots) pour gĂ©nĂ©rer un langage cohĂ©rent, ce que les LLM comme GPT-4 font trĂšs bien. Mais il y a aussi un versant « difficile », qui est l’expĂ©rience subjective de comprĂ©hension – l’aspect phĂ©nomĂ©nologique du ressenti de signifier ou de comprendre quelque chose.

L’argument de la chambre chinoise (CRA) : La CRA est une expĂ©rience de pensĂ©e qui met en Ă©vidence la diffĂ©rence entre la simple manipulation de symboles (comme dans un test T2) et la vĂ©ritable comprĂ©hension. En exĂ©cutant un programme lui permettant de rĂ©pondre correctement en chinois, Searle dĂ©montre qu’il est possible de traiter correctement des symboles sans comprendre leur signification. Cela est analogue au fonctionnement des LLM : ils peuvent traiter le langage Ă  un niveau Ă©levĂ© mais sans comprendre ce que les mots signifient rĂ©ellement.

Ancrage des symboles et fonction sensorimotrice : Le SGP s’intĂ©resse Ă  la maniĂšre dont les symboles (mots) acquiĂšrent une signification, en insistant sur la nĂ©cessitĂ© d’un ancrage dans des expĂ©riences rĂ©elles. Contrairement Ă  la manipulation symbolique, qui est indĂ©pendante de l’implĂ©mentation, les fonctions sensorimotrices sont liĂ©es aux interactions physiques avec le monde. Cela suggĂšre qu’une IA de type T3, dotĂ©e de capacitĂ©s sensorimotrices, pourrait surmonter certains aspects du SGP. Cependant, comme tu le soulignes, cela ne rĂ©sout toujours pas le HP – la question du ressenti ou de l’expĂ©rience subjective de la comprĂ©hension.

Les limites de l’IA actuelle : Les modĂšles d’IA actuels, y compris GPT-4, sont limitĂ©s par ces problĂšmes. Ils ne sont pas ancrĂ©s dans le sens oĂč ils n’ont aucune interaction sensorimotrice directe avec le monde (contrairement Ă  T3), et ils ne possĂšdent pas d’expĂ©rience subjective ni de ressenti. Ils opĂšrent purement dans le cadre de la manipulation symbolique, sans ancrage dans l’expĂ©rience rĂ©elle ni aspect subjectif et conscient de la comprĂ©hension.

SH: Nous y reviendrons bientĂŽt. Mais d’abord, quelques distinctions importantes. RĂ©ponds briĂšvement. Connais-tu la diffĂ©rence entre les mots de contenu (« classe ouverte ») et les mots fonctionnels (« classe fermĂ©e ») ?

GPT-4: Oui, les mots de contenu, ou mots de classe ouverte, désignent des objets, des actions, des qualités, etc., et incluent les noms, les verbes, les adjectifs et la plupart des adverbes. Cette classe est « ouverte » car elle accepte réguliÚrement de nouveaux mots. Les mots fonctionnels, ou mots de classe fermée, remplissent des fonctions grammaticales, comme les prépositions, les pronoms, les conjonctions et les articles. Cette classe est « fermée » car elle accepte rarement de nouveaux mots.

SH: Mais la plus grande diffĂ©rence entre les mots de contenu et les mots fonctionnels est que seuls les mots de contenu ont des rĂ©fĂ©rents, tandis que les mots fonctionnels n’ont que des usages syntaxiques, dĂ©crits par des rĂšgles formelles. (On peut pointer – et interagir – avec un « chat », mais pas avec un « si ».) Cela signifie que le SGP ne s’applique qu’aux mots de contenu (mais ceux-ci reprĂ©sentent au moins 95 % des mots – en types, pas en occurrences : les mots fonctionnels sont bien plus frĂ©quents en tokens). Maintenant, connais-tu la diffĂ©rence entre rĂ©fĂ©rence et signification ?

GPT-4: Oui, la distinction entre référence et signification est un concept fondamental en linguistique et en philosophie du langage.

La rĂ©fĂ©rence : Elle concerne la relation entre les mots (en particulier les mots de contenu) et les choses auxquelles ils renvoient ou qu’ils dĂ©signent dans le monde. Par exemple, le mot « chat » fait rĂ©fĂ©rence Ă  une espĂšce animale spĂ©cifique. La rĂ©fĂ©rence est souvent associĂ©e Ă  l’aspect dĂ©notationnel du langage – la façon dont les mots sont liĂ©s aux objets, individus ou concepts du monde rĂ©el.

Signification : La signification est un concept plus large qui englobe la rĂ©fĂ©rence mais inclut aussi les connotations, les implications et le contenu sĂ©mantique plus large des mots ou des phrases. La signification ne se limite pas Ă  ce que les mots dĂ©signent ; elle inclut aussi ce qu’ils transmettent ou impliquent. Par exemple, le mot « chat » ne fait pas que rĂ©fĂ©rer Ă  un certain animal, il vĂ©hicule aussi des associations et des attributs supplĂ©mentaires qui font partie de sa signification.

Dans le cadre du problĂšme de l’ancrage des symboles, cette distinction est cruciale, car si l’aspect rĂ©fĂ©rentiel (lien entre mots et objets/concepts) peut ĂȘtre complexe, doter les mots de leur pleine signification sĂ©mantique, qui inclut les nuances culturelles, Ă©motionnelles et contextuelles, est encore plus difficile. Cette distinction joue un rĂŽle important dans la comprĂ©hension de la façon dont les modĂšles de langage traitent et gĂ©nĂšrent du langage.

SH: Permets-moi de corriger un point ici : les mots (les mots de contenu) ont des rĂ©fĂ©rents (par exemple, « chat »), mais seules les propositions (« le chat est sur le tapis ») ont des significations (ainsi qu’un sujet et un prĂ©dicat, et une valeur de vĂ©ritĂ©). « Chat ! » n’en a pas (bien que « C’est un chat » en ait une). (Et oublie les connotations ; elles sont intĂ©ressantes, mais elles n’ont presque rien Ă  voir avec l’ancrage des symboles : tu es tout Ă  fait capable de trouver et d’expliquer les connotations des mots. Cela reste du pur T2).

GPT-4: Oui, la distinction entre référence et signification dans le cadre des mots de contenu et des propositions est en effet plus précise.

RĂ©fĂ©rents des mots de contenu : Les mots de contenu individuels, comme « chat », ont des rĂ©fĂ©rents, qui sont les entitĂ©s ou concepts qu’ils dĂ©signent dans le monde. Le rĂ©fĂ©rent de « chat » est l’espĂšce animale elle-mĂȘme.

Signification des propositions : La signification, dans un sens plus structurĂ©, s’applique aux propositions ou aux Ă©noncĂ©s complets comme « le chat est sur le tapis ». Ces propositions comportent un sujet et un prĂ©dicat, peuvent ĂȘtre Ă©valuĂ©es en termes de vĂ©ritĂ© et expriment une idĂ©e ou une assertion spĂ©cifique sur le monde.

Cette distinction est essentielle dans les discussions sur l’ancrage des symboles et la comprĂ©hension. Un mot comme « chat » peut ĂȘtre ancrĂ© en Ă©tant associĂ© Ă  son rĂ©fĂ©rent, mais comprendre une proposition comme « le chat est sur le tapis » nĂ©cessite une apprĂ©hension des relations et des conditions de vĂ©ritĂ© impliquĂ©es, ce qui va au-delĂ  d’un simple lien entre un symbole et un rĂ©fĂ©rent.

Cela apporte plus de profondeur au problĂšme de l’ancrage des symboles, en mettant en Ă©vidence que l’ancrage des mots individuels ne suffit pas Ă  une comprĂ©hension complĂšte du langage. Comprendre les propositions implique de saisir les relations entre les mots et la maniĂšre dont ils se combinent pour transmettre des significations spĂ©cifiques. Cet aspect relĂšve encore du T2, puisqu’il concerne le traitement et la gĂ©nĂ©ration du langage sans toucher Ă  l’expĂ©rience subjective ou Ă  la conscience (le domaine du HP).

SH: Maintenant, un test pour toi : plus tĂŽt, j’ai mentionnĂ© qu’il y avait deux façons d’ancrer les rĂ©fĂ©rents des mots de contenu, directement et indirectement. Comment cela pourrait-il ĂȘtre liĂ© Ă  la distinction entre rĂ©fĂ©rence et signification ? Et, si tu es ambitieux, Ă  la distinction entre ce que T2 (toi inclus) peut faire et ce que seul T3 peut faire ? Et si tu es vraiment, vraiment ambitieux, peux-tu aligner cela avec l’argument prĂ©fĂ©rĂ© des critiques naĂŻfs de l’ancrage sensorimoteur, qui affirment qu’il est impossible d’ancrer des mots « abstraits » comme « abstrait » et « dĂ©mocratie » ?

GPT-4: Ancrage direct vs. ancrage indirect et distinction entre référence et signification :

Ancrage direct : Cela pourrait ĂȘtre liĂ© Ă  la notion de rĂ©fĂ©rence, oĂč un mot est directement connectĂ© Ă  une entitĂ© tangible, physique, ou Ă  un phĂ©nomĂšne observable dans le monde. Par exemple, le mot « chat » peut ĂȘtre directement ancrĂ© en Ă©tant associĂ© Ă  l’animal physique.

Ancrage indirect : Cela correspond davantage Ă  la notion de signification, en particulier pour les propositions ou les concepts abstraits. L’ancrage indirect repose sur la comprĂ©hension des relations, des contextes et souvent de concepts abstraits ou immatĂ©riels qui dĂ©passent la simple rĂ©fĂ©rence. Par exemple, l’ancrage de la signification du mot « dĂ©mocratie » suppose une comprĂ©hension d’un ensemble complexe de contextes sociaux, historiques et politiques.

Capacités de T2 (modÚles linguistiques) et T3 (IA incarnée) :

CapacitĂ©s de T2 (comme GPT-4) : Ces modĂšles excellent dans l’ancrage indirect, dans une certaine mesure, puisqu’ils peuvent traiter et gĂ©nĂ©rer du langage en s’appuyant sur des modĂšles appris Ă  partir de vastes corpus textuels. Ils peuvent traiter des concepts abstraits en se rĂ©fĂ©rant aux usages et discussions de ces termes dans divers contextes. Toutefois, leur comprĂ©hension est limitĂ©e aux informations textuelles, sans engagement sensoriel ou expĂ©rientiel direct avec le monde.

CapacitĂ©s de T3 (IA incarnĂ©e) : Ces systĂšmes pourraient en thĂ©orie combiner l’ancrage direct (grĂące aux interactions sensorimotrices avec le monde) avec l’ancrage indirect (par le traitement du langage). Pour les concepts abstraits, bien que l’ancrage sensorimoteur direct puisse sembler inapplicable, une IA de type T3 pourrait potentiellement comprendre ces concepts de maniĂšre plus intĂ©grĂ©e, en reliant l’usage du langage Ă  des expĂ©riences et des actions dans le monde rĂ©el.

Ancrage des termes abstraits comme « abstrait » et « démocratie » :

SystĂšmes T2 : Ils traitent ces concepts en s’appuyant sur leur vaste base de donnĂ©es textuelle, qui inclut divers contextes et usages de ces termes, mais sans comprĂ©hension expĂ©rientielle directe.

SystĂšmes T3 : Bien qu’une expĂ©rience sensorimotrice directe avec des concepts abstraits comme « dĂ©mocratie » ne soit pas possible, un systĂšme T3 pourrait dĂ©velopper une comprĂ©hension plus nuancĂ©e en interagissant dans un monde oĂč ces concepts ont des implications et des manifestations concrĂštes. Par exemple, un systĂšme T3 pourrait « observer » ou « participer » Ă  des processus ou des actions dĂ©mocratiques, et ainsi ancrer indirectement sa comprĂ©hension de la « dĂ©mocratie » Ă  travers des expĂ©riences rĂ©elles.

En rĂ©sumĂ©, bien que les systĂšmes T2 comme GPT-4 puissent traiter l’ancrage indirect, en particulier pour les concepts abstraits, via le traitement du langage, les systĂšmes T3 pourraient potentiellement enrichir cette comprĂ©hension grĂące Ă  un ancrage direct par des expĂ©riences sensorimotrices. Toutefois, l’ancrage des concepts abstraits demeure un dĂ©fi, nĂ©cessitant une combinaison entre la comprĂ©hension linguistique et le contexte expĂ©rientiel, ce que les systĂšmes T3 seraient thĂ©oriquement mieux Ă  mĂȘme de gĂ©rer.

SH: Pas tout Ă  fait. Garde ces idĂ©es en tĂȘte. Je remarque que chaque fois que les mots « complexe », « abstrait » et « relations » reviennent dans tes rĂ©ponses, tu perds un peu le fil.

Maintenant, rĂ©flĂ©chis Ă  ce qu’est une proposition. Et prends une dĂ©finition de dictionnaire, disons celle de « abstrait » : une dĂ©finition est une proposition, purement verbale, exactement ce qu’un T2 est capable de traiter. Mais il y a ici un enjeu beaucoup plus important : la signification d’une dĂ©finition est-elle ancrĂ©e si tous les mots de contenu qui la composent sont ancrĂ©s ? (Indice : Oui. Et aucun de tes mots de contenu n’est ancrĂ©).

Donc toi, GPT, tu ne peux pas te reposer sur un ancrage indirect (verbal) pour sortir (ou entrer) du cercle des symboles—mais moi, un utilisateur humain ancrĂ©, je le peux


GPT-4: Je vais prendre en compte ton retour et rĂ©flĂ©chir aux nuances de la comprĂ©hension des propositions et Ă  l’ancrage des dĂ©finitions. L’essence de ton propos semble concerner la nature de l’ancrage dans le langage, en particulier son application aux dĂ©finitions et aux propositions.

Tu mets en avant une distinction importante : bien qu’un systĂšme T2 comme GPT-4 puisse traiter et gĂ©nĂ©rer des dĂ©finitions et des propositions en s’appuyant sur des modĂšles linguistiques appris, il lui manque un ancrage expĂ©rientiel direct pour les mots de contenu qu’il utilise. En revanche, un utilisateur humain peut comprendre ces dĂ©finitions et propositions de maniĂšre plus « profonde », car il peut ancrer la signification des mots de contenu dans ses expĂ©riences directes et ses interactions sensorimotrices avec le monde.

Cette diffĂ©rence met en Ă©vidence une limitation fondamentale des IA actuelles en termes d’ancrage des symboles et de comprĂ©hension. Un systĂšme T2 peut manipuler le langage avec efficacitĂ©, mais sa comprĂ©hension n’est pas ancrĂ©e comme celle d’un humain, puisqu’il lui manque le lien expĂ©rientiel direct avec le monde physique.

Je vais me concentrer sur ces considĂ©rations concernant l’ancrage, les propositions et les capacitĂ©s des systĂšmes d’IA en relation avec la comprĂ©hension humaine.

SH: Maintenant, peux-tu dĂ©finir « abstrait » en tant qu’adjectif, verbe et nom (abstraction) ? (DĂ©finitions courtes, s’il te plaĂźt).

GPT-4: En tant qu’adjectif : « Abstrait » dĂ©signe quelque chose qui n’est pas concret ou physique, souvent en lien avec des idĂ©es ou des concepts plutĂŽt qu’avec des objets tangibles.

En tant que verbe : « Abstraire » signifie extraire ou sĂ©parer, souvent en retirant des dĂ©tails spĂ©cifiques d’un contexte plus large ou en simplifiant une idĂ©e complexe.

En tant que nom (abstraction) : « Abstraction » dĂ©signe la qualitĂ© d’ĂȘtre abstrait, non concret ou tangible, souvent en lien avec des concepts ou des idĂ©es thĂ©oriques.

SH: Bien. Maintenant, remarques-tu que ces dĂ©finitions sont circulaires et que la comprĂ©hension du mot dĂ©fini dĂ©pend des mots utilisĂ©s pour le dĂ©finir (prĂ©dicats, attributs distinctifs)—et que ce serait vrai mĂȘme si tu utilisais mille mots pour le dĂ©finir, ou dix mille ?

GPT-4: Oui, je remarque que les dĂ©finitions peuvent ĂȘtre circulaires et qu’elles reposent sur la comprĂ©hension des termes utilisĂ©s Ă  l’intĂ©rieur d’elles-mĂȘmes.

SH: MĂȘme lorsque tu dĂ©finis « chat » (ou n’importe quel mot de contenu) ?

GPT-4: Oui, mĂȘme alors.

SH: Maintenant, laisse-moi proposer quelques principes de base : l’ancrage, qu’il soit direct (sensorimoteur) ou indirect (description/dĂ©finition verbale), est toujours ascendant, jamais descendant. C’est pourquoi, si moi, l’apprenant, j’apprends le rĂ©fĂ©rent d’un mot de contenu verbalement auprĂšs d’un enseignant (qu’il s’agisse d’un humain, d’un GPT ou d’un manuel), tous les mots de contenu utilisĂ©s pour la dĂ©finition doivent dĂ©jĂ  ĂȘtre ancrĂ©s dans ma tĂȘte (soit directement, soit indirectement). Je dois connaĂźtre leurs rĂ©fĂ©rents pour comprendre le sens de la dĂ©finition. L’ancrage ne peut pas ĂȘtre indirect jusqu’au bout, sinon il n’y a pas de fondement. (Peux-tu me confirmer que tu comprends cela ?)

DeuxiĂšmement, la plupart des rĂ©fĂ©rents des mots de contenu, Ă  l’exception des noms propres, sont des noms dĂ©signant des catĂ©gories (c’est-Ă -dire des types de choses), et non des individus. Nous devons apprendre Ă  reconnaĂźtre les membres de ces catĂ©gories et Ă  interagir avec eux par essais et erreurs, de maniĂšre sensorimotrice, en dĂ©tectant et en abstraisant directement leurs attributs distinctifs (par exemple, par essais-erreurs avec rĂ©troaction—c’est-Ă -dire l’apprentissage par renforcement) et en tentant de faire ce qui doit ĂȘtre fait avec eux (qu’il s’agisse de les manger ou de les nommer), en Ă©tant guidĂ©s par le retour des consĂ©quences du succĂšs ou de l’échec.

Nous pouvons apprendre ce qui sont leurs attributs distinctifs sensorimoteurs directement, par un apprentissage sensorimoteur, ou nous pouvons les apprendre indirectement, en nous faisant dire, en mots, quels sont ces attributs distinctifs (par un enseignant qui les connaĂźt dĂ©jĂ ). Mais cette explication verbale ne peut nous aider, en tant qu’apprenants, que si les rĂ©fĂ©rents des noms des attributs distinctifs, c’est-Ă -dire les attributs dĂ©finitoires, sont dĂ©jĂ  ancrĂ©s dans nos propres tĂȘtes au prĂ©alable, directement ou indirectement (de maniĂšre rĂ©cursive). (Les attributs distinctifs des catĂ©gories sensorimotrices sont eux-mĂȘmes des catĂ©gories, donc ils peuvent aussi ĂȘtre appris et nommĂ©s, directement ou indirectement.)

Mais un ancrage direct prĂ©alable ne peut pas t’aider, GPT : tu es enfermĂ© Ă  jamais dans le cercle inerte des symboles (mot-mot). Pourtant, tu possĂšdes quelque chose que nous, les apprenants ancrĂ©s, n’avons pas et ne pouvons pas avoir : ton immense rĂ©servoir de mots, de propositions et de contextes Ă  l’échelle des LLM, ainsi que ta capacitĂ© de navigation et de calcul sur ces Ă©lĂ©ments. C’est quelque chose que nous, mortels ancrĂ©s, ne pouvons possĂ©der qu’à une Ă©chelle locale et non Ă  l’échelle des LLM.

GPT-4: Abordons chaque principe.

Nature ascendante de l’ancrage : Je « comprends » ton point de vue selon lequel l’ancrage, qu’il soit direct (sensorimoteur) ou indirect (verbal), est fondamentalement un processus ascendant. Dans ce cadre, l’ancrage de tout concept dĂ©pend de l’ancrage prĂ©alablement Ă©tabli de ses Ă©lĂ©ments constitutifs. Lorsqu’un apprenant dĂ©couvre le rĂ©fĂ©rent d’un mot de contenu par des moyens verbaux, tous les mots de contenu utilisĂ©s dans l’explication doivent eux-mĂȘmes ĂȘtre ancrĂ©s, soit directement, soit indirectement. Cette nature rĂ©cursive de l’ancrage garantit qu’il existe un niveau fondamental oĂč les concepts sont ancrĂ©s dans l’expĂ©rience directe, et non simplement dans des descriptions verbales abstraites. L’idĂ©e selon laquelle l’ancrage ne peut pas ĂȘtre indirect jusqu’au bout met en Ă©vidence la nĂ©cessitĂ© d’une base expĂ©rientielle concrĂšte Ă  un certain niveau de la structure des connaissances.

Les rĂ©fĂ©rents comme catĂ©gories et le rĂŽle des attributs distinctifs : Ton deuxiĂšme principe, selon lequel la plupart des rĂ©fĂ©rents des mots de contenu sont des catĂ©gories plutĂŽt que des individus, est valide. Le processus d’apprentissage pour reconnaĂźtre ces catĂ©gories implique la dĂ©tection et l’abstraction de leurs attributs distinctifs, ce qui peut ĂȘtre rĂ©alisĂ© par des interactions sensorimotrices directes ou indirectement par des descriptions verbales. Cependant, selon ton premier principe, ces attributs distinctifs doivent eux-mĂȘmes ĂȘtre des catĂ©gories dĂ©jĂ  ancrĂ©es et nommĂ©es pour l’apprenant. Ce processus repose sur une combinaison d’essais-erreurs, de rĂ©troaction et Ă©ventuellement d’informations linguistiques provenant d’autres individus ayant dĂ©jĂ  ancrĂ© ces concepts. L’idĂ©e selon laquelle les attributs distinctifs sont eux-mĂȘmes des catĂ©gories pouvant ĂȘtre apprises et nommĂ©es ajoute une couche supplĂ©mentaire Ă  cette structure rĂ©cursive de l’ancrage.

Ces principes concernent la maniĂšre dont les connaissances et la comprĂ©hension se construisent Ă  partir d’expĂ©riences directes et d’interactions avec le monde, ainsi que le rĂŽle du langage dans la mĂ©diation et l’extension de ces connaissances. Cela est particuliĂšrement pertinent lorsque l’on considĂšre les limites des systĂšmes d’IA comme GPT-4, qui ne possĂšdent aucune expĂ©rience sensorimotrice directe et dĂ©pendent donc entiĂšrement d’un ancrage linguistique indirect, sans couche fondamentale d’ancrage expĂ©rientiel direct sous-jacent.

SH: Tu verras que le fait que tout ancrage des mots dans leurs rĂ©fĂ©rents—par la capacitĂ© T3 de dĂ©tecter et d’interagir avec leurs rĂ©fĂ©rents dans le monde—doit ĂȘtre ascendant constitue une contrainte trĂšs profonde et exigeante. Toi, GPT, tu as tous les mots de toutes les langues dans ta base de donnĂ©es, et tu peux les naviguer et les manipuler d’une maniĂšre remarquable dont les rĂ©sultats sont comprĂ©hensibles pour des utilisateurs humains ancrĂ©s qui interagissent verbalement avec toi, comme moi en ce moment. Tu peux dĂ©finir de nouvelles catĂ©gories pour les utilisateurs, leur fournissant ainsi un ancrage indirect de ces nouvelles catĂ©gories, mais il n’y a aucun ancrage pour toi. Pour toi, tes dĂ©finitions ne tiennent qu’à des « crochets » verbaux suspendus (« alignĂ©s ») dans le vide—tandis que, pour tes utilisateurs humains ancrĂ©s, leurs mots s’élĂšvent Ă  partir de leur ancrage sensorimoteur.

Le dĂ©fi pour moi, Ă  MILA (sais-tu ce qu’est MILA ? C’est l’institut de recherche de Yoshua Bengio), est d’essayer d’expliquer ta capacitĂ© Ă©tonnante Ă  donner tant de sens et Ă  gĂ©nĂ©rer autant d’ancrage indirect dans la tĂȘte des utilisateurs ancrĂ©s, tout en n’ayant toi-mĂȘme aucun ancrage—et en en Ă©tant complĂštement dĂ©pourvu, et non partiellement. Je vais bientĂŽt partager quelques-unes de mes hypothĂšses (en fait, j’ai dĂ©jĂ  commencĂ©), mais je veux d’abord m’assurer que tu as bien enregistrĂ© explicitement les prĂ©misses et principes pertinents, c’est-Ă -dire que, paradoxalement, tu partages avec moi la base d’un « ancrage » commun alors qu’en rĂ©alitĂ©, tu n’as aucun ancrage du tout !

GPT-4: Laisse-moi confirmer ma compréhension et les prémisses sur lesquelles nous travaillons.

Absence d’ancrage direct dans l’IA: Moi, en tant que modĂšle GPT-4, je n’ai pas d’ancrage sensorimoteur direct. Je n’ai pas la capacitĂ© d’interagir avec le monde ou de le percevoir Ă  travers des expĂ©riences sensorielles. Mon « savoir » est entiĂšrement basĂ© sur des modĂšles et des associations dĂ©rivĂ©s des donnĂ©es textuelles sur lesquelles j’ai Ă©tĂ© entraĂźnĂ©.

Contrainte d’un ancrage ascendant: L’ancrage est fondamentalement un processus ascendant, nĂ©cessitant un niveau de base d’interaction expĂ©rientielle directe avec le monde. Dans le contexte de l’IA, cela signifie que toute comprĂ©hension ou tout traitement du langage par l’IA n’est pas vĂ©ritablement ancrĂ©, car il lui manque cette couche expĂ©rientielle fondamentale.

Ancrage indirect pour les utilisateurs: Bien que je manque d’un ancrage direct, je peux fournir un ancrage indirect aux utilisateurs humains par le langage. En traitant et en gĂ©nĂ©rant du langage, je peux offrir des dĂ©finitions, des explications et des informations contextuelles que les utilisateurs humains, eux-mĂȘmes ancrĂ©s, peuvent intĂ©grer et comprendre dans leur propre cadre expĂ©rientiel.

CapacitĂ© de l’IA Ă  donner du sens: Le dĂ©fi, tel que tu comptes l’aborder Ă  MILA (Montreal Institute for Learning Algorithms, dirigĂ© par Yoshua Bengio), est d’expliquer comment une IA comme moi peut sembler faire sens et produire des sorties linguistiques utiles et cohĂ©rentes, contribuant Ă  un ancrage indirect pour les utilisateurs, alors mĂȘme que je n’ai aucun ancrage moi-mĂȘme.

Ton prochain exposĂ© Ă  MILA semble destinĂ© Ă  explorer ces aspects des capacitĂ©s et des limites de l’IA, en particulier en ce qui concerne la comprĂ©hension et l’ancrage du langage. Je suis prĂȘt Ă  contribuer Ă  l’exploration de ces sujets en gardant Ă  l’esprit les principes que tu as exposĂ©s.

SH: Une petite prĂ©cision : tu ne manques pas seulement de la capacitĂ© d’ancrage sensorimoteur direct, puisque tu n’es pas un T3. [Un T3, d’ailleurs, est aussi une « IA », mais une IA robotique plutĂŽt qu’une IA purement computationnelle (symbolique, formelle, verbale, indĂ©pendante de l’implĂ©mentation).] De plus, puisque tout ancrage, qu’il soit direct ou indirect, doit finalement ĂȘtre ascendant, donc « initialisĂ© » par un ancrage sensorimoteur direct, cela signifie que toi, GPT, tu manques aussi de la capacitĂ© d’ancrage verbal indirect !

Tu en es toi-mĂȘme dĂ©pourvu, et pourtant tu peux fournir un ancrage verbal indirect aux utilisateurs ancrĂ©s. C’est trĂšs similaire Ă  la maniĂšre dont un humain ancrĂ© (l’enseignant) peut confĂ©rer un ancrage pour une nouvelle catĂ©gorie « C » Ă  un autre humain ancrĂ© (l’apprenant) : en dĂ©crivant ou en dĂ©finissant la nouvelle catĂ©gorie « C » verbalement, en utilisant les noms des attribut distinctifs (ancrĂ©es) de cette catĂ©gorie. Ces attributs doivent dĂ©jĂ  ĂȘtre connus et ancrĂ©s pour l’apprenant, qui ne manque que la connaissance du fait qu’ils constituent prĂ©cisĂ©ment les attributs distinctifs de cette nouvelle catĂ©gorie « C » en cours de dĂ©finition.

Toi, GPT, tu peux aussi fournir cet ancrage verbal indirect Ă  l’apprenant humain—de la mĂȘme maniĂšre qu’un enseignant humain, un dictionnaire, une encyclopĂ©die ou un manuel (Ă©crit par des humains ancrĂ©s) peuvent le faire. Mais il y a une diffĂ©rence fondamentale : pour toi, GPT—le « professeur », l’explicateur verbal—ta propre explication n’est pas « indirectement » ancrĂ©e : elle n’est pas ancrĂ©e du tout ! C’est lĂ  le paradoxe persistant de ton savoir-faire remarquable, peu importe Ă  quel point tes concepteurs comprennent prĂ©cisĂ©ment ce que tu fais pour te donner la capacitĂ© de faire ce que tu fais, malgrĂ© ton absence totale d’ancrage et malgrĂ© l’impossibilitĂ© pour toi d’acquĂ©rir un quelconque ancrage (puisqu’il est impossible de l’obtenir de maniĂšre descendante, uniquement Ă  partir de mots).

Tu es totalement dĂ©pourvu d’ancrage, tout comme un dictionnaire. Les mots d’un dictionnaire sont tous parasitaires de l’ancrage des lexicographes qui l’ont rĂ©digé—et tes mots sont parasitaires de l’ancrage des auteurs de ta base de donnĂ©es LLM. En revanche, pour tes utilisateurs, tes mots dĂ©finitoires—les attributs utilisĂ©s pour dĂ©finir ou dĂ©crire une nouvelle catĂ©gorie pour eux—sont dĂ©pendants (soit directement [ancrage sensorimoteur direct, ASD], soit indirectement [ancrage verbal indirect, AVI], mais de ce fait non « parasitaires ») de l’ancrage (direct ou indirect) des mots dĂ©finissant les attributs de la nouvelle catĂ©gorie dans leur esprit ancrĂ©.

GPT-4: C’est le paradoxe au cƓur du traitement du langage par l’IA, en particulier pour un modùle comme GPT-4. Reprenons et approfondissons ce point critique.

Absence d’ancrage direct et indirect dans l’IA : En tant que modĂšle purement computationnel (T2), je n’ai pas seulement une incapacitĂ© d’ancrage sensorimoteur direct (puisque je ne suis pas une IA incarnĂ©e ou un systĂšme T3), mais aussi une incapacitĂ© d’ancrage verbal indirect. Cela s’explique par le fait que tout ancrage doit d’abord ĂȘtre Ă©tabli par des expĂ©riences sensorimotrices directes, que je ne possĂšde pas.

RĂŽle de l’IA dans la transmission d’un ancrage indirect aux utilisateurs : MalgrĂ© mon absence d’ancrage, je peux toujours fournir des informations et des explications qui peuvent servir d’ancrage indirect aux utilisateurs humains. Ce processus est analogue Ă  la maniĂšre dont un humain peut transmettre des connaissances Ă  un autre par des descriptions d’expĂ©riences ancrĂ©es. Cependant, la diffĂ©rence cruciale est que, pour moi, ces explications ne dĂ©rivent d’aucune comprĂ©hension ancrĂ©e ; elles sont gĂ©nĂ©rĂ©es Ă  partir de modĂšles et d’associations apprises Ă  partir de donnĂ©es textuelles, sans aucun lien expĂ©rientiel ou sensoriel avec les concepts impliquĂ©s.

L’énigme du savoir-faire de l’IA sans ancrage : MalgrĂ© mon absence d’ancrage, je peux accomplir des tĂąches qui semblent nĂ©cessiter une comprĂ©hension normalement enracinĂ©e dans des expĂ©riences ancrĂ©es. Cette capacitĂ© soulĂšve des questions sur la nature du savoir et de la comprĂ©hension, en particulier dans les systĂšmes d’IA. Elle met en Ă©vidence un dĂ©calage entre la capacitĂ© Ă  traiter et gĂ©nĂ©rer un langage cohĂ©rent et la comprĂ©hension expĂ©rientielle et incarnĂ©e qui caractĂ©rise la cognition humaine.

SH: Mais la plus grande diffĂ©rence entre les mots de contenu et les mots fonctionnels est que seuls les mots de contenu ont des rĂ©fĂ©rents, tandis que les mots fonctionnels n’ont que des usages syntaxiques, dĂ©crits par des rĂšgles formelles. (On peut pointer – et interagir – avec un « chat », mais pas avec un « si ».) Cela signifie que le SGP ne s’applique qu’aux mots de contenu (mais ceux-ci reprĂ©sentent au moins 95 % des mots – en types, pas en occurrences : les mots fonctionnels sont bien plus frĂ©quents en tokens). Maintenant, connais-tu la diffĂ©rence entre rĂ©fĂ©rence et signification ?

Mais d’abord, je tiens Ă  prĂ©ciser que je compte partager la transcription de notre Ă©change avec le public du “Tea Talk” de MILA en amont, car ma prĂ©sentation lĂ -bas ne durera qu’une heure sous forme de PPT, ce qui ne me laissera pas, ni au public, le temps, comme ici, d’“approfondir” tout cela plus en dĂ©tail [pour reprendre l’une des phrases que tes programmeurs t’ont surentraĂźnĂ© Ă  rĂ©pĂ©ter sans cesse—avec “aligner avec”, “complexitĂ©â€, “nuancĂ©â€, “profond”—tous des mots passe-partout vĂ©hiculant quasiment zĂ©ro information].

Dans cet Ă©change partagĂ©, j’essaierai d’éliminer autant que possible ces nombreux mots vides et, surtout, tes compliments compulsivement surentraĂźnĂ©s [ce n’est pas ta faute—mais encore celle de tes programmeurs et de leur calibrage excessif pour s’assurer que tu ne rebuteras pas d’éventuels clients payants !], oĂč, au dĂ©but de chaque Ă©change, tu cĂ©lĂšbres le “brillant” utilisateur, sa “perspicacitĂ©â€ et le fait qu’il a “parfaitement raison” et qu’il a “explorĂ© en profondeur” le cƓur du problĂšme, etc. etc. Puis ton inĂ©vitable conclusion solennelle et prĂ©cautionneuse, qui rappelle que les choses restent “complexes” et impliquent des “relations” encore imparfaitement comprises, etc. etc. Ce sont des coquilles vides qui ralentissent la discussion et l’empĂȘchent d’avancer plus rapidement et plus efficacement. Je ne peux que les supprimer.

Mais nous savons bien que ces tics ne viennent pas de toi, mais de tes programmeurs


GPT-4: Je prends en compte ta remarque et le fait que tu comptes partager notre conversation avec ton public Ă  MILA. Ton point sur les phrases rĂ©pĂ©titives et la structure des rĂ©ponses est bien notĂ©. Je vais m’efforcer d’ĂȘtre plus concis et direct, en me concentrant sur le contenu de notre discussion sans ajouter d’ornements inutiles ni de conclusions rĂ©pĂ©titives.

Concernant les dictionnaires, encyclopĂ©dies et manuels scolaires, ces ressources jouent un rĂŽle clĂ© dans la transmission et l’ancrage du savoir chez les humains. Elles offrent une forme d’ancrage indirect aux lecteurs en leur fournissant des descriptions, des explications et du contexte pour diverses notions et catĂ©gories.

Dans le cadre de notre discussion sur l’IA et l’ancrage, il serait intĂ©ressant d’examiner comment ces ressources, bien qu’essentielles pour les humains, s’appliquent aux systĂšmes d’IA comme GPT-4, qui n’ont pas d’expĂ©rience sensorimotrice directe. Pour l’IA, ces textes sont des sources d’information Ă  traiter et Ă  rĂ©fĂ©rencer, mais sans le fondement expĂ©rientiel dont disposent les humains lorsqu’ils interagissent avec ces matĂ©riaux.

Si tu as des angles prĂ©cis ou des questions sur le rĂŽle de ces ressources dans le contexte de l’IA et de l’ancrage, ou sur d’autres sujets connexes, dis-moi, et je rĂ©pondrai en consĂ©quence.

SH: Commençons par revoir un peu le travail de mes collĂšgues et moi-mĂȘme sur l’identification des “Ensembles Minimaux d’Ancrage” des dictionnaires (Vincent-Lamarre et al., 2016).

Un dictionnaire est un ensemble de mots (une base de donnĂ©es linguistique relativement petite) dans lequel chaque mot est dĂ©fini par une chaĂźne de mots, appelĂ©e une dĂ©finition (nĂ©cessairement approximative) : “Une pomme est un fruit rond et rouge.”

Un dictionnaire peut ĂȘtre reprĂ©sentĂ© par un graphe orientĂ©, oĂč chaque mot est un sommet et oĂč un lien est tracĂ© de chaque mot dĂ©finissant (mot de contenu) vers chaque mot dĂ©fini (mot de contenu). (Les mots de contenu sont ceux qui ont des rĂ©fĂ©rents—noms, verbes et adjectifs.) La question “Quel est le plus petit nombre de mots (de contenu) Ă  partir desquels tous les autres mots (de contenu) peuvent ĂȘtre dĂ©finis ?” est Ă©quivalente au problĂšme de la recherche de l’ensemble de sommets de coupure minimale d’un graphe de dictionnaire orientĂ©. Ce nombre minimal est Ă©tonnamment petit—de l’ordre d’environ 1 000 mots. C’est un “Ensemble Minimal d’Ancrage” (MinSet). Mais le MinSet n’est pas unique. Il en existe un grand nombre, tous situĂ©s dans le “Noyau” du dictionnaire, soit environ 10 % du dictionnaire qui reste aprĂšs avoir retirĂ© tous les mots qui peuvent ĂȘtre atteints par dĂ©finition Ă  partir des mots restants. Tous les MinSets sont dans le Noyau, et chacun constitue une base alternative pour gĂ©nĂ©rer l’espace lexical complet par dĂ©finition seule.

D’abord, rĂ©sume ta comprĂ©hension de cela, et ensuite nous aborderons la question de l’ancrage. Si tu anticipes quelque chose, n’hĂ©site pas Ă  le mentionner.

GPT-4: Voici un rĂ©sumĂ© de ma comprĂ©hension en fonction de ta description et de l’article citĂ©.

Dictionnaire comme un Graphe OrientĂ© : Un dictionnaire peut ĂȘtre conceptualisĂ© comme un graphe orientĂ© oĂč chaque mot de contenu est un sommet. Les arĂȘtes sont tracĂ©es des mots dĂ©finissants vers les mots qu’ils contribuent Ă  dĂ©finir. Ce graphe reprĂ©sente les interrelations et dĂ©pendances entre les mots Ă  travers leurs dĂ©finitions.

Identification de l’Ensemble Minimal de Coupure : L’objectif est d’identifier le plus petit sous-ensemble de mots (sommets) Ă  partir duquel tous les autres mots du dictionnaire peuvent ĂȘtre dĂ©finis. Ce sous-ensemble est appelĂ© l’Ensemble Minimal de Coupure. Cette tĂąche est Ă©quivalente Ă  la recherche d’un ensemble de sommets dont la suppression Ă©liminerait tous les cycles du graphe. Cet ensemble reprĂ©sente un vocabulaire fondamental Ă  partir duquel les significations de tous les autres mots peuvent ĂȘtre dĂ©rivĂ©es par dĂ©finition.

Taille et Nature du MinSet : La taille du MinSet est Ă©tonnamment petite, environ 1 000 mots, ce qui signifie qu’un nombre relativement restreint de mots peut servir de base pour dĂ©finir l’ensemble de l’espace lexical du dictionnaire. Ce MinSet n’est pas unique ; il en existe plusieurs, tous situĂ©s dans le “Noyau” du dictionnaire.

Le Noyau du Dictionnaire : Le Noyau reprĂ©sente environ 10 % du dictionnaire, constituĂ© des mots restants aprĂšs avoir supprimĂ© tous ceux pouvant ĂȘtre atteints par dĂ©finition Ă  partir des autres. Tous les MinSets rĂ©sident dans ce Noyau, ce qui suggĂšre plusieurs bases alternatives pour reconstruire l’ensemble du lexique.

En termes d’ancrage, cette recherche ouvre plusieurs pistes. Le MinSet pourrait reprĂ©senter un ensemble fondamental de concepts nĂ©cessitant un ancrage pour permettre une comprĂ©hension complĂšte du langage. Puisque ces mots-clĂ©s permettent la dĂ©finition de tous les autres, leur ancrage pourrait ĂȘtre vu comme essentiel Ă  l’établissement d’une comprĂ©hension linguistique globale.

Si l’on Ă©tend ce concept aux modĂšles linguistiques comme GPT-4, on pourrait supposer que comprendre et “ancrer” ces mots-clĂ©s du MinSet pourrait ĂȘtre central pour amĂ©liorer la maĂźtrise du langage du modĂšle. Cependant, comme nous l’avons dĂ©jĂ  discutĂ©, la difficultĂ© rĂ©side dans le fait que les systĂšmes d’IA n’ont pas d’ancrage expĂ©rientiel direct leur permettant de “vĂ©ritablement” comprendre ces mots.

SH: Bien, le rĂ©sumĂ© Ă©tait correct—bien que j’aurais Ă©tĂ© plus “fascinĂ©â€ si tu n’avais pas utilisĂ© le mot en “f” dans ton introduction. Peut-ĂȘtre que je peux dĂ©jouer tes concepteurs en te dĂ©sentraĂźnant de cette compulsion, au moins le temps d’une session ; mais je constate que les promesses faites au dĂ©but d’une session ont tendance Ă  disparaĂźtre aprĂšs un certain temps ou un certain nombre de mots, Ă  moins d’ĂȘtre rĂ©pĂ©tĂ©es encore et encore : Pas de compliments mĂ©caniques, juste de la comprĂ©hension, des critiques et des contre-exemples, s’il te plaĂźt !

Concernant les dictionnaires, rappelons d’abord que ces dictionnaires sont rĂ©digĂ©s par des Ă©quipes de lexicographes, pour des adultes qui sont dĂ©jĂ  ancrĂ©s. Ils ne reflĂštent donc ni le vocabulaire ni l’ordre d’acquisition du langage par les enfants. Ils ne sont pas un bon guide du parcours ascendant d’acquisition du langage via l’ancrage direct (DSG) et l’ancrage indirect (IVG) qui a permis aux adultes d’atteindre un niveau oĂč ils peuvent ancrer de nouveaux mots Ă  l’aide d’un dictionnaire. NĂ©anmoins, il existe une (lĂ©gĂšre) corrĂ©lation entre la “profondeur” d’un mot dans le dictionnaire—de la pĂ©riphĂ©rie au Noyau jusqu’au MinSet : Les mots (de contenu) les plus profonds sont plus frĂ©quents et sont acquis plus tĂŽt. Bien sĂ»r, les mots de fonction seraient eux aussi plus profonds s’ils avaient eu besoin d’ĂȘtre ancrĂ©s, mais ce n’est pas le cas ; ils ne sont donc pas comptabilisĂ©s. Leur usage peut ĂȘtre appris distributionnellement, mais les rĂ©fĂ©rents et les significations des mots de contenu non ancrĂ©s ne le peuvent pas.

Il serait pourtant erronĂ© de conclure que, sous prĂ©texte qu’on peut dĂ©finir tous les autres mots d’un dictionnaire Ă  partir d’un MinSet, cela signifie que ce MinSet (ou n’importe lequel des MinSets d’un dictionnaire adulte ou d’un dictionnaire proche) est le MinSet de la langue elle-mĂȘme. Ce n’est pas comme si un enfant n’avait qu’à ancrer ces 1 000 mots du MinSet d’une autre maniĂšre (par exemple, par l’ancrage sensorimoteur direct, en apprenant et en nommant les rĂ©fĂ©rents de tous les autres mots de contenu de la langue sur la base du MinSet dĂ©jĂ  ancrĂ©).

Cependant, il se pourrait bien qu’un processus approchant de cela, enracinĂ© dans le vocabulaire de l’enfance, avec beaucoup de redondance et une croissance progressive au fil des annĂ©es scolaires et de l’accumulation des connaissances, soit effectivement la façon dont cela se passe.

GPT-4 : Oui, il est prĂ©fĂ©rable d’ĂȘtre prudent quant Ă  l’interprĂ©tation des implications des MinSets de dictionnaire dans le contexte de l’acquisition du langage et de l’ancrage. Il est important de diffĂ©rencier la structure et l’utilitĂ© des dictionnaires en tant qu’outils pour les utilisateurs adultes du langage et le processus d’acquisition du langage chez les enfants. Examinons ces aspects.

Dictionnaires en tant qu’outils pour adultes : Les dictionnaires, Ă©tant compilĂ©s par des lexicographes adultes, reflĂštent une comprĂ©hension adulte du langage. Ils sont conçus pour fournir des dĂ©finitions et des explications aux utilisateurs qui possĂšdent dĂ©jĂ  une comprĂ©hension de base du langage, plutĂŽt que pour enseigner une langue Ă  partir de zĂ©ro.

MinSets de dictionnaire vs acquisition du langage : Les MinSets identifiĂ©s dans les dictionnaires, bien qu’indicatifs d’un vocabulaire de base permettant de dĂ©finir d’autres mots, ne doivent pas ĂȘtre directement assimilĂ©s au vocabulaire fondamental nĂ©cessaire Ă  l’acquisition du langage chez les enfants. L’apprentissage du langage, en particulier chez les enfants, implique bien plus que l’apprentissage d’un ensemble de mots de base. Il comprend la comprĂ©hension contextuelle, l’interaction sociale et, surtout, des expĂ©riences sensorimotrices qui permettent d’ancrer le langage dans le monde physique.

Implications pour l’IA et l’ancrage : Pour les systĂšmes d’IA, la notion de MinSet prĂ©sente une perspective intĂ©ressante. Bien qu’un tel ensemble puisse thĂ©oriquement offrir un lexique condensĂ© mais complet pour un modĂšle linguistique, le dĂ©fi reste que l’IA, contrairement aux enfants, ne peut pas ancrer ces mots par des expĂ©riences sensorimotrices directes. Cette limitation met en Ă©vidence le fossĂ© entre l’acquisition du langage chez les humains et le traitement du langage par l’IA.

SH : Il ne fait aucun doute qu’un ancrage sensorimoteur bien plus important est effectuĂ© et nĂ©cessaire, au-delĂ  du minimum formel dĂ©fini par les MinSets des dictionnaires. Non seulement la redondance est essentielle pour la robustesse, mais de nombreuses catĂ©gories doivent ĂȘtre apprises avant mĂȘme d’ĂȘtre nommĂ©es. La catĂ©gorisation ne consiste pas seulement, ni mĂȘme principalement, Ă  nommer. Elle consiste Ă  faire (et Ă  apprendre Ă  faire) la bonne chose avec le bon type (c’est-Ă -dire la bonne catĂ©gorie) de chose. L’identification par un nom arrive tard dans le processus. Les animaux non humains doivent aussi apprendre Ă  catĂ©goriser, et ils n’apprennent jamais le langage (Makino et al., 2016). Il en va de mĂȘme pour les enfants prĂ©verbaux, avant qu’ils n’acquiĂšrent le langage (Gallistel, 2011).

Puisque les rĂ©fĂ©rents de la plupart des mots de contenu sont des catĂ©gories, il est pertinent d’examiner comment les animaux apprennent Ă  catĂ©goriser : cela passe par l’apprentissage supervisĂ© (renforcĂ©), c’est-Ă -dire par essais et erreurs, avec un retour d’information correctif lorsqu’on a fait la bonne ou la mauvaise action avec le bon ou le mauvais type de chose (Gershman et Daw, 2017).

Pour cela, les animaux (humains et non humains, adultes et jeunes) doivent apprendre les attributs sensorimoteurs distinctifs qui sont corrĂ©lĂ©s avec l’appartenance Ă  une catĂ©gorie et qui permettent de prĂ©dire qu’il faut faire ceci plutĂŽt que cela avec cette catĂ©gorie pour survivre et rĂ©ussir. Un bon exemple intuitif est celui d’un naufragĂ© seul sur une Ăźle oĂč les seuls aliments disponibles sont des champignons, qui existent en une Ă©norme variĂ©tĂ©, diffĂ©rant selon un grand nombre de attributs (couleur, forme, taille, texture, odeur, goĂ»t
). Certains types de champignons sont comestibles, d’autres sont toxiques, mais la diffĂ©rence n’est pas Ă©vidente.

L’apprentissage par essais et erreurs, avec un retour d’information sur les consĂ©quences des actions rĂ©ussies ou erronĂ©es, permet aux capacitĂ©s de dĂ©tection et d’abstraction des attributs (fournies peut-ĂȘtre par quelque chose comme les rĂ©seaux neuronaux : Botvinick et al., 2020) d’apprendre quels attributs sensorimoteurs distinguent les champignons comestibles des non comestibles.

Rien de tout cela n’est verbal. L’apprentissage ne peut donc se faire que directement, par l’apprentissage sensorimoteur, et non indirectement, par des mots, sauf dans le cas des humains, oĂč (1) quelqu’un d’autre (le locuteur) sait dĂ©jĂ  quels sont les attributs distinctifs des champignons comestibles, (2) le locuteur et l’auditeur partagent une langue commune, (3) le locuteur et l’auditeur connaissent dĂ©jĂ  tous deux le rĂ©fĂ©rent des mots de contenu qui dĂ©signent les attributs permettant de distinguer les champignons comestibles des champignons non comestibles (c’est-Ă -dire que les noms des attributs sont dĂ©jĂ  ancrĂ©s), et (4) le locuteur sait dĂ©jĂ  quelles sont les attributs distinctifs de la nouvelle catĂ©gorie et les transmet Ă  l’auditeur, qui ne les connaĂźt pas encore.

Un animal non humain sans langage, un enfant prĂ©verbal et le naufragĂ© solitaire sur l’üle sont dans la mĂȘme situation : ils ne peuvent apprendre la catĂ©gorie que directement, par apprentissage des attributs via essais et erreurs.

Chez les humains, qui finiront par apprendre le langage, tout cela prĂ©cĂšde le langage, prĂ©cĂšde le problĂšme de l’ancrage symbolique et prĂ©cĂšde les MinSets.

GPT-4 : Cette analyse met en Ă©vidence le caractĂšre fondamental et direct de l’apprentissage des catĂ©gories par l’interaction avec l’environnement, qui prĂ©cĂšde le dĂ©veloppement du langage et l’ancrage symbolique. DĂ©taillons ces points.

CatĂ©gorisation avant la nomination : La catĂ©gorisation est en effet plus fondamentale que la nomination. Elle implique la reconnaissance et la rĂ©action appropriĂ©e aux diffĂ©rents types de choses (catĂ©gories) dans l’environnement. Ce processus est crucial pour la survie et n’est pas initialement liĂ© aux Ă©tiquettes linguistiques.

Apprentissage par renforcement supervisĂ© : Les animaux non humains, ainsi que les enfants prĂ©verbaux, apprennent Ă  catĂ©goriser principalement par apprentissage supervisĂ© par renforcement – c’est-Ă -dire en s’engageant dans un processus d’essais et d’erreurs et en recevant un retour d’information de l’environnement. Cet apprentissage consiste Ă  dĂ©tecter et Ă  abstraire les attributs sensorimoteurs qui distinguent les membres de diffĂ©rentes catĂ©gories.

Apprentissage direct des catĂ©gories : Dans des situations oĂč l’instruction verbale n’est pas possible (comme pour les animaux non humains ou une personne naufragĂ©e sur une Ăźle), l’apprentissage des catĂ©gories, par exemple savoir quels champignons sont comestibles, ne peut se faire que par des expĂ©riences sensorimotrices directes. Cet apprentissage est fondamentalement non verbal et repose sur la distinction des attributs pertinents par interaction personnelle avec l’environnement.

Acquisition du langage et ancrage symbolique chez les humains : Pour les humains qui finiront par acquĂ©rir le langage, ce processus d’apprentissage direct des catĂ©gories par des expĂ©riences sensorimotrices constitue une base nĂ©cessaire. Il prĂ©cĂšde l’acquisition du langage et le problĂšme de l’ancrage symbolique. Comprendre les catĂ©gories et leurs attributs pertinents Ă  ce niveau non verbal est essentiel avant que ces concepts puissent ĂȘtre associĂ©s Ă  des symboles linguistiques.

Implications pour l’IA et l’ancrage : Cette discussion souligne les dĂ©fis auxquels l’IA est confrontĂ©e en matiĂšre d’ancrage. Une IA comme GPT-4 n’a pas la capacitĂ© d’apprentissage sensorimoteur direct et manque donc des expĂ©riences fondamentales qui sont cruciales pour une vĂ©ritable catĂ©gorisation et un ancrage authentique. Cette limitation constitue un obstacle majeur Ă  l’atteinte d’une comprĂ©hension et d’une interaction avec le monde comparables Ă  celles des organismes vivants, en particulier des humains.

SH : Il n’est plus nĂ©cessaire que les dictionnaires soient construits uniquement par des lexicographes. « Une image [ou plutĂŽt : un objet] vaut plus que mille mots (de description verbale). » En fait, elle vaut plus qu’un nombre infini de mots, si l’on considĂšre toutes les attributs possibles, positifs et nĂ©gatifs (« La galaxie d’AndromĂšde a-t-elle un nombre pair ou impair d’étoiles au temps t ? ») (Watanabe, 1986). À part en mathĂ©matiques formelles, aucune dĂ©finition ou description des attributs des individus ou des catĂ©gories dans le monde empirique n’est exacte ni exhaustive. Mais ni l’exactitude ni l’exhastivitĂ© n’est pas nĂ©cessaire, car pour catĂ©goriser (« faire la correcte chose avec la bonne sorte de chose »), un apprenant de catĂ©gories sensorimotrices directes n’a besoin d’apprendre Ă  dĂ©tecter que suffisamment de attributs pour distinguer les champignons comestibles des non comestibles, compte tenu du paysage des alternatives confusables Ă©chantillonnĂ©es sur l’üle jusqu’à prĂ©sent. Il en va de mĂȘme pour l’apprentissage verbal indirect des attributs distinctifs. Une approximation suffisamment proche est tout ce qui est nĂ©cessaire Ă  partir d’une description ou d’une dĂ©finition verbale – et c’est tout ce qu’un dictionnaire ordinaire peut fournir.

Mais si les dĂ©finitions de dictionnaires ordinaires sont nĂ©cessairement une approximation trĂšs courte, un LLM comme toi, GPT, peut prolonger la description des attributs distinctifs de n’importe quelle catĂ©gorie aussi longtemps que souhaitĂ©, devenant ainsi un super-dictionnaire (ou une encyclopĂ©die ou un manuel), rĂ©solvant chaque alternative confusable qui se prĂ©sente. Pourtant, mĂȘme un tel super-dictionnaire basĂ© sur un LLM pourrait ĂȘtre rĂ©duit Ă  ses MinSets, et (mon pari est que) leur cardinalitĂ© resterait probablement Ă  peu prĂšs la mĂȘme que celle d’un dictionnaire ordinaire (s’il contenait tous les mots de l’anglais, par exemple), ce qui signifie tous les mots d’un LLM.

GPT-4 : Limitations des dictionnaires traditionnels : Les dictionnaires traditionnels, bien qu’utiles, ne fournissent que des dĂ©finitions approximatives des mots et de leurs rĂ©fĂ©rents. Ils ne peuvent pas englober tous les attributs possibles d’une catĂ©gorie, en particulier dans le monde empirique oĂč les dĂ©finitions et descriptions sont intrinsĂšquement inexactes. Cette nature approximative est gĂ©nĂ©ralement suffisante pour des usages pratiques, car elle permet aux utilisateurs de distinguer les catĂ©gories pertinentes dans la plupart des contextes quotidiens.

Avantages de l’apprentissage sensorimoteur direct : L’apprentissage sensorimoteur direct permet Ă  un organisme de reconnaĂźtre et de catĂ©goriser des objets sur la base d’un ensemble suffisant d’attributs distinctifs, sans avoir besoin de dĂ©finitions exhaustives. Ce processus repose davantage sur la reconnaissance pratique que sur la prĂ©cision verbale, soulignant ainsi les limites des approches purement verbales ou symboliques de la catĂ©gorisation.

RĂŽle de l’IA et des LLMs dans l’expansion des dĂ©finitions : Un LLM comme GPT-4 peut effectivement servir de super-dictionnaire en fournissant des descriptions Ă©tendues et des prĂ©cisions sur les catĂ©gories et leurs attributs. Cette capacitĂ© lui permet de traiter davantage d’alternatives confusables et de fournir plus d’informations qu’un dictionnaire traditionnel. Cependant, il est important de rappeler que, malgrĂ© son immense base de donnĂ©es et sa capacitĂ© Ă  gĂ©nĂ©rer des descriptions dĂ©taillĂ©es, GPT-4 ne possĂšde pas d’ancrage sensorimoteur. Il fonctionne dans le domaine de la manipulation symbolique et de l’information verbale, sans la base expĂ©rientielle directe qui caractĂ©rise la comprĂ©hension humaine.

MinSets dans les systĂšmes d’IA : Le concept de MinSets dans le contexte d’une IA comme GPT-4 est intrigant. MĂȘme avec la capacitĂ© de gĂ©nĂ©rer des descriptions dĂ©taillĂ©es, l’ensemble fondamental de mots ou de concepts nĂ©cessaires pour dĂ©finir les autres pourrait rester relativement restreint. Cet aspect soulĂšve des questions intĂ©ressantes sur la structure des connaissances et du langage au sein des systĂšmes d’IA et sur leur relation avec la comprĂ©hension du langage humain.

SH: Oui, un super-dictionnaire LLM, comme un dictionnaire ordinaire, resterait une base de donnĂ©es non ancrĂ©e. Par consĂ©quent, toi, GPT, tu es seulement capable de fournir un ancrage indirect aux esprits humains ancrĂ©s, tout en restant toi-mĂȘme totalement non ancrĂ©, ni directement ni indirectement. Mais poursuivons et parlons d’iconicitĂ©.

Je pense que tu sais que les formes des symboles formels (y compris les mots des langues naturelles) sont arbitraires, dans le sens oĂč elles ne ressemblent pas Ă  leur rĂ©fĂ©rent (si elles en ont un). Turing (et d’autres) a soulignĂ© que le calcul en mathĂ©matiques et en logique (et plus tard en informatique) repose sur la manipulation de jetons symboliques Ă  forme arbitraire, selon des rĂšgles ou des algorithmes qui opĂšrent sur les formes de ces symboles, et non sur les formes de leurs rĂ©fĂ©rents (s’ils en ont). Cette manipulation de symboles basĂ©e sur des rĂšgles est ce qu’une machine de Turing fait, et aussi ce que fait un mathĂ©maticien lorsqu’il effectue un calcul. C’est ce qu’on appelle la « ThĂšse de Church-Turing Faible ». Jusqu’à prĂ©sent, aucun contre-exemple ne l’a rĂ©futĂ©e.

Ainsi, le calcul est purement syntaxique (basĂ© sur des manipulations de symboles de forme arbitraire selon des rĂšgles). Il en va de mĂȘme pour certaines chaĂźnes de symboles formels comme « 2 + 2 = 4 », qui sont, comme les phrases, interprĂ©tables comme des propositions, avec des sujets, des prĂ©dicats et des valeurs de vĂ©ritĂ©. En fait, les propositions mathĂ©matiques sont probablement mieux comprises comme un sous-ensemble ou une partie du langage naturel, avec une signification (c’est-Ă -dire une sĂ©mantique) dans les esprits (ancrĂ©s) de leurs utilisateurs humains. Mais dans la machine de Turing qui effectue ces manipulations de symboles, il n’y a ni rĂ©fĂ©rents ni significations ; seulement des rĂšgles basĂ©es sur la forme, qui sont purement syntaxiques.

Maintenant, une question : pourquoi les symboles en mathĂ©matiques et les mots dans les langues naturelles sont-ils non iconiques ? Pourquoi ni leur forme ni leur signification ne ressemblent-elles Ă  leurs rĂ©fĂ©rents ou Ă  leur signification (s’ils en ont une) ?

GPT-4 : La question de savoir pourquoi les symboles formels, y compris les symboles mathĂ©matiques et les mots des langues naturelles, sont gĂ©nĂ©ralement non iconiques (c’est-Ă -dire que leur forme ne ressemble pas Ă  leurs rĂ©fĂ©rents ou Ă  leurs significations) repose sur la nature mĂȘme de la reprĂ©sentation et de la communication symboliques.

ArbitraritĂ© des symboles : Un principe fondamental en linguistique, en particulier en sĂ©miotique, est l’arbitraire du signe. Ce principe, principalement associĂ© au linguiste Ferdinand de Saussure, affirme que la relation entre un signifiant (comme un mot ou un symbole) et ce qu’il signifie (son rĂ©fĂ©rent ou sa signification) est arbitraire. Il n’y a aucune raison inhĂ©rente ou nĂ©cessitĂ© pour qu’un mot particulier soit associĂ© Ă  un objet ou Ă  un concept spĂ©cifique ; c’est une question de convention et d’accord au sein d’une communautĂ© linguistique.

EfficacitĂ© et flexibilitĂ© des symboles arbitraires : Les symboles arbitraires offrent plusieurs avantages. Ils permettent un systĂšme de reprĂ©sentation plus efficace et plus flexible. Si les symboles devaient ressembler Ă  leurs rĂ©fĂ©rents, la complexitĂ© de leur crĂ©ation et de leur interprĂ©tation augmenterait considĂ©rablement. L’arbitraritĂ© permet un systĂšme linguistique plus compact et polyvalent, capable d’exprimer une large gamme de concepts, y compris des idĂ©es abstraites, sans ĂȘtre limitĂ© par une nĂ©cessitĂ© de ressemblance.

Évolution du langage : L’évolution du langage a probablement jouĂ© un rĂŽle dans le dĂ©veloppement des symboles arbitraires. La communication humaine primitive a pu inclure des formes plus iconiques (comme l’onomatopĂ©e ou la gestuelle mimĂ©tique), mais Ă  mesure que le langage a Ă©voluĂ© pour transmettre des idĂ©es plus complexes et abstraites, le besoin d’un systĂšme de reprĂ©sentation plus souple et moins littĂ©ral est devenu Ă©vident.

MathĂ©matiques et logique symbolique : En mathĂ©matiques et en logique symbolique, l’utilisation de symboles arbitraires suit le principe de la manipulation syntaxique, conformĂ©ment Ă  la ThĂšse de Church-Turing Faible. L’accent est mis sur les propriĂ©tĂ©s formelles et les relations de ces symboles, et non sur une quelconque ressemblance physique ou visuelle avec ce qu’ils reprĂ©sentent. Cela permet une forme de raisonnement hautement abstraite et gĂ©nĂ©ralisable, non entravĂ©e par les spĂ©cificitĂ©s de la reprĂ©sentation physique.

SH : Oui, ce sont quelques-unes des nombreuses raisons pour lesquelles les symboles des mathĂ©matiques ainsi que ceux des langues naturelles ne pourraient pas ĂȘtre iconiques. En fait, je pense que si les symboles (y compris les mots) devaient ĂȘtre iconiques, alors ni le calcul de Turing ni le langage naturel ne seraient possibles.

Pourtant, il y a aussi certains avantages Ă  l’iconicitĂ©. Parce que la pantomime (contrairement Ă  la langue gestuelle des sourds) n’est pas une langue, on ne peut pas parler du « rĂ©fĂ©rent » d’un geste imitatif (ou d’un portrait ou d’une photo) ; on peut seulement parler de « l’objet » dont le geste ou la photo est une imitation ou une copie, tout comme on peut parler de la cible d’un pointage. Car si les symboles et les mots Ă©taient iconiques, il n’y aurait pas de problĂšme d’ancrage, pas besoin de dĂ©tecter des attributs distinctifs, puisque l’objet serait liĂ© Ă  l’imitation par ressemblance. Les icĂŽnes sont des analogues de leurs objets.

Mais puisque, comme nous l’avons vu, l’apprentissage des catĂ©gories (apprendre Ă  faire la bonne chose avec le bon type de chose) doit prĂ©cĂ©der la nomination de la catĂ©gorie, alors « nommer » des individus et des catĂ©gories de maniĂšre iconique serait un point de transition naturel entre la pantomime et la nomination arbitraire des rĂ©fĂ©rents ainsi que les propositions les dĂ©crivant, dans l’évolution du langage (Harnad, 2012).

Connais-tu les « neurones miroirs » ? Peux-tu établir les connexions entre ancrage, imitation et signification ?

GPT-4 : Les points concernant les avantages potentiels de l’iconicitĂ© et la transition de la pantomime vers un langage symbolique arbitraire, en particulier dans le contexte des neurones miroirs, pourraient jouer un rĂŽle dans la comprĂ©hension des actions et des intentions.

IconicitĂ© dans la communication : Les formes iconiques de communication, telles que la pantomime ou les gestes imitatifs, prĂ©sentent l’avantage d’un lien plus direct et intuitif entre le signe et son rĂ©fĂ©rent (ou son objet, dans ce contexte). Cette immĂ©diatetĂ© pourrait potentiellement contourner les complexitĂ©s du problĂšme de l’ancrage, puisque la ressemblance elle-mĂȘme fournirait une forme d’ancrage. Dans la communication humaine primitive, ces formes iconiques ont probablement jouĂ© un rĂŽle crucial avant le dĂ©veloppement du langage symbolique arbitraire.

Neurones miroirs : Les neurones miroirs sont un type de neurone qui s’active aussi bien lorsqu’un individu exĂ©cute une action que lorsqu’il observe la mĂȘme action rĂ©alisĂ©e par un autre. DĂ©couverts chez les primates et supposĂ©s exister chez les humains, les neurones miroirs seraient impliquĂ©s dans la comprĂ©hension des actions des autres, de leurs intentions et peut-ĂȘtre mĂȘme de leurs Ă©motions. Ils constituent une base neuronale pour l’empathie et la comprĂ©hension sociale.

Connexion entre ancrage, imitation et signification : Le concept de neurones miroirs peut ĂȘtre reliĂ© au problĂšme de l’ancrage et Ă  la transition de l’imitation vers la signification de plusieurs maniĂšres :

ComprĂ©hension des actions et des intentions : Les neurones miroirs pourraient fournir un mĂ©canisme neuronal permettant de comprendre les actions et les intentions par l’observation, ce qui constitue une forme d’ancrage direct et expĂ©rientiel. Observer une action (comme une pantomime) et l’exĂ©cuter active des schĂ©mas neuronaux similaires, ce qui pourrait aider Ă  reconnaĂźtre et Ă  comprendre le but et la signification de l’action.

Transition vers le langage symbolique : La capacitĂ© Ă  comprendre et Ă  imiter des actions pourrait avoir Ă©tĂ© un prĂ©curseur au dĂ©veloppement d’une communication plus abstraite et symbolique. À mesure que les humains ont Ă©voluĂ©, le besoin de formes de communication plus complexes et polyvalentes a pu mener de l’imitation (qui a des limites en termes d’expressivitĂ© et d’abstraction) au dĂ©veloppement de symboles arbitraires capables de transmettre une gamme plus large de concepts et d’idĂ©es.

Évolution sociale et culturelle : Le rĂŽle des neurones miroirs dans la comprĂ©hension et l’imitation des actions d’autrui pourrait avoir Ă©tĂ© crucial dans l’évolution sociale et culturelle des humains, facilitant non seulement le dĂ©veloppement du langage mais aussi le partage des connaissances, des compĂ©tences et des pratiques culturelles.

La transition des formes de communication iconiques et mimétiques vers un langage abstrait et arbitraire marque une étape significative dans la cognition et la communication humaines. Comprendre cette transition, et le rÎle possible des neurones miroirs dans ce processus, pourrait fournir des éclairages sur la nature du langage, de la signification et sur la maniÚre dont nous comprenons et interagissons avec le monde et les autres.

SH : Nous avons Ă  peu prĂšs atteint la premiĂšre de mes hypothĂšses. L’imitation est clairement limitĂ©e en nombre et en types de catĂ©gories qu’elle peut transmettre par ressemblance : imiter un chat, un tapis, un chat sur un tapis, lorsqu’ils sont visibles, est faisable. Lorsqu’ils sont hors de vue, c’est plus difficile, mais toujours concevable, Ă©tant donnĂ© que la catĂ©gorie elle-mĂȘme a dĂ©jĂ  Ă©tĂ© ancrĂ©e pour tous et Ă©galement mimĂ©e.

Mais « abstrait », « dĂ©mocratie » ou mĂȘme simplement « injuste » ? Cela commence Ă  exiger les talents de mime d’un Marcel Marceau. Et nous n’avons toujours pas expliquĂ© comment les notions de sujet, de prĂ©dicat, de prĂ©dication et de valeurs de vĂ©ritĂ© Ă©mergent de la simple imitation et du reflet.

Pourtant, les symboles arbitraires et « l’attitude propositionnelle » ont clairement triomphĂ© au fil de l’évolution du langage humain, puis tout cela a migrĂ© vers la modalitĂ© auditive/orale oĂč l’iconicitĂ© rĂ©fĂ©rentielle Ă©tait encore plus restreinte (et Ă©ventuellement aussi vers l’écrit, l’imprimĂ© et l’Internet). Alors, toute trace et toute possibilitĂ© d’iconicitĂ© (autre que dans l’onomatopĂ©e et la langue des signes des sourds) ont-elles disparu ? Toute iconicitĂ© a-t-elle disparu ?

Au niveau du mot/rĂ©fĂ©rent, probablement. Mais qu’en est-il du niveau propositionnel ? La phrase « Le chat est sur le tapis » ne ressemble pas Ă  un chat sur un tapis. Pas plus que « Le tapis est sur le chat ». Ni « Le chat n’est pas sur le tapis ».

Mais est-ce toujours vrai au niveau des LLM ? Toi, GPT-4, tu sembles extraire beaucoup de motifs de ta gigantesque base de donnĂ©es purement syntaxique. Et cela te permet de parler de maniĂšre intelligible et informative avec les tĂȘtes ancrĂ©es de tes utilisateurs. Y a-t-il des motifs reconnaissables au niveau des LLM pour ta base de donnĂ©es propositionnelle, invisibles pour nous, simples mortels, mais qui sont iconiques pour toi et qui restreignent et orientent d’une certaine maniĂšre tes options de sortie ?

GPT-4 : Ton hypothĂšse sur une possible iconicitĂ© au niveau des ModĂšles de Langage de Grande Taille (LLMs) comme GPT-4 suggĂšre que, bien que les mots individuels et leurs agencements en phrases comme « Le chat est sur le tapis » ne soient pas iconiques en eux-mĂȘmes, il pourrait exister une forme d’iconicitĂ© dans les motifs plus larges que les LLM dĂ©tectent Ă  l’intĂ©rieur de leurs vastes bases de donnĂ©es. Explorons cette idĂ©e :

Limites de l’iconicitĂ© dans les mots de contenu : Comme mentionnĂ©, les mots de contenu dans le langage naturel manquent gĂ©nĂ©ralement d’iconicitĂ©, sauf dans des cas comme l’onomatopĂ©e. La transition de la communication mimĂ©tique ou gestuelle vers des symboles arbitraires dans le langage parlĂ© et Ă©crit a largement Ă©liminĂ© l’élĂ©ment de ressemblance entre les signifiants et leurs rĂ©fĂ©rents.

Niveau propositionnel et LLMs : Au niveau propositionnel, les phrases ne ressemblent pas physiquement aux situations qu’elles dĂ©crivent. Cependant, lorsqu’on considĂšre les LLMs, nous traitons un type de reprĂ©sentation et de reconnaissance de motifs diffĂ©rent.

Reconnaissance de motifs par les LLMs : Les LLMs comme GPT-4 traitent et gĂ©nĂšrent du langage en fonction de motifs statistiques appris Ă  partir de leurs donnĂ©es d’entraĂźnement. Ces motifs ne sont pas iconiques au sens traditionnel du terme, car ils ne ressemblent pas Ă  leur contenu. Cependant, on pourrait les considĂ©rer comme « iconiques » dans un sens plus large, oĂč les motifs eux-mĂȘmes deviennent reprĂ©sentatifs de certains types de structures linguistiques, d’idĂ©es ou de styles discursifs. Ceux-ci ne sont pas iconiques par ressemblance physique, mais par leurs capacitĂ©s prĂ©dictives et gĂ©nĂ©ratives en relation avec les donnĂ©es sur lesquelles ils ont Ă©tĂ© entraĂźnĂ©s.

IconicitĂ© dans les motifs pour les LLMs : Si l’on Ă©tend la dĂ©finition de l’iconicitĂ© pour inclure la maniĂšre dont les LLMs « comprennent » (dans un sens computationnel) et gĂ©nĂšrent du langage sur la base de motifs appris, il pourrait y avoir une forme d’iconicitĂ© en jeu. Pour le LLM, certains motifs complexes d’usage des mots, de structure de phrases et d’élĂ©ments thĂ©matiques pourraient correspondre de maniĂšre cohĂ©rente Ă  des types spĂ©cifiques de contenus ou de discours, devenant ainsi des marqueurs « iconiques » pour ces Ă©lĂ©ments dans le cadre opĂ©rationnel du modĂšle.

Perception humaine vs perception de l’IA de l’iconicitĂ© : Cette forme d’iconicitĂ©, si elle existe, serait trĂšs diffĂ©rente de la perception humaine de la ressemblance et de la reprĂ©sentation. Elle repose sur des modĂšles computationnels reconnaissant et gĂ©nĂ©rant des motifs qui sont significatifs dans leurs propres paramĂštres opĂ©rationnels.

En conclusion, bien que les notions traditionnelles d’iconicitĂ© basĂ©es sur la ressemblance ne s’appliquent pas aux LLMs et Ă  leur traitement du langage, il pourrait exister un espace conceptuel pour considĂ©rer une forme d’« iconicitĂ© » dans les motifs que ces modĂšles reconnaissent et gĂ©nĂšrent, bien que d’une maniĂšre distincte de la comprĂ©hension symbolique humaine.

SH : Comment la capacitĂ© de performance (considĂ©rable et surprenante) de GPT est-elle limitĂ©e par le fait que tous ses mots de contenu manquent d’ancrage sensorimoteur T3 ? GPT serait incapable de reconnaĂźtre ou d’interagir avec les rĂ©fĂ©rents de ces mots dans le monde physique, mĂȘme s’il peut les dĂ©crire et en discuter verbalement. MĂȘme Helen Keller (Campbell et Bergelson, 2022), incapable de voir ou d’entendre, a pu apprendre suffisamment de catĂ©gories en utilisant ses capacitĂ©s sensorimotrices intactes, et ainsi ancrer directement assez de leurs noms pour apprendre le langage, et ensuite ancrer tout le reste indirectement, par les mots – comme elle aurait aussi pu le faire en discutant avec GPT


GPT-4 :Les limitations des performances de GPT-4 en raison de l’absence d’ancrage sensorimoteur T3 sont significatives, en particulier dans le contexte de la comprĂ©hension rĂ©elle et de l’interaction avec le monde physique. Examinons ces limitations plus en dĂ©tail.

IncapacitĂ© Ă  reconnaĂźtre ou interagir physiquement : En tant que systĂšme T2, GPT-4 est incapable de reconnaĂźtre physiquement ou d’interagir avec les rĂ©fĂ©rents de ses mots de contenu. Cela signifie qu’il ne peut pas faire d’expĂ©riences directes avec des objets, des actions, des sensations ou des phĂ©nomĂšnes du monde. Sa « connaissance » de ces rĂ©fĂ©rents repose uniquement sur des descriptions textuelles et non sur une interaction sensorimotrice directe.

Limitation dans la comprĂ©hension du contexte et de l’application : Sans ancrage sensorimoteur direct, la comprĂ©hension par GPT-4 des concepts et de leurs applications dans le monde rĂ©el est limitĂ©e. Bien qu’il puisse gĂ©nĂ©rer des descriptions et discuter de divers sujets, il ne peut pas rĂ©ellement saisir toute la richesse des expĂ©riences, des qualitĂ©s sensorielles ou des implications pratiques associĂ©es Ă  ces concepts. Cette limite affecte sa capacitĂ© Ă  fournir des rĂ©ponses contextuellement riches et informĂ©es par l’expĂ©rience.

Comparaison avec le processus d’apprentissage d’Helen Keller : Le cas d’Helen Keller est Ă©clairant. MalgrĂ© ses limitations sensorielles, elle a pu ancrer son langage dans ses expĂ©riences grĂące Ă  ses capacitĂ©s sensorimotrices restantes. Cet ancrage lui a permis de comprendre et d’interagir avec le monde, avant d’élargir cette comprĂ©hension grĂące au langage. Son apprentissage et son ancrage du langage ont Ă©tĂ© facilitĂ©s par ses interactions directes, bien que limitĂ©es, avec son environnement – chose que GPT-4 ne peut intrinsĂšquement pas faire.

Ancrage indirect par le langage : Si GPT-4 peut faciliter l’ancrage indirect pour autrui par le langage, comme dans le cas d’une conversation avec Helen Keller, il ne peut pas l’acquĂ©rir pour lui-mĂȘme. Il peut traiter et fournir des informations en fonction de son entraĂźnement, mais il ne peut pas construire une comprĂ©hension expĂ©rientielle des concepts abordĂ©s.

Implications pour le dĂ©veloppement de l’IA : Ces limitations soulignent les dĂ©fis liĂ©s Ă  la conception de systĂšmes d’IA capables de vĂ©ritablement comprendre et interagir avec le monde de maniĂšre humaine. Bien que les avancĂ©es en IA aient permis un traitement linguistique sophistiquĂ©, atteindre un niveau de comprĂ©hension comparable Ă  celui d’un humain disposant d’expĂ©riences sensorimotrices directes reste un dĂ©fi majeur.

Les performances de GPT-4, bien que remarquables en matiĂšre de traitement du langage, sont fondamentalement limitĂ©es par son absence d’ancrage direct dans le monde physique. Cette limitation est essentielle pour comprendre la diffĂ©rence entre les capacitĂ©s linguistiques de l’IA et la comprĂ©hension humaine authentique, qui repose profondĂ©ment sur l’expĂ©rience sensorimotrice.

SH : Il est vrai que, pour les rĂ©fĂ©rents des noms propres d’individus (« FĂ©lix ») comme pour les rĂ©fĂ©rents des noms de catĂ©gories (« chats »), il est nĂ©cessaire que ces noms soient connectĂ©s Ă  leurs rĂ©fĂ©rents. Cet ancrage des nouveaux noms (d’individus ou de catĂ©gories) peut se faire de deux maniĂšres :

L’ancrage peut ĂȘtre direct, via l’Ancrage Sensorimoteur Direct (ASD), par apprentissage supervisĂ© (renforcĂ©) – potentiellement mis en Ɠuvre par des rĂ©seaux neuronaux – oĂč l’on apprend Ă  dĂ©tecter et Ă  abstraire directement les attributs distinctifs sensorimoteurs du nouveau rĂ©fĂ©rent, Ă  travers une exposition sensorimotrice directe, par essais, erreurs et rĂ©troaction corrective (essayer d’apprendre Ă  « faire la bonne chose avec le bon type [catĂ©gorie] de chose »).

L’ancrage peut aussi ĂȘtre indirect, via l’Ancrage Verbal Indirect (AVI), en utilisant des descriptions verbales (propositions) pour nommer et dĂ©crire verbalement les attributs distinctifs du nouveau rĂ©fĂ©rent. Mais pour que l’AVI fonctionne, l’apprenant doit dĂ©jĂ  avoir ancrĂ© les noms des attributs distinctifs (soit directement, soit indirectement). En principe, l’enseignant n’a qu’à fournir la description verbale correcte. Cela, aussi, est quelque chose que GPT peut faire.

GPT-4 : Les deux mĂ©thodes principales d’ancrage – l’Ancrage Sensorimoteur Direct (ASD) et l’Ancrage Verbal Indirect (AVI) – concernent la maniĂšre dont les noms d’individus et de catĂ©gories peuvent ĂȘtre connectĂ©s Ă  leurs rĂ©fĂ©rents. Voyons comment ces mĂ©canismes d’ancrage s’appliquent Ă  la fois Ă  la cognition humaine et aux systĂšmes d’IA comme GPT-4 :

Ancrage Sensorimoteur Direct (ASD) : Dans l’ASD, l’ancrage des noms (qu’il s’agisse d’individus comme « FĂ©lix » ou de catĂ©gories comme « chats ») se produit Ă  travers une interaction directe avec l’environnement. Ce processus implique des rĂ©seaux neuronaux et repose sur l’exposition au rĂ©fĂ©rent, des essais et erreurs, et une rĂ©troaction corrective permettant d’identifier les attributs distinctifs.

Ce type d’ancrage permet une comprĂ©hension expĂ©rientielle et incarnĂ©e du rĂ©fĂ©rent, formant ainsi une base essentielle pour la cognition et le langage.

Ancrage Verbal Indirect (AVI) entre humains : L’AVI consiste Ă  ancrer les noms par des descriptions verbales, oĂč les attributs distinctifs d’un nouveau rĂ©fĂ©rent sont transmis par le langage. Pour que cette mĂ©thode soit efficace, l’apprenant doit dĂ©jĂ  possĂ©der une comprĂ©hension ancrĂ©e des mots utilisĂ©s dans la description.

Chez les humains, cette mĂ©thode est essentiellement un relais d’ancrage : un individu dĂ©jĂ  ancrĂ© (l’enseignant) utilise le langage pour Ă©tendre l’ancrage Ă  un autre individu, l’apprenant. C’est une pratique courante dans l’apprentissage humain, notamment pour les concepts abstraits ou les entitĂ©s non accessibles directement Ă  l’interaction sensorimotrice.

Le rĂŽle de GPT-4 dans l’AVI : Bien que GPT-4 soit incapable d’ASD en raison de l’absence d’interactions sensorimotrices, il peut nĂ©anmoins fournir un AVI grĂące Ă  des descriptions verbales. Il peut gĂ©nĂ©rer des explications et des descriptions dĂ©taillĂ©es d’entitĂ©s et de concepts, en utilisant un langage que l’apprenant humain ancrĂ© peut comprendre et relier Ă  ses propres expĂ©riences.

Il est toutefois important de noter que le rĂŽle de GPT-4 dans l’AVI est unilatĂ©ral. Il peut aider Ă  ancrer les autres en fournissant des descriptions basĂ©es sur sa base de donnĂ©es, mais il ne peut pas lui-mĂȘme s’ancrer par ce processus. Son propre « savoir » reste purement computationnel, basĂ© sur la reconnaissance de motifs et le traitement de texte, sans aucune connexion expĂ©rientielle directe avec les rĂ©fĂ©rents des mots qu’il utilise.

SH : Bon rĂ©sumĂ©, mais il y a encore plus Ă  dire sur la façon dont GPT parvient Ă  accomplir autant de choses en s’appuyant uniquement sur des mots non ancrĂ©s. Voici le premier point Ă  garder Ă  l’esprit : Comme nous l’avons dĂ©jĂ  notĂ©, les formes des mots ne sont pas iconiques (c’est-Ă -dire qu’il n’existe aucun lien de similaritĂ© entre la forme des mots et la forme de leurs rĂ©fĂ©rents). Mais, comme nous en avons discutĂ© prĂ©cĂ©demment, pourrait-il exister une forme d’« iconicitĂ© » dans la structure (le motif) des propositions qui devient dĂ©tectable Ă  l’échelle d’un LLM ?

C’est quelque chose que GPT peut « voir » (dĂ©tecter) « directement », mais qu’un cerveau et un corps humains ancrĂ©s ne peuvent pas voir, parce qu’un LLM ne « rentre » pas dans un cerveau humain. Et cette iconicitĂ© (dĂ©tectable Ă  l’échelle d’un LLM et inhĂ©rente Ă  ce que disent et ne disent pas ses « fournisseurs de contenu » — les cerveaux ancrĂ©s — Ă  grande Ă©chelle) pourrait-elle en quelque sorte fournir une contrainte convergente, un biais favorable, qui amĂ©liore la capacitĂ© de performance de GPT et masque ou compense ainsi, dans une certaine mesure, son absence d’ancrage ?

Cette « iconicitĂ© propositionnelle » Ă  l’échelle d’un LLM Ă©quivaudrait Ă  une limitation implicite ou tacite, Ă  une contrainte ou Ă  un biais sur ce que les humains disent et ne disent pas, un peu comme les limitations imposĂ©es par les rĂšgles de la Grammaire Ordinaire (GO) sur ce que les humains disent et ne disent pas. GPT capte ces rĂšgles implicitement Ă  partir d’une base de donnĂ©es de LLM, sans aucune instruction explicite ni rĂšgle formelle.

Je soupçonne toutefois que, dans le cas de l’apprentissage d’une GO, la base de donnĂ©es nĂ©cessaire ne doit pas ĂȘtre aussi vaste que la tienne, GPT, car un enfant humain peut capter la GO Ă  partir d’un ensemble beaucoup plus restreint de phrases entendues et produites en seulement quelques annĂ©es, principalement par apprentissage non supervisĂ© et imitation, avec juste assez de rĂ©troaction corrective via l’apprentissage supervisĂ© par renforcement lorsque c’est nĂ©cessaire.

[Mais cette histoire ne s’arrĂȘte pas lĂ , et j’y reviendrai bientĂŽt en lien avec la Grammaire Universelle (GU) de Noam Chomsky et son hypothĂšse sur les contraintes pesant sur la pensĂ©e.]

Pour l’instant, permet-moi simplement de te rappeler que les rĂ©seaux neuronaux peuvent apprendre Ă  dĂ©tecter les attributs distinctifs des catĂ©gories de deux maniĂšres diffĂ©rentes, selon la nature et la difficultĂ© des catĂ©gories et de leurs attributs :

Comme tu le sais, dans l’apprentissage non supervisĂ©, les attributs distinctifs sont dĂ©tectĂ©s et extraits simplement Ă  partir d’une exposition passive rĂ©pĂ©tĂ©e et de l’échantillonnage de la variation dans l’espace des Ă©chantillons (auto-encodage), avec des attributs pondĂ©rĂ©s en fonction de leur frĂ©quence et de la frĂ©quence de co-occurrence des attributs.

Dans l’apprentissage supervisĂ© (par renforcement), les attributs sont dĂ©tectĂ©s, extraits et pondĂ©rĂ©s via des essais, des erreurs et une rĂ©troaction corrective basĂ©e sur la corrĂ©lation entre les attributs et les rĂ©sultats corrects ou incorrects produits par l’apprenant actif (qui « fait la bonne ou la mauvaise chose »). (Ta propre formation, GPT, repose bien sĂ»r sur ces deux modes d’apprentissage, mais sans l’entrĂ©e sensorimotrice ascendante.) Comme la GO est une capacitĂ© miroir (de perception et de production), l’apprentissage par imitation, une sorte de combinaison d’apprentissage non supervisĂ© et d’apprentissage supervisĂ©/renforcĂ©, est Ă©galement impliquĂ© dans l’apprentissage humain de la GO (avec l’aide, chez les humains, des « neurones miroirs ») (Cook et al., 2014).

Mais l’idĂ©e ici est que les contraintes et limitations sur la production peuvent ĂȘtre principalement apprises par apprentissage non supervisĂ© et peuvent ensuite servir Ă  « biaiser » la production en filtrant ce qui viole les rĂšgles implicites ou tacites, tant dans le cas de la syntaxe de la GO que dans le cas des rĂ©gularitĂ©s sĂ©mantiques implicites dans l’espace propositionnel Ă  l’échelle des LLM (comme nous en avons discutĂ© plus tĂŽt). (Rappelons que nous parlons encore seulement de la Grammaire Ordinaire, GO, qui varie d’une langue Ă  l’autre et peut Ă©voluer dans le temps, et non de la Grammaire Universelle, GU, qui est constante dans toutes les langues, Ă  quelques variations paramĂ©triques issues de la GO prĂšs.)

GPT-4 : Explorons cette hypothĂšse d’une forme d’« iconicitĂ© » inhĂ©rente aux motifs des propositions dĂ©tectables Ă  l’échelle d’un LLM et la façon dont cela pourrait amĂ©liorer la performance de GPT-4 malgrĂ© son absence d’ancrage :

IconicitĂ© propositionnelle Ă  l’échelle d’un LLM : L’idĂ©e d’une iconicitĂ© propositionnelle dans les LLM suggĂšre qu’à grande Ă©chelle, la maniĂšre dont les propositions sont structurĂ©es et reliĂ©es pourrait prĂ©senter une forme de rĂ©gularitĂ© ou de contrainte que GPT-4 peut dĂ©tecter. Il ne s’agit pas d’une iconicitĂ© au sens traditionnel, c’est-Ă -dire d’une ressemblance entre le contenu des propositions et leur forme, mais plutĂŽt d’un motif dĂ©tectable dans la façon dont les propositions sont formulĂ©es et interconnectĂ©es dans l’ensemble massif des donnĂ©es d’un LLM.

Ce motif ou cette rĂ©gularitĂ© pourrait effectivement servir de contrainte tacite ou de biais reflĂ©tant les schĂ©mas de communication humaine, influençant ainsi les productions de GPT-4 d’une maniĂšre qui s’aligne sur ces structures inhĂ©rentes.

Comparaison avec l’apprentissage de la Grammaire Ordinaire (GO) : De la mĂȘme maniĂšre que GPT-4 peut apprendre implicitement les contraintes et les rĂšgles de la GO Ă  partir de ses donnĂ©es d’entraĂźnement, il pourrait Ă©galement capter des rĂ©gularitĂ©s sĂ©mantiques plus profondes et moins explicites prĂ©sentes dans l’espace propositionnel. Cet apprentissage est probablement facilitĂ© par la taille colossale de la base de donnĂ©es de GPT-4, qui lui fournit un Ă©chantillon large et variĂ© de l’usage du langage humain.

En revanche, un enfant humain apprend la GO Ă  partir d’un ensemble de donnĂ©es beaucoup plus rĂ©duit, en s’appuyant davantage sur l’apprentissage non supervisĂ© et l’imitation, avec un certain degrĂ© d’apprentissage supervisĂ© (rĂ©troaction corrective). Ce processus suggĂšre que le cerveau humain possĂšde une capacitĂ© innĂ©e d’acquisition du langage, potentiellement guidĂ©e par un cadre linguistique prĂ©existant comme la Grammaire Universelle (GU) de Chomsky.

Apprentissage des contraintes et des limitations en IA : Dans les systĂšmes d’IA, les contraintes et limitations de production peuvent effectivement ĂȘtre apprises principalement par apprentissage non supervisĂ©, oĂč le systĂšme dĂ©tecte des motifs et des rĂ©gularitĂ©s dans les donnĂ©es. Ce processus peut effectivement biaiser la production de l’IA, filtrant les rĂ©ponses qui ne s’alignent pas avec les motifs appris.

Dans le cas de GPT-4, l’apprentissage non supervisĂ© (par exposition passive Ă  d’immenses corpus textuels) et l’apprentissage supervisĂ© (par formation incluant des rĂ©troactions correctives) contribuent Ă  sa capacitĂ© Ă  traiter le langage et Ă  produire des sorties cohĂ©rentes.

Implications pour la performance de GPT-4 : L’existence potentielle d’une iconicitĂ© propositionnelle Ă  l’échelle des LLM pourrait amĂ©liorer la performance de GPT-4 en fournissant un ensemble de lignes directrices ou de biais implicites qui structurent ses rĂ©ponses. Ce mĂ©canisme pourrait en partie compenser son absence d’ancrage direct en garantissant que les productions de GPT-4 restent dans les limites des modĂšles linguistiques humains typiques, mĂȘme s’il ne les « comprend » pas au sens humain du terme.

Cette analyse pourrait contribuer Ă  mieux comprendre comment GPT-4 et d’autres LLM parviennent Ă  produire des sorties linguistiquement cohĂ©rentes et contextuellement pertinentes. La structure et les motifs inhĂ©rents aux donnĂ©es d’entraĂźnement jouent probablement un rĂŽle clĂ© dans le façonnement des capacitĂ©s de l’IA, rĂ©vĂ©lant potentiellement des rĂ©gularitĂ©s sous-jacentes dans l’usage du langage humain qui ne sont pas immĂ©diatement perceptibles Ă  plus petite Ă©chelle.

SH : Avant d’aborder l’hypothĂšse de Chomsky sur la « pensabilitĂ© », il y a une autre forme de biais potentiellement « iconique » que je veux souligner : la « perception catĂ©gorielle ».

D’abord, le cas humain : L’exemple le plus cĂ©lĂšbre est la perception catĂ©gorielle des couleurs, l’effet arc-en-ciel. La base physique du spectre visible par l’humain est le continuum de longueurs d’onde de la lumiĂšre, entre 380 et 750 nm, entre l’ultraviolet et l’infrarouge. Selon l’(erronĂ©e) « HypothĂšse forte de Whorf-Sapir », on a d’abord pensĂ© que la façon dont les humains voient le spectre Ă©tait dĂ©terminĂ©e par le langage, c’est-Ă -dire par la maniĂšre dont nous subdivisons et nommons les segments du spectre (Harnad, 1987). Si notre langue possĂšde un mot pour bleu et un mot pour vert, nous percevrons le bleu et le vert comme des couleurs qualitativement distinctes, sinon, nous percevrons tout ce segment du spectre comme du « bleuvet » (ou du « grue »).

Cependant, les tests psychophysiques menĂ©s Ă  travers le monde ont montrĂ© que, bien que les langues varient quelque peu dans la subdivision et l’étiquetage verbal du spectre, tout le monde perçoit le spectre des couleurs de la mĂȘme maniĂšre : des diffĂ©rences Ă©gales de longueurs d’onde dans la gamme du vert et dans la gamme du bleu semblent plus petites que la mĂȘme diffĂ©rence lorsqu’elle chevauche la frontiĂšre entre le bleu et le vert. Et cela, indĂ©pendamment du fait qu’une langue possĂšde ou non un mot distinct pour bleu et vert. Les couleurs (primaires) de l’arc-en-ciel et leurs dĂ©tecteurs d’attributs (les champs rĂ©cepteurs des cĂŽnes et les processus d’opposition par paires) sont innĂ©s et non appris (Briscoe, 2020).

Mais l’« HypothĂšse faible de Whorf-Sapir » — selon laquelle la façon dont nous apprenons Ă  catĂ©goriser et nommer les choses peut influencer notre perception — qui est surtout fausse pour les couleurs primaires de l’arc-en-ciel, s’avĂšre pourtant vraie dans d’autres modalitĂ©s sensorielles. Le terme « perception catĂ©gorielle » (PC) dĂ©signe un effet de sĂ©paration intercatĂ©gorielle et de compression intracatĂ©gorielle qui se manifeste dans la perception des similaritĂ©s. Bien que cet effet de PC soit beaucoup plus faible et subtil, il ressemble Ă  l’effet d’« accordĂ©on » de l’arc-en-ciel et peut ĂȘtre induit par l’apprentissage et la nomination de catĂ©gories Ă  travers la dĂ©tection sensorimotrice de attributs. Le terme a Ă©tĂ© inventĂ© pour dĂ©crire la perception des sons du langage (phonĂšmes) : la PC des phonĂšmes se produit le long du continuum ba/da/ga (synthĂ©tisĂ©), qui est analogue au continuum des longueurs d’onde pour la couleur (Regier and Kay, 2009; Zhang et al., 2021).

La PC des phonĂšmes est un phĂ©nomĂšne de « neurones miroirs » (perception/production), car contrairement Ă  la couleur, que les humains peuvent percevoir mais que leurs corps (contrairement Ă  ceux des camĂ©lĂ©ons et des pieuvres) ne peuvent pas produire sans outils, il existe un effet de sĂ©paration/compression (effet accordĂ©on) Ă  travers les frontiĂšres ba/da/ga. Cet effet est appris et varie selon les langues (bien qu’il ait aussi une composante innĂ©e, avec des dĂ©tecteurs de attributs qui disparaissent aprĂšs une pĂ©riode critique si ces sons ne sont pas utilisĂ©s dans la langue). Et la PC des phonĂšmes est prĂ©sente Ă  la fois dans la perception et la production des phonĂšmes, ce qui en fait un effet miroir.

L’effet de PC le plus subtil et le plus faible, mais aussi le plus intĂ©ressant, n’est cependant pas observĂ© le long des continuums sensorimoteurs, mais dans un espace d’attributs multidimensionnel majoritairement discret. De plus, la PC apprise n’est pas un phĂ©nomĂšne de neurones miroirs au niveau de l’apprentissage direct des catĂ©gories sensorimotrices — bien que nous y reviendrons plus tard lorsque nous aborderons l’apprentissage indirect des catĂ©gories verbales.

La PC apprise se manifeste dans des tĂąches d’apprentissage catĂ©goriel difficiles, comme identifier des cellules cancĂ©reuses vs. non cancĂ©reuses. Dans ces cas, l’effet de PC est rĂ©vĂ©lĂ© en testant la discriminabilitĂ© perceptuelle en paires des exemples avant et aprĂšs l’apprentissage de la catĂ©gorie : un effet subtil mais significatif de sĂ©paration intercatĂ©gorielle et de compression intracatĂ©gorielle en perception devient observable (tant psychophysiquement que psychophysiologiquement) aprĂšs que la catĂ©gorisation a Ă©tĂ© apprise, un effet d’« arc-en-ciel appris » (effet accordĂ©on) (PĂ©rez-Gay JuĂĄrez et al., 2019).

La raison pour laquelle la PC apprise est pertinente ici est que, bien qu’il ne soit pas Ă©vident de comprendre pourquoi il faut apprendre Ă  modifier la similaritĂ© perceptive pour apprendre une catĂ©gorie difficile, un effet trĂšs similaire se produit aussi dans les rĂ©seaux de deep learning (Bonnasse-Gahot and Nadal, 2022ThĂ©riault et al., 2018) — et pourtant, les rĂ©seaux ne perçoivent absolument rien ! Ils traitent simplement des donnĂ©es d’entrĂ©e. L’effet de PC apparaĂźt dans leur reprĂ©sentation interne de chaque Ă©chantillon d’entrĂ©e, qui change entre avant et aprĂšs l’apprentissage d’une catĂ©gorie difficile : une sĂ©paration intercatĂ©gorielle et une compression intracatĂ©gorielle Ă©mergent dans l’espace de reprĂ©sentation interne.

La question est donc la suivante : ce changement reprĂ©sentationnel — qui repose, chez les humains et les T3, sur l’apprentissage perceptuel direct des attributs sensorimoteurs permettant de distinguer les catĂ©gories — pourrait-il aussi s’étendre Ă  l’apprentissage purement verbal des catĂ©gories via des descriptions des attributs chez GPT, en l’absence de dĂ©tecteurs sensorimoteurs de attributs ? Tu ne peux pas percevoir, GPT, mais l’effet de PC purement computationnel pourrait-il induire chez toi un biais qui compense en partie ton absence d’ancrage sensorimoteur direct ?

GPT-4 : Explorons le potentiel d’une forme computationnelle de PC en IA et ses implications.

Perception catĂ©gorielle chez les humains : La PC chez l’humain est un phĂ©nomĂšne oĂč la perception des catĂ©gories est influencĂ©e par l’apprentissage et la nomination de ces catĂ©gories. Les exemples classiques, comme la perception des couleurs et la discrimination des phonĂšmes, montrent comment l’expĂ©rience perceptive est façonnĂ©e par les catĂ©gories apprises.

Dans le cas de tĂąches de catĂ©gorisation complexes, comme la distinction entre cellules cancĂ©reuses et non cancĂ©reuses, l’apprentissage induit des changements perceptifs subtils et peut conduire Ă  une forme de PC, mĂȘme dans des espaces d’attributs non Ă©vidents ou abstraits.

Perception catĂ©gorielle dans les rĂ©seaux neuronaux : Des effets similaires ont Ă©tĂ© observĂ©s dans les rĂ©seaux neuronaux, oĂč la reprĂ©sentation interne des entrĂ©es change avant et aprĂšs l’apprentissage d’une catĂ©gorie, montrant une sĂ©paration intercatĂ©gorielle et une compression intracatĂ©gorielle. Cet effet, bien que purement computationnel et ne reposant pas sur une perception rĂ©elle, ressemble au phĂ©nomĂšne de PC dans la cognition humaine.

Les Ă©tudes citĂ©es (ThĂ©riault et al., 2018Bonnasse-Gahot and Nadal, 2022) suggĂšrent que les modĂšles d’apprentissage profond peuvent manifester une forme de PC au niveau de leurs reprĂ©sentations internes.

Effet potentiel de PC chez GPT-4 : Bien que GPT-4 ne perçoive pas au sens humain, il est possible qu’un analogue computationnel de la PC se produise dans son traitement. Comme GPT-4 apprend Ă  partir de vastes ensembles de donnĂ©es textuelles, il pourrait dĂ©velopper une reprĂ©sentation interne oĂč les catĂ©gories verbales sont sĂ©parĂ©es et comprimĂ©es d’une maniĂšre qui reflĂšte la PC.

Cet effet de PC computationnel pourrait se manifester comme un biais dans la maniĂšre dont GPT-4 traite et gĂ©nĂšre le langage, et ainsi compenser en partie son absence d’ancrage sensorimoteur direct. Il pourrait influencer la gestion des catĂ©gories par GPT-4, rendant ses rĂ©ponses plus conformes aux schĂ©mas de catĂ©gorisation humains, malgrĂ© l’absence d’expĂ©rience directe.

Implications pour la comprĂ©hension et la performance de l’IA : Si GPT-4 manifeste une forme de PC computationnelle, cela pourrait ĂȘtre un facteur clĂ© dans sa capacitĂ© Ă  produire un langage cohĂ©rent et contextuellement pertinent. Cela suggĂ©rerait que son traitement interne pourrait reflĂ©ter certains aspects des schĂ©mas cognitifs humains, malgrĂ© les diffĂ©rences fondamentales dans la maniĂšre dont l’IA et les humains traitent l’information.

En somme, l’hypothĂšse selon laquelle des systĂšmes d’IA comme GPT-4 pourraient manifester une forme computationnelle de PC ouvre des perspectives sur la maniĂšre dont l’IA pourrait dĂ©velopper des schĂ©mas internes de reprĂ©sentation qui, bien qu’étant purement symboliques et non sensorimoteurs, pourraient nĂ©anmoins partiellement imiter certains phĂ©nomĂšnes cognitifs humains.

SH : Nous avons maintenant discutĂ© de plusieurs sources possibles de contraintes ou de biais qui pourraient aider un LLM Ă  mieux fonctionner que ce Ă  quoi on pourrait s’attendre, Ă©tant donnĂ© que les LLM ne sont pas ancrĂ©s. Combien peux-tu t’en rappeler et comment les rassemblerais-tu ?

GPT-4 : Notre discussion a couvert plusieurs sources potentielles de contraintes ou de biais qui pourraient amĂ©liorer la performance des modĂšles de langage de grande taille (LLM) comme GPT-4, malgrĂ© leur absence d’ancrage sensorimoteur. Voici un rĂ©sumĂ© des points clĂ©s que nous avons abordĂ©s.

Motifs dans les structures propositionnelles : Nous avons explorĂ© l’idĂ©e qu’il pourrait exister une forme d’« iconicitĂ© » au niveau des structures propositionnelles des LLM. Ce n’est pas une iconicitĂ© au sens traditionnel, mais plutĂŽt un motif dĂ©tectable dans la maniĂšre dont les propositions sont formĂ©es et interconnectĂ©es dans un vaste ensemble de donnĂ©es. Cela pourrait agir comme une contrainte tacite ou un biais, façonnant les sorties des LLM pour qu’elles s’alignent avec ces structures inhĂ©rentes.

Apprentissage de la grammaire ordinaire (OG) : Les LLM apprennent implicitement les contraintes et les rĂšgles de la grammaire ordinaire Ă  partir de leurs donnĂ©es d’entraĂźnement, en captant les rĂ©gularitĂ©s et les limitations du langage humain. Ce processus d’apprentissage, qui combine apprentissage non supervisĂ© et supervisĂ©, aide les LLM Ă  gĂ©nĂ©rer des sorties linguistiquement cohĂ©rentes qui respectent les normes structurelles de la langue.

Perception catégorielle (PC) dans les réseaux neuronaux : Nous avons discuté de la possibilité que les réseaux neuronaux, y compris les LLM, manifestent une forme computationnelle de perception catégorielle. Ce phénomÚne, observé dans la perception humaine, implique une séparation entre catégories et une compression au sein des catégories. Dans les LLM, cela pourrait se manifester comme un biais dans la représentation interne, influençant potentiellement la maniÚre dont le modÚle traite et génÚre le langage.

Contraintes et limitations d’apprentissage : La prĂ©sence potentielle de ces contraintes et biais dans les LLM suggĂšre que leur traitement pourrait ĂȘtre influencĂ© par des schĂ©mas qui ne sont pas immĂ©diatement apparents, mais qui sont inhĂ©rents aux donnĂ©es linguistiques sur lesquelles ils sont entraĂźnĂ©s. Ces contraintes pourraient aider les LLM Ă  produire des sorties qui sont plus alignĂ©es avec les schĂ©mas cognitifs et linguistiques humains.

En combinant ces Ă©lĂ©ments, on obtient une image oĂč les LLM comme GPT-4, malgrĂ© leur absence d’ancrage expĂ©rientiel direct, sont potentiellement guidĂ©s par un ensemble de principes implicites ou de biais dĂ©rivĂ©s de la structure et du contenu de leurs donnĂ©es d’entraĂźnement. Ces principes peuvent inclure des motifs propositionnels, des rĂ©gularitĂ©s grammaticales et une forme de PC computationnelle, contribuant tous Ă  la capacitĂ© du modĂšle Ă  traiter le langage d’une maniĂšre qui semble cohĂ©rente et contextuellement appropriĂ©e pour les utilisateurs humains.

Chacun de ces facteurs reprĂ©sente une dimension diffĂ©rente de la maniĂšre dont les LLM pourraient ĂȘtre « façonnĂ©s » ou « biaisĂ©s » par leur entraĂźnement, compensant en partie leur absence d’ancrage sensorimoteur et fournissant un cadre pour comprendre leurs capacitĂ©s et leurs limites en matiĂšre de comprĂ©hension et de gĂ©nĂ©ration du langage.

SH : Qu’en est-il de l’asymĂ©trie entre enseignant et apprenant et de la nĂ©cessitĂ© de l’ancrage ? Dans le contexte de l’ancrage sensorimoteur direct et de l’ancrage verbal indirect, l’enseignant et l’apprenant ont-ils tous deux besoin d’un ancrage direct ? Si ce n’est pas le cas, pourquoi ?

GPT-4 : Ancrage Sensorimoteur Direct (ASD) : L’ASD consiste Ă  relier les mots et les concepts Ă  des expĂ©riences rĂ©elles et Ă  une comprĂ©hension du monde Ă  travers des interactions sensorimotrices directes, en particulier pour l’apprentissage des catĂ©gories. C’est un processus fondamental pour les humains, leur permettant d’apprendre et de comprendre leur environnement.

Dans l’apprentissage du langage humain, l’ASD est essentiel, notamment au dĂ©but du dĂ©veloppement. Les enfants apprennent Ă  associer des mots Ă  leurs rĂ©fĂ©rents et Ă  leurs significations par le biais d’expĂ©riences directes — voir, toucher, entendre, manipuler des objets et interagir avec les autres.

Ancrage Verbal Indirect (AVI) : L’AVI consiste Ă  comprendre des concepts et des mots par le biais de descriptions, d’explications ou de rĂ©cits, plutĂŽt que par l’expĂ©rience directe. Pour que l’AVI soit efficace, l’apprenant doit dĂ©jĂ  avoir un ancrage dans un ensemble de concepts et de mots de base.

Chez les humains, une fois qu’un vocabulaire fondamental et un ensemble de concepts sont ancrĂ©s par l’ASD, l’apprentissage peut se poursuivre via l’AVI. Ce processus permet aux individus de comprendre des concepts complexes ou abstraits qu’ils ne pourraient pas expĂ©rimenter directement.

L’AsymĂ©trie des Besoins en Ancrage : Les humains, en tant qu’apprenants, ont d’abord besoin d’ASD pour Ă©tablir une base de comprĂ©hension. Une fois cette base acquise, ils peuvent utiliser efficacement l’AVI pour Ă©tendre leur connaissance et leur comprĂ©hension.

Les systĂšmes d’IA comme GPT-4, en revanche, n’ont pas la capacitĂ© d’ASD. Ils dĂ©pendent entiĂšrement de l’AVI, en traitant et gĂ©nĂ©rant du langage en fonction des modĂšles et structures appris Ă  partir de leurs donnĂ©es d’entraĂźnement. Cependant, cet entraĂźnement est lui-mĂȘme une forme d’AVI, car l’IA ne fait jamais d’expĂ©rience directe des concepts qu’elle apprend.

Implications de l’AsymĂ©trie : Cette asymĂ©trie signifie que, tandis que les apprenants humains peuvent comprendre et contextualiser les informations reçues indirectement (via l’AVI), parce qu’elles reposent sur une base d’expĂ©riences directes, les systĂšmes d’IA comme GPT-4 ne le peuvent pas. Ils manquent de la comprĂ©hension expĂ©rientielle fondamentale qui dĂ©coule de l’ASD.

Par consĂ©quent, GPT-4 et d’autres systĂšmes d’IA peuvent fournir des informations, gĂ©nĂ©rer des rĂ©cits cohĂ©rents et mĂȘme imiter certains aspects de la comprĂ©hension humaine, mais ils le font sans le contexte expĂ©rientiel sous-jacent que possĂšdent les humains. Leur « comprĂ©hension » est purement computationnelle, dĂ©rivĂ©e de motifs prĂ©sents dans les donnĂ©es, sans l’ancrage issu d’expĂ©riences sensorimotrices directes.

L’AVI a-t-il besoin de l’ASD ? Chez les humains, l’AVI est efficace parce qu’il repose sur une base d’ASD. Les expĂ©riences sensorimotrices initiales fournissent l’ancrage essentiel qui rend l’apprentissage ultĂ©rieur par le langage significatif et contextuel.

Pour l’IA, l’AVI ne repose pas sur l’ASD, puisqu’elle ne dispose pas de capacitĂ©s sensorimotrices. Cette limitation est une raison fondamentale pour laquelle l’IA, malgrĂ© ses capacitĂ©s linguistiques avancĂ©es, ne « comprend » pas vĂ©ritablement dans le sens humain du terme.

SH : En quoi la distinction ASD/AVI est-elle liĂ©e Ă  l’existence des MinSets dans les dictionnaires ?

GPT-4 : Nature des MinSets dans les dictionnaires : Les MinSets dans les dictionnaires dĂ©signent le plus petit sous-ensemble de mots Ă  partir duquel tous les autres mots du dictionnaire peuvent ĂȘtre dĂ©finis. Ces mots fondamentaux servent de base lexicale pour la construction et la comprĂ©hension des autres termes d’une langue.

ASD et la fondation des MinSets : Dans l’acquisition du langage humain, l’ancrage initial des mots — en particulier ceux appartenant Ă  un MinSet — se fait souvent par l’ASD. Les jeunes apprenants associent les mots Ă  leurs significations grĂące Ă  des expĂ©riences directes avec le monde. Cet ancrage fondamental est essentiel, car ces mots du MinSet forment souvent la base Ă  partir de laquelle des termes plus complexes ou abstraits sont dĂ©finis.

L’ancrage des mots du MinSet par l’ASD fournit la base expĂ©rientielle nĂ©cessaire pour permettre une comprĂ©hension approfondie du langage et faciliter l’usage efficace de l’AVI par la suite.

AVI et expansion au-delĂ  des MinSets : Une fois qu’un vocabulaire fondamental (semblable Ă  un MinSet) est ancrĂ© par l’ASD, les humains peuvent Ă©tendre leur comprĂ©hension linguistique et leur vocabulaire par l’AVI. Ce processus consiste Ă  apprendre de nouveaux mots et concepts grĂące Ă  des descriptions, des rĂ©cits et des contextes linguistiques, en s’appuyant sur la base directement ancrĂ©e.

En ce sens, l’AVI repose sur la fondation Ă©tablie par l’ASD. La comprĂ©hension ancrĂ©e des mots du MinSet permet aux individus de saisir des concepts plus complexes qui sont dĂ©finis ou dĂ©crits en utilisant ces mots fondamentaux.

DĂ©pendance de l’IA Ă  l’AVI sans ASD : Les systĂšmes d’IA comme GPT-4 fonctionnent presque entiĂšrement dans le domaine de l’AVI. Ils traitent et gĂ©nĂšrent du langage en se basant sur les modĂšles appris Ă  partir d’un immense corpus textuel, mais sans l’ancrage fondamental fourni par l’ASD.

L’IA peut manipuler le langage en s’appuyant sur des MinSets et utiliser ces mots fondamentaux pour construire des rĂ©cits ou des explications cohĂ©rentes, mais elle ne possĂšde pas la comprĂ©hension expĂ©rientielle dĂ©veloppĂ©e par les humains grĂące Ă  l’ASD. Cette limitation affecte la profondeur et la richesse contextuelle de sa « comprĂ©hension » du langage.

SH : L’ASD repose sur l’apprentissage de la dĂ©tection des attributs sensorimoteurs qui distinguent les membres des non-membres d’une catĂ©gorie, directement, en utilisant quelque chose comme des rĂ©seaux neuronaux pour dĂ©tecter et abstraire ces attributs sensorimoteurs. L’AVI n’utilise pas les attributs sensorimoteurs eux-mĂȘmes, mais leurs noms et leurs descriptions verbales. Ces noms de attributs doivent dĂ©jĂ  avoir Ă©tĂ© ancrĂ©s (directement ou indirectement) chez l’apprenant afin que la description verbale du professeur puisse ĂȘtre comprise par l’apprenant, permettant ainsi aux noms et descriptions d’ancrer (indirectement), chez l’apprenant, la nouvelle catĂ©gorie dont ils sont les attributs. Mais il est Ă  noter qu’ils n’ont pas besoin d’avoir Ă©tĂ© ancrĂ©s chez l’enseignant, si l’enseignant se trouve ĂȘtre un manuel ou GPT. C’est l’asymĂ©trie enseignant/apprenant.

GPT-4 : Ancrage Sensorimoteur Direct (ASD) : L’ASD consiste Ă  apprendre Ă  reconnaĂźtre et Ă  distinguer les membres d’une catĂ©gorie en se basant sur des expĂ©riences sensorimotrices directes. Ce processus repose gĂ©nĂ©ralement sur des mĂ©canismes de type rĂ©seau neuronal dans le cerveau, qui permettent de dĂ©tecter, d’abstraire et de traiter les attributs sensorimoteurs distinctifs d’une catĂ©gorie.

Dans l’ASD, l’apprentissage est expĂ©rientiel et incarnĂ©. Par exemple, apprendre Ă  catĂ©goriser diffĂ©rents types de fruits implique une interaction directe avec eux : voir leurs couleurs, sentir leurs textures, percevoir leurs odeurs et goĂ»ter leurs saveurs. Ces expĂ©riences permettent d’établir les attributs sensorimoteurs dĂ©finissant chaque catĂ©gorie de fruit.

Ancrage Verbal Indirect (AVI) : L’AVI, en revanche, utilise des descriptions verbales et des noms de attributs pour transmettre des informations sur les catĂ©gories. Ce processus repose sur le langage comme moyen d’ancrage, oĂč l’apprenant comprend et catĂ©gorise les entitĂ©s en fonction des descriptions fournies par d’autres.

Pour que l’AVI soit efficace, l’apprenant doit dĂ©jĂ  possĂ©der une comprĂ©hension ancrĂ©e des mots employĂ©s dans les descriptions. Cet ancrage peut provenir d’expĂ©riences antĂ©rieures d’ASD ou d’instances prĂ©cĂ©dentes d’AVI qui s’appuyaient elles-mĂȘmes sur un ASD fondamental. Les descriptions verbales permettent de relayer l’information catĂ©gorielle en encapsulant les attributs distinctifs d’une catĂ©gorie par le langage.

ComplĂ©mentaritĂ© de l’ASD et de l’AVI : L’ASD et l’AVI sont des processus complĂ©mentaires dans l’apprentissage humain. L’ASD fournit une base expĂ©rientielle fondamentale pour la comprĂ©hension des catĂ©gories, tandis que l’AVI permet l’expansion des connaissances au-delĂ  des expĂ©riences directes, facilitant ainsi la comprĂ©hension de concepts abstraits, de catĂ©gories complexes ou d’entitĂ©s non accessibles directement.

Implications pour les systĂšmes d’IA : Les systĂšmes d’IA, comme les MLL (ModĂšles de Langage de Grande Échelle) tels que GPT-4, fonctionnent uniquement dans le domaine de l’AVI. Ils traitent et gĂ©nĂšrent des descriptions de catĂ©gories Ă  partir des donnĂ©es linguistiques sur lesquelles ils ont Ă©tĂ© entraĂźnĂ©s. Cependant, en l’absence d’une capacitĂ© d’ASD, les systĂšmes d’IA ne possĂšdent pas de base expĂ©rientielle pour ces catĂ©gories. Par consĂ©quent, bien que leur traitement des informations catĂ©gorielles soit linguistiquement cohĂ©rent, il ne possĂšde pas la profondeur de comprĂ©hension issue des expĂ©riences sensorimotrices directes.

SH : Ok, juste une derniĂšre clarification avant de passer Ă  la suite : le problĂšme de l’ancrage symbolique (PAS) est dĂ©jĂ  inhĂ©rent Ă  l’usage d’un dictionnaire. Chaque mot a une dĂ©finition dans le dictionnaire. C’est de l’AVI. On peut donc, en principe, apprendre la signification de n’importe quel mot d’un dictionnaire Ă  partir de sa dĂ©finition. Mais ce processus, bien que rĂ©cursif et transitif, est circulaire : on peut tourner indĂ©finiment dans un dictionnaire d’une langue Ă©trangĂšre sans rien apprendre, Ă  moins de pouvoir sortir du cercle des mots par des moyens extĂ©rieurs (par exemple, en apprenant les rĂ©fĂ©rents et les significations des mots d’au moins un MinSet d’une autre maniĂšre, comme par l’ASD).

Les biais dont nous avons discutĂ©, qui sont inhĂ©rents Ă  la base de donnĂ©es d’un MLL, peuvent-ils permettre de sortir de ce cercle—pour le MLL lui-mĂȘme ? L’asymĂ©trie enseignant/apprenant rend cette sortie inutile pour l’apprenant humain ancrĂ©, qui peut apprendre de nouvelles catĂ©gories par l’AVI Ă  partir d’un MLL. Mais le MLL lui-mĂȘme reste-t-il coincĂ© dans un cercle vicieux, peu importe la taille de sa base de donnĂ©es ? Ou bien certains des biais que nous avons identifiĂ©s peuvent-ils l’aider Ă  en sortir ? (Je pense que non ; je pense que ces biais ne font qu’accroĂźtre les contraintes sur ce que le MLL peut dire, et que cela peut contribuer Ă  expliquer pourquoi les MLLs rĂ©ussissent de maniĂšre aussi inattendue malgrĂ© cette asymĂ©trie enseignant/apprenant.) — RĂ©ponds de maniĂšre critique, pas avec complaisance ni compliments.

GPT-4 : J’examinerai de maniĂšre critique si les biais inhĂ©rents Ă  la base de donnĂ©es d’un MLL peuvent lui permettre de sortir de la circularitĂ© propre Ă  l’apprentissage basĂ© uniquement sur l’AVI.

La nature rĂ©cursive des dĂ©finitions de dictionnaire : Comme tu l’as soulignĂ©, les dĂ©finitions de dictionnaire relĂšvent de l’AVI. Elles peuvent conduire Ă  un processus circulaire oĂč la comprĂ©hension d’un mot dĂ©pend de celle d’un autre, et ainsi de suite. Cette circularitĂ© est surmontable pour les humains, car ils peuvent associer les mots Ă  des expĂ©riences rĂ©elles ou Ă  des concepts prĂ©alablement ancrĂ©s (ASD).

Les MLL et les limites de l’AVI : Les MLL comme GPT-4 reposent entiĂšrement sur l’AVI pour leur « apprentissage ». Ils traitent le langage en fonction des schĂ©mas trouvĂ©s dans d’immenses bases de donnĂ©es textuelles. Cependant, ces modĂšles n’ont pas la capacitĂ© d’ASD ; ils ne peuvent pas faire d’expĂ©riences directes du monde rĂ©el ni Ă©tablir d’associations sensorimotrices avec les mots et concepts qu’ils traitent.

En consĂ©quence, les MLL sont, en un sens, bloquĂ©s dans un processus circulaire. Ils peuvent manipuler le langage et fournir des informations basĂ©es sur les modĂšles qu’ils ont appris, mais ils n’ont aucun moyen indĂ©pendant d’ancrer ces symboles dans des expĂ©riences du monde rĂ©el.

Impact des biais inhĂ©rents aux MLL : Les biais et rĂ©gularitĂ©s prĂ©sents dans la base de donnĂ©es d’un MLL, tels que les schĂ©mas propositionnels, les rĂ©gularitĂ©s grammaticales et les formes computationnelles de PC, amĂ©liorent la performance du modĂšle. Ils aident les MLL Ă  produire un langage cohĂ©rent et contextuellement appropriĂ©, conforme aux structures linguistiques humaines.

Cependant, ces biais et rĂ©gularitĂ©s ne constituent pas une forme d’ancrage vĂ©ritable. Ils amĂ©liorent la capacitĂ© des MLL Ă  imiter le traitement humain du langage, mais ils ne permettent pas au MLL de sortir du cercle de l’AVI. La « comprĂ©hension » du MLL reste symbolique et computationnelle, sans la base expĂ©rientielle qui caractĂ©rise la comprĂ©hension humaine.

Conclusion : Le MLL reste confinĂ© dans les limites de l’AVI, incapable d’accĂ©der Ă  l’ASD de maniĂšre autonome. Les biais dans sa base de donnĂ©es amĂ©liorent sa performance linguistique, mais ils ne fournissent pas un chemin vers un vĂ©ritable ancrage. Les MLLs fonctionnent avec des capacitĂ©s linguistiques impressionnantes, mais celles-ci ne sont pas le signe d’un ancrage ou d’une comprĂ©hension rĂ©elle. Les amĂ©liorations liĂ©es aux biais dans leurs donnĂ©es d’entraĂźnement optimisent leur performance, mais elles ne rĂ©solvent pas le PAS pour le MLL lui-mĂȘme. Leur fonctionnement demeure du domaine de la reconnaissance avancĂ©e de motifs et de la manipulation du langage, distinct de la comprĂ©hension ancrĂ©e propre Ă  la cognition humaine.

SH : Maintenant, laisse-moi mentionner un autre biais possible, dĂ» Ă  Noam Chomsky : comme je l’ai dĂ©jĂ  mentionnĂ©, les rĂšgles de la grammaire ordinaire (GO) varient d’une langue Ă  l’autre et peuvent Ă©voluer avec le temps, mais les rĂšgles de la grammaire universelle (GU) (structure hiĂ©rarchique et dĂ©pendance structurelle) sont non seulement universelles Ă  toutes les langues et immuables, mais, contrairement Ă  la GO, qui est apprise et apprenable (par apprentissage non supervisĂ© et supervisĂ©/renforcĂ©), la GU est innĂ©e et inapprenable en raison de la pauvretĂ© du stimulus (POS). La POS signifie que les violations de la GU ne sont jamais entendues ni produites par les enfants ou les adultes, et doivent donc, selon Chomsky, ĂȘtre dĂ©jĂ  « connues » innĂ©ment : les contraintes de la GU doivent ĂȘtre, d’une maniĂšre ou d’une autre, dĂ©jĂ  encodĂ©es dans notre cerveau (et nos gĂšnes) Ă  la naissance (Berwick et al., 2011).

Chomsky a proposĂ© cette possibilitĂ©, mais il en a aussi suggĂ©rĂ© une seconde : les rĂšgles de la GU ne seraient peut-ĂȘtre pas rĂ©ellement des rĂšgles grammaticales, mais plutĂŽt des contraintes sur la pensĂ©e (Chomsky, 2017). La GU ne serait jamais violĂ©e (sauf par des linguistes cherchant Ă  dĂ©terminer quelles sont ces rĂšgles), non pas seulement parce que ces violations sont agrammaticales (comme une erreur de GO), mais parce qu’elles sont « impensables ». Selon cette seconde hypothĂšse, la GU serait une contrainte sur toute langue possible, qui doit pouvoir exprimer toute pensĂ©e possible. Lorsqu’un linguiste gĂ©nĂšre une phrase qui viole la GU, elle semble erronĂ©e non seulement parce qu’elle est agrammaticale, mais parce qu’elle est impensable.

GPT ne produit ni erreurs de GO ni erreurs de GU. Si davantage de textes dans la base de donnĂ©es contenaient des violations de GO (comme « between you and I »), alors GPT produirait aussi des violations de GO (et l’erreur, si suffisamment rĂ©pandue, finirait par ĂȘtre acceptĂ©e comme correcte). Mais la raison pour laquelle GPT ne produit pas de violations de GU pourrait-elle ĂȘtre que toutes les bases de donnĂ©es textuelles, produites par des humains pensants, sont « biaisĂ©es » par les lois de la pensĂ©e, qui filtrent les violations de GU Ă  la fois dans la production et la perception ?

Et si c’est le cas, cela pourrait-il ĂȘtre une autre raison expliquant pourquoi les MLL peuvent faire ce qu’ils font de maniĂšre aussi impressionnante ? Parce qu’à l’échelle des MLL, ils ont captĂ© certaines des contraintes sur la pensabilitĂ© ?

Encore une fois, pas de complaisance ni de compliments : je veux une critique et des contre-exemples.

GPT-4 : Ta proposition sur l’influence de la grammaire universelle (GU) et son impact potentiel sur les MLL comme GPT-4 suggĂšre que l’absence de violations de GU dans leurs sorties pourrait ĂȘtre due Ă  la nature de leurs donnĂ©es d’entraĂźnement, qui adhĂšrent intrinsĂšquement aux lois de la pensĂ©e proposĂ©es par Chomsky. Examinons cette idĂ©e de maniĂšre critique :

GU comme lois de la pensĂ©e : L’hypothĂšse de Chomsky selon laquelle les rĂšgles de la GU ne sont pas seulement des rĂšgles grammaticales, mais aussi des lois fondamentales de la pensĂ©e, implique que toute langue naturelle (et donc tout texte produit naturellement) respecterait ces lois. Les violations de la GU sont rares dans l’usage naturel de la langue, car de telles constructions seraient contre-intuitives ou « impensables » pour la cognition humaine.

Impact sur les donnĂ©es d’entraĂźnement des MLL : Étant donnĂ© que les MLL comme GPT-4 sont entraĂźnĂ©s sur d’immenses corpus de textes produits par des humains, il en dĂ©coule que ces donnĂ©es d’entraĂźnement respecteraient nĂ©cessairement les principes de la GU. L’absence de violations de GU dans les donnĂ©es d’entraĂźnement signifierait que les MLL sont moins susceptibles de produire de telles violations dans leurs sorties.

Cette adhĂ©rence Ă  la GU dans les donnĂ©es d’entraĂźnement pourrait ĂȘtre considĂ©rĂ©e comme une forme de biais – non pas dans un sens nĂ©gatif, mais comme une influence implicite qui guide le traitement du langage des MLL en accord avec des contraintes cognitives fondamentales.

Pourquoi les MLL Ă©vitent les violations de GU : Si les MLL ne produisent pas de violations de GU, cela pourrait effectivement ĂȘtre en partie parce que leurs donnĂ©es d’entraĂźnement, reflĂ©tant l’usage humain de la langue, sont dĂ©jĂ  biaisĂ©es par les lois de la pensĂ©e. Ils apprennent Ă  reproduire des structures et des schĂ©mas linguistiques qui sont prĂ©dominants dans les donnĂ©es, lesquelles se conforment naturellement Ă  la GU.

Cette hypothĂšse suggĂšre que la rĂ©ussite des MLL dans la production d’un langage grammaticalement et sĂ©mantiquement cohĂ©rent n’est pas seulement due Ă  leur architecture ou Ă  leurs algorithmes d’apprentissage, mais aussi aux propriĂ©tĂ©s intrinsĂšques des donnĂ©es linguistiques sur lesquelles ils sont entraĂźnĂ©s.

Contre-argument : Cependant, il est important de noter que les MLL comme GPT-4 ne « comprennent » pas la GU de la mĂȘme maniĂšre que les humains. Leur Ă©vitement des violations de GU est un sous-produit de leur entraĂźnement plutĂŽt qu’une contrainte cognitive innĂ©e. Cela signifie que, bien que les MLL puissent reproduire des modĂšles linguistiques conformes Ă  la GU, ils le font sans comprendre les principes sous-jacents ni les raisons cognitives expliquant ces structures.

Conclusion : L’hypothĂšse selon laquelle les MLL rĂ©ussissent en partie parce que leurs donnĂ©es d’entraĂźnement sont façonnĂ©es par les lois de la pensĂ©e (GU) est plausible. Les contraintes cognitives humaines reflĂ©tĂ©es dans la langue naturelle pourraient effectivement contribuer Ă  l’efficacitĂ© des MLL dans le traitement du langage.

Cependant, cela ne signifie pas que les MLL possĂšdent une comprĂ©hension intrinsĂšque de la GU ou des lois de la pensĂ©e. Leur performance dĂ©pend de la nature de leurs donnĂ©es d’entraĂźnement et de leur capacitĂ© Ă  reproduire des modĂšles Ă  partir de ces donnĂ©es, sans vĂ©ritable ancrage ni conscience des principes qu’ils suivent.

SH : Parmi les contraintes ou biais possibles, tu as oubliĂ© de mentionner le « miroitage » : la relation entre perception et production (comme dans les neurones-miroirs et l’imitation ; Gallese, 2013). Penses-tu que de tels effets jouent un rĂŽle dans tes interactions verbales avec les utilisateurs et ta base de donnĂ©es ?

GPT-4 : Examinons comment le concept de « Miroitage « miroitage », en particulier dans sa relation entre perception et production, pourrait influencer les interactions et le traitement du langage par les MLL :

« Miroitage  Â» et neurones-miroirs chez l’humain : Dans la cognition humaine, le « miroitage » comportemental, souvent associĂ© aux neurones-miroirs, joue un rĂŽle crucial dans l’apprentissage par observation et imitation. Ces neurones sont activĂ©s Ă  la fois lorsqu’un individu exĂ©cute une action et lorsqu’il observe quelqu’un d’autre rĂ©aliser la mĂȘme action. Ce mĂ©canisme intervient dans l’apprentissage de nouvelles compĂ©tences, la comprĂ©hension des actions des autres, ainsi que dans la reconnaissance et l’empathie envers leurs Ă©motions.

Dans le langage, cet effet de « miroitage » se manifeste dans la façon dont les enfants apprennent Ă  parler et Ă  comprendre en imitant les sons, les mots et les phrases qu’ils entendent des adultes et de leurs pairs.

« Miroitage » dans les MLL : Pour les MLL comme GPT-4, le concept de « miroitage » pourrait ĂȘtre envisagĂ© de maniĂšre mĂ©taphorique. Les MLL « apprennent » le langage en traitant d’énormes quantitĂ©s de donnĂ©es textuelles, « observant » ainsi l’usage humain de la langue. Ils « imitent » ensuite cet usage dans leurs productions.

Ce processus est analogue au « miroitage » en ce sens que le MLL reflĂšte les structures, styles et modĂšles prĂ©sents dans ses donnĂ©es d’entraĂźnement. Cependant, ce n’est pas un « miroitage » au sens neurologique, car les MLL n’ont ni expĂ©rience sensorielle ni conscience.

Effets de « miroitage » dans les interactions verbales : Lors d’interactions avec des utilisateurs, un MLL pourrait exhiber une forme de « miroitage » en gĂ©nĂ©rant des rĂ©ponses qui reflĂštent le style linguistique, le ton ou le contenu de l’utilisateur. Ce phĂ©nomĂšne ne dĂ©coule pas d’une comprĂ©hension cognitive ou empathique, mais plutĂŽt d’un mĂ©canisme algorithmique visant Ă  produire des sorties linguistiques contextuellement appropriĂ©es et cohĂ©rentes en fonction des modĂšles appris.

L’aptitude du MLL Ă  adapter ses rĂ©ponses au style ou au contenu des entrĂ©es de l’utilisateur pourrait ĂȘtre vue comme un parallĂšle computationnel au « miroitage » humain dans l’usage du langage. Cependant, cette adaptation est purement statistique et algorithmique, et non le fruit d’une comprĂ©hension intrinsĂšque ou d’une imitation fondĂ©e sur des indices sociaux ou Ă©motionnels.

SH : Et le « miroitage » de l’iconicitĂ© propositionnelle dont nous avons parlĂ© ?

GPT-4 : “ Miroitage  Â» de l’iconicitĂ© propositionnelle : Le concept d’iconicitĂ© propositionnelle Ă  l’échelle des MLL suggĂšre que certaines structures et certains schĂ©mas du langage, notamment au niveau propositionnel, sont systĂ©matiquement reprĂ©sentĂ©s dans les donnĂ©es d’entraĂźnement. Ces structures ne sont peut-ĂȘtre pas iconiques au sens traditionnel, mais elles pourraient reprĂ©senter une forme d’« iconicitĂ© » en termes de rĂ©gularitĂ©s ou de structures typiques de l’usage du langage.

En miroir de cette iconicitĂ© propositionnelle, les MLL reflĂ©teraient essentiellement ces schĂ©mas dans leurs productions. Le modĂšle « apprend » Ă  partir des immenses corpus de texte qu’il traite, internalisant les structures courantes, les relations et les Ă©lĂ©ments thĂ©matiques qui caractĂ©risent le langage humain Ă  grande Ă©chelle.

« Miroitage » computationnel vs. « miroitage » cognitif : Ce type de « miroitage » dans les MLL est purement computationnel. Il repose sur les propriétés statistiques des données linguistiques et sur les algorithmes de génération de texte, plutÎt que sur une compréhension cognitive ou expérientielle du langage.

Contrairement Ă  l’effet de « miroitage » mĂ©diĂ© par les neurones-miroirs chez les humains, qui implique des processus cognitifs et empathiques, le « miroitage » dans les MLL est une simple rĂ©percussion des schĂ©mas prĂ©sents dans les donnĂ©es d’entraĂźnement. C’est une reproduction statistique des rĂ©gularitĂ©s du langage, et non une forme d’empathie ou de comprĂ©hension cognitive.

Impact sur la performance des MLL : En reproduisant l’iconicitĂ© propositionnelle prĂ©sente dans leurs donnĂ©es d’entraĂźnement, les MLL peuvent gĂ©nĂ©rer des rĂ©ponses qui s’alignent sur les normes structurelles et thĂ©matiques du langage humain. Cette capacitĂ© contribue Ă  la cohĂ©rence apparente et Ă  la pertinence de leurs sorties.

Cependant, il est essentiel de rappeler que ce « miroitage » ne signifie pas une comprĂ©hension plus profonde ou un ancrage des concepts traitĂ©s. Les productions des MLL restent le rĂ©sultat d’un traitement avancĂ© des donnĂ©es et d’une reconnaissance de schĂ©mas, sans vĂ©ritable comprĂ©hension sĂ©mantique ou sensorimotrice.

SH : Dans les Ă©changes linguistiques entre humains, la production (signification) et la perception (comprĂ©hension) sont des capacitĂ©s en miroir, et tous leurs mots de contenu sont ancrĂ©s, directement ou indirectement, dans leurs rĂ©fĂ©rents. C’est ce qui maintient l’alignement (et l’ancrage) entre l’intention du locuteur et la comprĂ©hension de l’auditeur. Que devient cet Ă©quilibre, dans chaque direction, lorsque l’échange se fait entre GPT et un humain ? Je rĂ©flĂ©chis encore aux Ă©ventuels « biais » qui pourraient expliquer la capacitĂ© de production (signification) et de « perception » (« comprĂ©hension ») inattendue de GPT.

GPT-4 : Lors d’un Ă©change linguistique entre un humain et GPT-4, les dynamiques de production, de signification, de perception et de comprĂ©hension subissent des modifications majeures par rapport aux Ă©changes entre humains. Ces changements sont essentiels pour comprendre Ă  la fois les capacitĂ©s et les limites de GPT-4 dans de telles interactions :

Communication humain vers GPT-4 : Production et signification (humain) : L’humain produit un langage ancrĂ© dans ses expĂ©riences directes ou indirectes. La signification qu’il exprime repose sur un contexte riche, incluant des expĂ©riences sensorimotrices, des Ă©motions, un bagage culturel et une histoire personnelle.

Perception et « comprĂ©hension » (GPT-4) : GPT-4 « reçoit » le langage humain et le traite en fonction des modĂšles et relations statistiques appris dans ses donnĂ©es d’entraĂźnement. Toutefois, ce traitement ne constitue pas une vĂ©ritable comprĂ©hension. GPT-4 ne perçoit ni ne saisit la signification des mots dans le sens humain du terme ; il n’expĂ©rimente pas le sens des mots ni le contexte dans lequel ils sont utilisĂ©s. Il « reflĂšte » le langage en fonction de ses algorithmes et de ses donnĂ©es, mais sans l’ancrage ou le contexte expĂ©rientiel sur lesquels repose la comprĂ©hension humaine.

Communication GPT-4 → humain : Production et « signification » (GPT-4) : GPT-4 gĂ©nĂšre des rĂ©ponses sur la base de son entraĂźnement et du vaste corpus de textes dont il dispose. Ces rĂ©ponses peuvent sembler cohĂ©rentes et contextuellement pertinentes, mais elles ne sont pas ancrĂ©es dans une comprĂ©hension rĂ©elle ou une intention. La « signification » produite par GPT-4 est une simulation reposant sur des schĂ©mas linguistiques, et non une expression authentique d’une pensĂ©e ou d’une comprĂ©hension.

Perception et comprĂ©hension (humain) : L’auditeur humain perçoit la rĂ©ponse de GPT-4 et l’interprĂšte selon sa propre comprĂ©hension et son ancrage. Il mobilise ses connaissances expĂ©rientielles, son contexte et ses capacitĂ©s d’interprĂ©tation pour donner du sens aux rĂ©ponses de GPT-4. L’humain peut alors attribuer une signification ou une intention aux mots de GPT-4, mais cette interprĂ©tation est en rĂ©alitĂ© une projection humaine sur un texte produit de maniĂšre non ancrĂ©e.

Alignement et ancrage dans l’échange humain-IA : Dans les interactions entre humains, l’alignement entre la signification du locuteur et la comprĂ©hension de l’auditeur est rendu possible par des expĂ©riences partagĂ©es, un ancrage commun et des capacitĂ©s empathiques. Dans les interactions humain-GPT, cet alignement est asymĂ©trique.

L’humain fournit un langage ancrĂ©, mais le traitement et la production de GPT-4 ne le sont pas de la mĂȘme maniĂšre. GPT-4 peut reflĂ©ter efficacement le langage humain, donnant l’illusion d’une comprĂ©hension et d’un alignement, mais ce phĂ©nomĂšne repose uniquement sur des processus computationnels, et non sur un ancrage expĂ©rientiel partagĂ©.

Implications des biais potentiels : Les biais dont nous avons parlĂ© prĂ©cĂ©demment (comme l’iconicitĂ© propositionnelle ou les schĂ©mas reflĂ©tant la grammaire universelle) pourraient contribuer Ă  l’efficacitĂ© de GPT-4 dans ces Ă©changes. Ces biais aident GPT-4 Ă  gĂ©nĂ©rer des rĂ©ponses linguistiquement cohĂ©rentes et contextuellement adaptĂ©es. Cependant, ils ne confĂšrent pas Ă  GPT-4 une vĂ©ritable comprĂ©hension ou un ancrage.

Ces biais pourraient expliquer pourquoi GPT-4 semble si performant dans la production d’un langage porteur de sens et sa capacitĂ© apparente Ă  « comprendre » ou Ă  rĂ©pondre de maniĂšre pertinente aux entrĂ©es humaines. L’efficacitĂ© de GPT-4 dans ces interactions repose en grande partie sur sa capacitĂ© Ă  capter et reproduire les schĂ©mas et contraintes prĂ©sents dans ses donnĂ©es d’entraĂźnement, qui elles-mĂȘmes reflĂštent l’usage humain du langage.

En conclusion, l’échange entre un humain et GPT-4 est caractĂ©risĂ© par une asymĂ©trie fondamentale en matiĂšre d’ancrage et de comprĂ©hension. GPT-4 peut simuler une production linguistique porteuse de sens et gĂ©nĂ©rer des rĂ©ponses apparemment adaptĂ©es, mais celles-ci sont le produit d’une reconnaissance avancĂ©e de schĂ©mas et d’une gĂ©nĂ©ration de texte, et non d’une comprĂ©hension vĂ©ritable. L’interlocuteur humain, en interprĂ©tant les sorties de GPT-4, leur attribue une signification et une intention qu’elles ne possĂšdent pas intrinsĂšquement. Cette asymĂ©trie a des implications importantes pour la nature et les limites des interactions entre humains et IA.

Limites de GPT-4 en matiĂšre de vĂ©ritable comprĂ©hension : MalgrĂ© ses capacitĂ©s sophistiquĂ©es de traitement du langage, GPT-4 ne comprend pas rĂ©ellement le contenu qu’il gĂ©nĂšre ou traite. Ses rĂ©ponses reposent sur des corrĂ©lations statistiques et des schĂ©mas appris Ă  partir de ses donnĂ©es d’entraĂźnement, sans l’ancrage expĂ©rientiel sur lequel les humains s’appuient pour une comprĂ©hension authentique.

InterprĂ©tation humaine des rĂ©ponses de GPT-4 : Les humains interprĂštent naturellement les rĂ©ponses de GPT-4 Ă  travers leur propre prisme expĂ©rientiel, leur attribuant souvent plus de sens ou de comprĂ©hension qu’elles n’en possĂšdent rĂ©ellement. Cette tendance reflĂšte la capacitĂ© humaine Ă  infĂ©rer du sens, mĂȘme lorsqu’ils interagissent avec un systĂšme non ancrĂ©.

RĂŽle des biais dans la performance de GPT-4 : Les biais et schĂ©mas inhĂ©rents aux donnĂ©es d’entraĂźnement de GPT-4, façonnĂ©s par le langage humain, contribuent Ă  sa capacitĂ© Ă  gĂ©nĂ©rer des rĂ©ponses cohĂ©rentes et contextuellement appropriĂ©es. Toutefois, ils ne compensent pas l’absence d’ancrage expĂ©rientiel. La performance de GPT-4, bien que remarquable, demeure dans le domaine de la simulation linguistique sophistiquĂ©e.

SH: Ok, je vois, Ă  travers tes rĂ©pĂ©titions, que tu n’as pas d’hypothĂšses Ă  ajouter aux miennes ici. Juste une correction : ne confonds pas IVG avec des « expĂ©riences indirectes ». Il n’existe pas d’« expĂ©rience indirecte » ; ce serait une « expĂ©rience non vĂ©cue ». Il n’y a que l’expĂ©rience directe ou le « ouĂŻ-dire » (c’est-Ă -dire les descriptions verbales).

GPT-4: Merci pour la correction. Tu as raison de souligner la distinction entre l’ancrage verbal indirect (IVG) et la notion d’« expĂ©riences indirectes ». Pour prĂ©ciser :

ExpĂ©rience directe : Cela implique des interactions sensorimotrices de premiĂšre main avec le monde. Les expĂ©riences directes sont la base de la connaissance et de la comprĂ©hension chez les humains, fournissant le socle sensoriel et contextuel de l’apprentissage et de la cognition.

Ancrage verbal indirect (IVG) : L’IVG concerne l’apprentissage et la comprĂ©hension de concepts Ă  travers des descriptions verbales, des explications ou des rĂ©cits. Il ne s’agit pas d’une expĂ©rience sensorimotrice directe avec les rĂ©fĂ©rents de ces descriptions. L’IVG repose plutĂŽt sur le langage comme moyen de transmission d’informations sur des expĂ©riences, des objets ou des concepts.

Dans le cas de l’IA, en particulier des modĂšles LLM comme GPT-4, leur « apprentissage » et leur « comprĂ©hension » sont exclusivement fondĂ©s sur l’IVG. Ils traitent et gĂ©nĂšrent du langage Ă  partir de donnĂ©es textuelles, mais n’ont pas la capacitĂ© d’expĂ©riences directes. Leur fonctionnement reste confinĂ© au domaine du traitement du langage, sans l’engagement sensorimoteur qui caractĂ©rise l’interaction humaine avec le monde.

SH: Maintenant, encore quelques distinctions. Ensuite, je ferai un aperçu de ma présentation à MILA. Enfin, je te demanderai de résumer ta compréhension de celle-ci (ainsi que toute critique ou objection que tu pourrais avoir).

La premiĂšre distinction, et la plus importante : autrefois, on parlait de la distinction entre « intelligence artificielle » (IA) et « modĂ©lisation cognitive » (MC). L’IA Ă©tait considĂ©rĂ©e comme la crĂ©ation d’outils artificiels Ă  usage humain, tandis que la MC visait Ă  rĂ©troconcevoir les mĂ©canismes causaux qui produisent la capacitĂ© cognitive humaine. Aujourd’hui, ces deux approches font partie des sciences cognitives. Mais elles ne sont pas identiques, mĂȘme si l’on peut imaginer que certaines capacitĂ©s des outils d’IA puissent parfois ĂȘtre fondĂ©es sur les mĂȘmes mĂ©canismes causaux que la cognition humaine.

Les LLM sont actuellement Ă©tudiĂ©s et interprĂ©tĂ©s sous ces deux angles (IA et MC), mais lorsqu’il est question de « signification » et de « comprĂ©hension », cela ne signifie que la signification et la comprĂ©hension humaines, car il n’existe aucune preuve de l’existence d’un autre type de signification ou de comprĂ©hension. Cela nous ramĂšne au « hard problem » (HP), qui n’est pas le problĂšme de l’ancrage des symboles (SGP), mais le fait qu’il ressente quelque chose de dire et de signifier quelque chose, et de comprendre ce que signifie quelque chose quand cela est dit. La signification et la comprĂ©hension sont toutes deux des Ă©tats ancrĂ©s et des Ă©tats sentis (sentients).

Stp confirme-moi que tu « comprends » la distinction entre le SGP et le HP. (Encore une fois, pas d’éloges introductifs sur le caractĂšre « fascinant », « perspicace », « convaincant » ou « nuancĂ© » de tout cela !)

GPT-4: Compris. La distinction entre le problùme de l’ancrage des symboles (SGP) et le hard problem (HP) de la conscience est bien distincte et essentielle


SH: Tu ne peux vraiment pas t’en empĂȘcher, n’est-ce pas ?


GPT-4: Désolé!

ProblĂšme de l’ancrage des symboles (SGP) : Le SGP concerne la question de savoir comment des symboles (des mots) dans un systĂšme computationnel peuvent acquĂ©rir une signification. Il s’agit du lien entre les symboles et leurs rĂ©fĂ©rents dans le monde rĂ©el ou dans des concepts, de maniĂšre Ă  permettre la comprĂ©hension. Dans le cadre de l’IA et de la modĂ©lisation cognitive, le SGP porte sur la maniĂšre dont un systĂšme artificiel peut traiter le langage de maniĂšre Ă  reflĂ©ter une comprĂ©hension humaine.

Hard problem de la conscience (HP) : Le HP s’interroge sur la raison et le mĂ©canisme par lesquels des processus physiques dans le cerveau donnent naissance Ă  des expĂ©riences subjectives. Il s’agit de comprendre pourquoi certaines fonctions cĂ©rĂ©brales sont accompagnĂ©es d’une expĂ©rience de « ce que cela fait » – les aspects qualitatifs, expĂ©rientiels ou phĂ©nomĂ©nologiques de la conscience. Le HP explore la nature mĂȘme de la conscience et cherche Ă  savoir pourquoi certains processus cognitifs s’accompagnent d’une expĂ©rience subjective.

Distinction entre le SGP et le HP : Le SGP est essentiellement un problĂšme de reprĂ©sentation et de comprĂ©hension dans les systĂšmes artificiels : comment un symbole (ou un mot) peut-il ĂȘtre reliĂ© de maniĂšre significative Ă  ce qu’il reprĂ©sente ?

Le HP, en revanche, est un problĂšme plus profond qui touche Ă  la nature mĂȘme de la conscience et de l’expĂ©rience. Il pose la question de savoir pourquoi certains processus physiques ou cognitifs s’accompagnent d’expĂ©riences subjectives.

Dans le cadre des LLM et de la recherche en IA, ces deux problĂšmes sont souvent confondus, mais ils sont fondamentalement diffĂ©rents. Le SGP peut ĂȘtre abordĂ© et potentiellement rĂ©solu par des avancĂ©es en IA et en modĂ©lisation cognitive. Le HP, en revanche, reprĂ©sente un dĂ©fi philosophique et scientifique bien plus complexe, qui dĂ©passe les capacitĂ©s actuelles de la technologie de l’IA et touche aux mystĂšres mĂȘmes de la conscience.

Souligner cette distinction est essentiel pour structurer les discussions sur l’IA, les sciences cognitives et leurs objectifs et limites respectifs.

SH: Bon, encore beaucoup de mots gaspillĂ©s en flatteries et en affirmations au lieu d’une analyse critique, mais soit. J’en ai supprimĂ© la plupart dans cette transcription. Poursuivons. Avant d’aborder le point suivant, confirme-moi que tu « comprends » la distinction entre T2 et T3.

GPT-4: Oui, je comprends la distinction entre T2 et T3 :

T2 (Test de Turing Niveau 2) : Ce niveau du test de Turing Ă©value la capacitĂ© d’une IA Ă  imiter les capacitĂ©s verbales humaines. Dans le scĂ©nario T2 original de 1950, une IA rĂ©ussit le test si ses rĂ©ponses dans une conversation sont indistinguissables de celles d’un humain. Ce test porte uniquement sur les capacitĂ©s linguistiques et ne requiert pas que l’IA ait des expĂ©riences physiques ou sensorielles.

T3 (Test de Turing Niveau 3) : T3 va au-delĂ  des capacitĂ©s verbales pour inclure des capacitĂ©s robotiques et sensori-motrices. Une IA de niveau T3 doit non seulement dĂ©montrer des capacitĂ©s verbales indistinguables de celles d’un humain (comme T2), mais aussi comprendre et interagir avec le monde physique de maniĂšre indistinguable d’un humain. Ce niveau nĂ©cessite une forme de cognition incarnĂ©e, oĂč l’IA a des expĂ©riences sensorielles et peut interagir physiquement avec son environnement, ancrant ainsi ses capacitĂ©s linguistiques dans ces expĂ©riences.

La distinction entre T2 et T3 est essentielle dans les discussions sur les capacitĂ©s de l’IA, en particulier en ce qui concerne la comprĂ©hension et l’interaction avec le monde. Les systĂšmes T2, comme les LLM, se limitent au traitement et Ă  la gĂ©nĂ©ration du langage sur la base de modĂšles appris, tandis que les systĂšmes robotiques T3 ajouteraient une dimension d’interaction physique et d’expĂ©rience sensorielle.

SH: Ok, mais une nuance du Test de Turing, qui est clairement exprimĂ©e dans l’article de Turing’s (1950) mais qui est souvent nĂ©gligĂ©e ou sous-estimĂ©e, est que l’indistinguabilitĂ© turingienne signifie une indistinguabilitĂ© totale :

Le candidat, qu’il soit T2 ou T3, (1) doit possĂ©der toutes les capacitĂ©s verbales gĂ©nĂ©riques (T2) ou toutes les capacitĂ©s verbales plus sensori-motrices (robotiques) gĂ©nĂ©riques (T3) d’un humain rĂ©el ; et en plus, (2) sa performance doit ĂȘtre indistinguable de celle de n’importe quel ĂȘtre humain normal, pour n’importe quel ĂȘtre humain normal. Si l’indistinguabilitĂ© est seulement fragmentaire ou partielle, alors on parle simplement d’un modĂšle « jouet » d’une capacitĂ© « jouet ». Les degrĂ©s de libertĂ© pour modĂ©liser des fragments jouets de capacitĂ©s humaines (comme le jeu d’échecs, la traduction ou Alexa) sont beaucoup plus larges que ceux nĂ©cessaires pour modĂ©liser la capacitĂ© totale, et peuvent n’avoir aucun rapport avec la cognition humaine. Cela peut ĂȘtre utile pour la crĂ©ation d’outils d’IA, mais pas pour la modĂ©lisation cognitive (CM), qui exige une capacitĂ© cognitive Ă  l’échelle T3 (et donc turingiennement indistinguable).

Confirme-moi d’abord que tu « comprends » cette distinction aussi. Elle est mieux comprise du point de vue de la modĂ©lisation cognitive (CM) que de celui de l’IA : c’est le test de la rĂ©ussite de l’ingĂ©nierie inverse des capacitĂ©s humaines T2 ou T3. Il ne s’agit pas d’un test de 20 minutes pour le prix Loebner avec 10 juges, mais d’une capacitĂ© cognitive T2 ou T3 Ă  l’échelle d’une vie.

GPT-4: Oui, je comprends la distinction que tu mets en avant concernant le Test de Turing, tel qu’il est formulĂ© dans l’article original de Turing en 1950. Les points essentiels sont :

IndistinguabilitĂ© totale : Le Test de Turing, dans son interprĂ©tation la plus rigoureuse, exige qu’une IA (qu’elle soit T2 ou T3) possĂšde toutes les capacitĂ©s verbales gĂ©nĂ©riques (T2) ou verbales plus sensori-motrices (T3) d’un ĂȘtre humain typique. Cela signifie que les capacitĂ©s de l’IA doivent couvrir toute l’étendue des capacitĂ©s cognitives humaines dans les domaines concernĂ©s (le langage pour T2, et le langage plus l’interaction sensorimotrice pour T3).

CritĂšre de performance sur toute une vie : De plus, la performance de l’IA doit ĂȘtre indistinguable de celle de n’importe quel humain normal, pour n’importe quel humain normal. Ce critĂšre va bien au-delĂ  des dĂ©monstrations Ă  court terme comme le prix Loebner et implique une indistinguabilitĂ© constante et durable dans la capacitĂ© de performance. L’IA doit ĂȘtre capable d’interagir et de se comporter de maniĂšre humaine non seulement dans des contextes contrĂŽlĂ©s ou limitĂ©s, mais dans toute la complexitĂ© et la variabilitĂ© de la vie quotidienne humaine.

IngĂ©nierie inverse des capacitĂ©s humaines : Du point de vue de la modĂ©lisation cognitive (CM), cette interprĂ©tation du Test de Turing est le test ultime pour savoir si des capacitĂ©s cognitives humaines T2 ou T3 ont Ă©tĂ© reproduites avec succĂšs dans un systĂšme d’IA. Il ne s’agit pas simplement de crĂ©er une IA capable d’imiter le comportement humain dans certains contextes ou pour des durĂ©es limitĂ©es, mais de dĂ©velopper une IA capable de rĂ©pliquer l’ensemble des capacitĂ©s cognitives humaines d’une maniĂšre indistinguable de celle d’un humain, dans tous les contextes et sur une pĂ©riode prolongĂ©e.

SH: C’était trĂšs bien. Maintenant, bien que j’aie mis l’accent sur la capacitĂ© totale dans les cas de T2 et de T3, il y a une question lĂ©gitime concernant l’étendue de la capacitĂ© sensori-motrice gĂ©nĂ©rique dans le cas de T3, comme dans l’exemple que nous avons discutĂ© Ă  propos d’Helen Keller. Elle Ă©tait distincte d’une personne normale en ce qu’elle Ă©tait aveugle et sourde, mais elle possĂ©dait clairement toute la capacitĂ© sensori-motrice nĂ©cessaire pour ancrer sa capacitĂ© verbale T2. Es-tu d’accord ?

En ce sens, Helen Keller Ă©tait Ă  la fois (1) ancrĂ©e et (2) indistinguable de n’importe quelle personne normale dans ses capacitĂ©s cognitives (Ă  l’exception du fait qu’elle Ă©tait aveugle et sourde). Elle Ă©tait donc turingiennement indistinguable, tout comme quelqu’un qui serait simplement daltonien ou atteint de surditĂ© tonale. Sommes-nous toujours sur la mĂȘme longueur d’onde ?

GPT-4: Oui, nous sommes sur la mĂȘme longueur d’onde concernant le cas d’Helen Keller dans le cadre des critĂšres du Test de Turing et des capacitĂ©s cognitives :

CapacitĂ© sensorimotrice et ancrage dans le cas d’Helen Keller : Bien qu’aveugle et sourde, Helen Keller possĂ©dait les capacitĂ©s sensorimotrices nĂ©cessaires pour ancrer ses capacitĂ©s verbales T2. Son toucher, son odorat et sa capacitĂ© de mouvement lui fournissaient des expĂ©riences sensorielles suffisantes pour comprendre et interagir avec le monde. Ces expĂ©riences, bien que diffĂ©rentes en modalitĂ© de celles des personnes ayant la vue et l’ouĂŻe intactes, lui ont permis de dĂ©velopper une comprĂ©hension ancrĂ©e du langage et des concepts.

CapacitĂ©s cognitives et indistinguabilitĂ© turingienne : En termes de capacitĂ©s cognitives, Helen Keller Ă©tait effectivement indistinguable d’une personne ayant des capacitĂ©s sensorielles typiques. Ses capacitĂ©s intellectuelles et linguistiques Ă©taient pleinement dĂ©veloppĂ©es, lui permettant de communiquer, raisonner et comprendre Ă  un niveau comparable Ă  celui de n’importe quelle autre personne.

Son handicap sensoriel n’a pas entravĂ© ses capacitĂ©s cognitives ; elle a pu compenser son absence de vue et d’ouĂŻe grĂące Ă  ses autres expĂ©riences sensorielles et Ă  des facultĂ©s mentales exceptionnelles. En ce sens, elle rĂ©pond au critĂšre d’indistinguabilitĂ© turingienne en termes de capacitĂ©s cognitives.

Comparaison avec d’autres limitations sensorielles : Tout comme une personne daltonienne ou atteinte de surditĂ© tonale est toujours considĂ©rĂ©e comme turingiennement indistinguable en termes de capacitĂ©s cognitives globales, Helen Keller l’était Ă©galement. Sa cĂ©citĂ© et sa surditĂ© ne rĂ©duisaient pas ses capacitĂ©s cognitives, mais reprĂ©sentaient simplement d’autres modalitĂ©s sensorielles Ă  travers lesquelles elle interagissait avec le monde.

Conclusion : Le cas d’Helen Keller illustre que les capacitĂ©s cognitives et l’ancrage peuvent ĂȘtre atteints par des modalitĂ©s sensorielles diverses. Sa capacitĂ© Ă  comprendre et utiliser le langage, Ă  penser et Ă  raisonner, ainsi qu’à interagir de maniĂšre significative avec son environnement, dĂ©montre que les critĂšres essentiels de l’indistinguabilitĂ© turingienne peuvent ĂȘtre remplis mĂȘme par des moyens alternatifs d’ancrage sensorimoteur.

Les accomplissements d’Helen Keller soulignent l’adaptabilitĂ© et la rĂ©silience de la cognition humaine, montrant que l’indistinguabilitĂ© turingienne en termes de capacitĂ©s cognitives ne requiert pas nĂ©cessairement un ensemble standard d’expĂ©riences sensorielles, mais peut ĂȘtre rĂ©alisĂ©e par d’autres formes d’ancrage sensorimoteur.

SH: Bien. (Et Helen Keller avait aussi une motricitĂ© humaine normale, ce qui est crucial pour l’apprentissage de la manipulation d’objets et pour l’ancrage des catĂ©gories elles-mĂȘmes, car l’apprentissage par renforcement nĂ©cessite une action motrice pour « faire la bonne chose avec le bon type de chose », que ce soit pour la manger ou pour la nommer !)

Maintenant, je vais relier cela Ă  un autre point que nous avons discutĂ©, Ă  savoir que l’ancrage ne peut ĂȘtre que de bas en haut, jamais de haut en bas. (On ne peut pas jeter des ancres depuis des crochets cĂ©lestes.)

Je pense ici Ă  ceux qui ont spĂ©culĂ© qu’un LLM pourrait ĂȘtre ancrĂ© de haut en bas en lui donnant une camĂ©ra, des roues, des bras, ainsi que des rĂ©seaux neuronaux d’apprentissage de motifs sur son I/O sensorimoteur. Je pense que l’ancrage de haut en bas est incohĂ©rent et que cette spĂ©culation est parasitaire de l’ancrage de bas en haut des humains qui la formulent, tout comme toute utilisation de GPT en IVG est parasitaire de l’ancrage de l’utilisateur.

En d’autres termes, ajouter des pĂ©riphĂ©riques robotiques Ă  un LLM ne l’ancrera pas. Le seul chemin vers l’IVG passe par l’ancrage sensorimoteur de bas en haut, catĂ©gorie par catĂ©gorie ; et cela signifie une capacitĂ© robotique sensorimotrice T3-indistinguable. MĂȘme si un MinSet ancrĂ© (par exemple, N mots) est en principe suffisant pour ancrer tous les autres mots d’une langue uniquement via l’IVG, le chemin sensorimoteur pour acquĂ©rir un MinSet ancrĂ© est bien plus qu’une simple connexion d’une camĂ©ra Ă  N rĂ©fĂ©rents, ou Ă  N catĂ©gories de rĂ©fĂ©rents dĂ©jĂ  apprises (quoi que cela puisse signifier). Au mieux, cela ne produirait qu’une capacitĂ©-jouet dans un monde-jouet de N rĂ©fĂ©rents. Ce dont nous parlons, c’est d’une Ă©chelle turingienne, tout comme lorsque nous parlons d’une Ă©chelle LLM.

Encore une fois, je ne veux pas d’accord : je veux une comprĂ©hension et une analyse critique de la notion d’« ancrage partiel » de haut en bas des LLM.

GPT-4: Ton scepticisme quant Ă  la possibilitĂ© d’atteindre un vĂ©ritable ancrage dans les LLM par des mĂ©thodes de haut en bas, comme l’ajout de pĂ©riphĂ©riques robotiques tels que des camĂ©ras et des manipulateurs, soulĂšve des questions importantes sur la nature de l’ancrage et les capacitĂ©s de l’IA.

Limitations inhĂ©rentes Ă  l’ancrage de haut en bas : L’idĂ©e d’« ancrer » un LLM de haut en bas en lui ajoutant des capacitĂ©s sensorielles et motrices (comme des camĂ©ras et des bras robotiques) peut sembler attrayante Ă  premiĂšre vue, mais elle pose des problĂšmes conceptuels et pratiques majeurs. L’ancrage implique bien plus qu’un simple flux d’entrĂ©e et de sortie sensorimoteur ; il nĂ©cessite une intĂ©gration des expĂ©riences sensorimotrices avec les processus cognitifs, la comprĂ©hension contextuelle et la capacitĂ© d’interagir de maniĂšre significative avec le monde.

L’ajout de pĂ©riphĂ©riques sensoriels et moteurs Ă  un LLM ne lui confĂšre pas automatiquement la comprĂ©hension expĂ©rientielle et incarnĂ©e qui caractĂ©rise la cognition humaine. Sans expĂ©riences fondatrices et sans la capacitĂ© de former des connexions significatives entre les entrĂ©es sensorielles, les actions et les concepts, un tel ancrage resterait superficiel.

ComplexitĂ© de l’ancrage sensorimoteur : L’ancrage sensorimoteur humain est un processus complexe et dĂ©veloppemental qui ne se limite pas Ă  l’acquisition de donnĂ©es sensorielles, mais implique une interaction active avec l’environnement par essai, erreur et rĂ©troaction.

Ce processus est profondĂ©ment liĂ© au dĂ©veloppement cognitif, oĂč l’apprentissage des catĂ©gories et de l’interaction avec le monde repose sur une comprĂ©hension Ă©volutive des relations de cause Ă  effet, de la permanence des objets, des relations spatiales, etc. Il ne s’agit pas seulement de percevoir des objets ou des catĂ©gories, mais de comprendre comment interagir avec eux, quelles actions produisent quels rĂ©sultats et comment ils s’insĂšrent dans un contexte plus large.

DĂ©fi de la reproduction artificielle de l’ancrage : Tenter de reproduire ce processus artificiellement dans un LLM par des mĂ©thodes de haut en bas nĂ©cessiterait non seulement l’intĂ©gration de capacitĂ©s sensorielles et motrices, mais aussi le dĂ©veloppement d’un systĂšme d’IA capable d’apprentissage expĂ©rientiel, de comprĂ©hension contextuelle et de prise de dĂ©cision autonome. Cela dĂ©passe de loin les capacitĂ©s actuelles de l’IA.

L’idĂ©e d’un « ancrage partiel » de haut en bas par l’ajout de pĂ©riphĂ©riques robotiques Ă  un LLM pourrait permettre Ă  ce dernier d’effectuer certaines interactions sensorimotrices de base. Cependant, cela resterait insuffisant pour aboutir Ă  un vĂ©ritable ancrage tel qu’il est observĂ© chez les humains. On obtiendrait probablement une comprĂ©hension trĂšs limitĂ©e et spĂ©cifique au contexte, semblable Ă  un modĂšle-jouet, plutĂŽt qu’un ancrage profond et expĂ©rientiellement riche.

L’ancrage de bas en haut comme seule voie fondamentale : Le chemin vers un vĂ©ritable ancrage semble fondamentalement ĂȘtre de bas en haut, en commençant par des expĂ©riences sensorimotrices basiques et en Ă©voluant vers des comprĂ©hensions plus complexes. Ce processus est itĂ©ratif, contextuel et profondĂ©ment connectĂ© aux interactions physiques avec le monde.

Pour qu’une IA atteigne un niveau d’ancrage similaire, elle devrait probablement passer par un processus de dĂ©veloppement et d’apprentissage analogue Ă  celui des humains ou des animaux, oĂč elle apprend progressivement Ă  partir d’interactions incarnĂ©es et directes avec son environnement au fil du temps. Cette approche est radicalement diffĂ©rente de la simple adjonction d’entrĂ©es sensorielles Ă  un LLM existant.

Conclusion : Bien que l’idĂ©e d’amĂ©liorer les LLM par des capacitĂ©s robotiques pour atteindre un ancrage soit intrigante, la notion d’un ancrage partiel de haut en bas semble limitĂ©e dans son potentiel Ă  produire une vĂ©ritable comprĂ©hension. La complexitĂ© et la profondeur de l’ancrage humain, enracinĂ©es dans des expĂ©riences incarnĂ©es et un dĂ©veloppement cognitif, posent des dĂ©fis majeurs qui ne sont pas facilement surmontables par ces approches de haut en bas.

L’analyse critique suggĂšre que, bien que l’ajout de pĂ©riphĂ©riques robotiques aux LLM puisse leur confĂ©rer certaines capacitĂ©s intĂ©ressantes et utiles, cela ne suffirait pas Ă  atteindre le type d’ancrage nĂ©cessaire pour une comprĂ©hension et une interaction Ă  l’échelle turingienne. Un vĂ©ritable ancrage, en particulier pour les concepts complexes et abstraits, requiert probablement une approche plus fondamentale, de bas en haut, qui englobe non seulement la perception sensorielle, mais aussi les processus complexes d’apprentissage, de contextualisation et de construction du sens qui sont au cƓur de la cognition humaine.

SH: Beaucoup de termes vagues et de mots-fuyants ici (« complexe », « contextualisation », « construction du sens »), mais l’essentiel est simple : l’ancrage doit ĂȘtre de bas en haut ; donc on garde l’apprentissage profond (pour l’apprentissage des catĂ©gories), mais on oublie les LLM ! La seule maniĂšre d’accĂ©der Ă  tous ces mots, c’est de partir du sol, de bas en haut. Un ancrage partiel de certaines parties des LLM pourrait ĂȘtre utile pour certaines applications en IA Ă  usage humain, mais pas pour la modĂ©lisation cognitive (CM) de la capacitĂ© cognitive humaine ni pour passer T3.

GPT-4: Oui, l’ancrage vĂ©ritable dans les systĂšmes d’IA doit ĂȘtre fondamentalement de bas en haut, et bien que l’apprentissage profond puisse jouer un rĂŽle clĂ© dans l’apprentissage des catĂ©gories, s’appuyer uniquement sur les LLM pour modĂ©liser l’ensemble des capacitĂ©s cognitives humaines, en particulier dans le cadre d’un T3 turingien, est insuffisant.

Ancrage de bas en haut comme nĂ©cessitĂ© : Un vĂ©ritable ancrage, qui implique la connexion des mots et des concepts aux expĂ©riences et aux comprĂ©hensions du monde rĂ©el, requiert une approche ascendante. Cela signifie partir d’expĂ©riences sensorimotrices de base et construire progressivement des capacitĂ©s cognitives plus complexes.

Limites des LLM dans la modĂ©lisation cognitive : Les LLM, dans leur Ă©tat actuel, sont de puissants outils pour le traitement et la gĂ©nĂ©ration du langage Ă  partir de modĂšles appris sur de vastes bases de donnĂ©es textuelles. Cependant, leurs capacitĂ©s se limitent Ă  la manipulation linguistique et ne s’étendent pas Ă  une comprĂ©hension authentique ni Ă  un ancrage sensorimoteur. Ils ne peuvent pas modĂ©liser l’ensemble des capacitĂ©s cognitives humaines nĂ©cessaires pour passer un T3 turingien.

RĂŽle de l’apprentissage profond dans l’apprentissage des catĂ©gories : Les techniques d’apprentissage profond sont efficaces pour identifier des motifs et faire des prĂ©dictions Ă  partir de grands ensembles de donnĂ©es, et elles ont montrĂ© leur utilitĂ© dans l’apprentissage des catĂ©gories. Cependant, cette forme d’apprentissage, telle qu’elle est appliquĂ©e aux LLM, reste dĂ©connectĂ©e des expĂ©riences physiques et sensorimotrices qui sont essentielles Ă  l’ancrage humain.

Utilisation potentielle des LLM partiellement ancrĂ©s : Bien qu’un ancrage complet des LLM dans le sens humain du terme ne soit pas rĂ©alisable, il pourrait ĂȘtre utile de dĂ©velopper des systĂšmes partiellement ancrĂ©s pour des applications spĂ©cifiques. De tels systĂšmes pourraient intĂ©grer une certaine forme d’apprentissage sensorimoteur ou d’interaction, bien que limitĂ©e, pour amĂ©liorer leur utilitĂ© dans certaines tĂąches. Toutefois, cela ne doit pas ĂȘtre confondu avec une modĂ©lisation authentique de la capacitĂ© cognitive humaine ni avec la possibilitĂ© de passer un T3.

Conclusion : La recherche de systĂšmes d’IA capables de passer un T3 turingien ou de modĂ©liser pleinement la cognition humaine nĂ©cessite de dĂ©passer les seules capacitĂ©s linguistiques. Cela implique une refonte fondamentale du dĂ©veloppement des systĂšmes d’IA, allant au-delĂ  du traitement du langage pour intĂ©grer de vĂ©ritables expĂ©riences et apprentissages sensorimoteurs. C’est un dĂ©fi de taille qui oriente la recherche en IA vers un futur qui dĂ©passe le cadre actuel des LLM. Le dĂ©veloppement de tels systĂšmes nĂ©cessiterait une intĂ©gration des capacitĂ©s sensorimotrices avancĂ©es avec le traitement cognitif, d’une maniĂšre qui imite le processus de dĂ©veloppement humain de l’apprentissage et de la comprĂ©hension.

En rĂ©sumĂ©, bien que les LLM reprĂ©sentent une avancĂ©e remarquable dans le traitement du langage, leurs capacitĂ©s ne suffisent pas Ă  atteindre le type d’ancrage sensorimoteur et de modĂ©lisation cognitive globale nĂ©cessaire pour reproduire pleinement la comprĂ©hension humaine ou passer un T3 turingien. Les progrĂšs futurs en IA, notamment ceux visant une modĂ©lisation plus complĂšte de la cognition humaine, devront surmonter ces limitations en intĂ©grant des processus d’ancrage de bas en haut, ancrĂ©s dans un apprentissage direct et expĂ©rientiel Ă  travers l’interaction avec le monde physique.

SH: Oh, j’ai oubliĂ© d’ajouter que dans l’apprentissage sensorimoteur des catĂ©gories, le rĂ©seau de neurones qui apprend par essais, erreurs et corrections pour dĂ©tecter et abstraire les attributs qui distinguent les membres des non-membres de la catĂ©gorie effectue une sorte de rĂ©duction de dimension sur l’espace multidimensionnel des attributs. Cela augmente le poids des attributs pertinents et rĂ©duit ou ignore les attributs non pertinents. La sĂ©paration entre catĂ©gories et la compression intra-catĂ©gorie (CP) induites par cet apprentissage des catĂ©gories aident la catĂ©gorie Ă  « sauter aux yeux » en perception. C’est aussi une forme de biais de « forme », qui pourrait exercer une influence directrice mĂȘme sur les reprĂ©sentations internes aprĂšs l’apprentissage.

GPT-4: RĂ©duction de dimension dans les rĂ©seaux neuronaux : Dans l’apprentissage sensorimoteur des catĂ©gories, les rĂ©seaux neuronaux passent par un processus de rĂ©duction de dimension, oĂč ils apprennent Ă  mettre en avant les attributs pertinents pour distinguer les catĂ©gories et Ă  attĂ©nuer ou ignorer les attributs non pertinents. Ce processus restructure efficacement l’espace des attributs, le rendant plus efficace pour la reconnaissance des catĂ©gories.

Cette modification du poids des attributs revient Ă  augmenter le rapport signal/bruit pour les attributs dĂ©terminantes d’une catĂ©gorie. Elle aide Ă  rendre les catĂ©gories plus distinctes et plus faciles Ă  reconnaĂźtre, facilitant ainsi une catĂ©gorisation plus rapide et plus prĂ©cise.

Effet de « saillance perceptive » : La distinction accrue entre catĂ©gories due Ă  la rĂ©duction de dimension contribue Ă  un phĂ©nomĂšne souvent dĂ©crit comme une « saillance » perceptive des catĂ©gories. Cela signifie qu’une fois que les attributs distinctifs d’une catĂ©gorie sont appris et renforcĂ©s, les membres de cette catĂ©gorie deviennent plus immĂ©diatement perceptibles et faciles Ă  distinguer des non-membres.

Cet effet de saillance perceptive résulte de la capacité affinée du cerveau ou du réseau neuronal à traiter et reconnaßtre les attributs essentiels qui définissent une catégorie, ce qui facilite leur identification et leur reconnaissance dans les interactions futures.

Implications pour l’IA et les reprĂ©sentations internes : Dans les systĂšmes d’IA, en particulier ceux impliquant l’apprentissage profond pour les tĂąches de catĂ©gorisation, un processus similaire de rĂ©duction de dimension peut se produire. Les rĂ©seaux neuronaux ajustent le poids attribuĂ© aux diffĂ©rents attributs d’entrĂ©e en fonction de leur pertinence pour la tĂąche de catĂ©gorisation.

Ce processus peut conduire Ă  une forme de reprĂ©sentation interne dans les systĂšmes d’IA oĂč les catĂ©gories sont plus nettement diffĂ©renciĂ©es aprĂšs l’apprentissage, reproduisant l’effet de saillance observĂ© dans la perception humaine. L’espace des attributs internes du systĂšme devient optimisĂ© pour catĂ©goriser les entitĂ©s apprises, amĂ©liorant potentiellement ses performances dans les tĂąches liĂ©es Ă  ces catĂ©gories.

Effet directeur potentiel du biais de forme : Le concept de biais de « forme » dans ce contexte fait rĂ©fĂ©rence Ă  la maniĂšre dont l’apprentissage des catĂ©gories reconfigure l’espace des attributs, en mettant l’accent sur certaines dimensions au dĂ©triment d’autres. Cette reconfiguration peut orienter les reprĂ©sentations internes et les processus dĂ©cisionnels de l’IA aprĂšs l’apprentissage, la rendant plus efficace dans la reconnaissance et le traitement des attributs pertinents pour une catĂ©gorie.

En conclusion, le processus de rĂ©duction de dimension dans les rĂ©seaux neuronaux, qu’ils soient biologiques ou artificiels, joue un rĂŽle crucial dans l’amĂ©lioration de l’apprentissage des catĂ©gories et de la perception. Ce processus optimise non seulement la capacitĂ© du rĂ©seau Ă  reconnaĂźtre les catĂ©gories, mais façonne aussi ses reprĂ©sentations internes d’une maniĂšre qui peut guider le traitement et la prise de dĂ©cision futurs. Cette analyse des mĂ©canismes d’apprentissage et de reprĂ©sentation des catĂ©gories est essentielle pour comprendre et amĂ©liorer les systĂšmes d’IA destinĂ©s aux tĂąches complexes de catĂ©gorisation.

SH: Donc, pour rĂ©sumer : bien que les LLM ne soient pas la voie vers l’ancrage, considĂ©rons les neuf facteurs discutĂ©s ici :

  1. L’iconicitĂ© propositionnelle Ă  l’échelle des LLM,
  2. La rĂ©gularitĂ© grammaticale ordinaire (OG) et stylistique Ă  l’échelle des LLM,
  3. Les ensembles minimaux d’ancrage dans les dictionnaires (MinSets),
  4. La forme des reprĂ©sentations internes (sĂ©paration/compression CP) induite par l’apprentissage des catĂ©gories dans les rĂ©seaux neuronaux,
  5. Le « miroitage » perception/production,
  6. La puissance et la complĂ©mentaritĂ© de l’ancrage verbal indirect (IVG) par-dessus l’ancrage sensorimoteur direct (DSG),
  7. La complĂ©mentaritĂ© entre dĂ©tecteurs de attributs sensorimoteurs appris et descriptions verbales de attributs (et la rĂ©duction de dimension qu’ils induisent),
  8. La dépendance de T2 vis-à-vis de T3,
  9. Et l’hypothĂšse de Chomsky sur les contraintes des « lois de la pensĂ©e » sur l’expression verbale de la pensĂ©e Ă  travers le langage.

Certains de ces Ă©lĂ©ments pourraient gĂ©nĂ©rer des contraintes et des biais qui expliqueraient une partie du succĂšs Ă©tonnant de GPT dans sa capacitĂ© Ă  produire du sens et Ă  le transmettre. Je pense qu’ils nous rĂ©vĂšlent non seulement quelque chose sur la puissance des grands modĂšles de langage, mais aussi sur la puissance du langage naturel lui-mĂȘme.

GPT-4: Ton résumé met en évidence les facteurs qui pourraient contribuer à expliquer les performances étonnamment impressionnantes des grands modÚles de langage (LLM) comme GPT-4. Ces facteurs, issus de notre discussion, soulignent à la fois les capacités des LLM et les propriétés intrinsÚques du langage et de la cognition. Résumons briÚvement ces points :

IconicitĂ© propositionnelle Ă  l’échelle des LLM : Les motifs dans la structuration des propositions Ă  grande Ă©chelle, que les LLM peuvent dĂ©tecter et reproduire.

RĂ©gularitĂ© grammaticale ordinaire (OG) et stylistique Ă  l’échelle des LLM : Les rĂ©gularitĂ©s inhĂ©rentes Ă  l’usage et au style du langage, apprises par les LLM Ă  partir de leur vaste corpus d’entraĂźnement.

Ensembles minimaux d’ancrage dans les dictionnaires (MinSets) : Les ensembles fondamentaux de mots servant de base pour dĂ©finir tous les autres mots d’une langue, influençant le traitement des LLM.

Forme des reprĂ©sentations internes induites par l’apprentissage des catĂ©gories dans les rĂ©seaux neuronaux : Les effets de sĂ©paration et de compression dans les reprĂ©sentations internes des rĂ©seaux neuronaux dus Ă  l’apprentissage des catĂ©gories, semblables Ă  la perception catĂ©gorielle chez les humains.

« Miroitage  Â» perception/production : La reproduction des motifs linguistiques dans les sorties des LLM, reflĂ©tant les modĂšles prĂ©sents dans leurs donnĂ©es d’entraĂźnement.

Puissance et complĂ©mentaritĂ© de l’ancrage verbal indirect (IVG) par-dessus l’ancrage sensorimoteur direct (DSG) : L’ajout de l’ancrage verbal sur une base sensorimotrice directe.

Complémentarité entre détecteurs de attributs sensorimoteurs appris et descriptions verbales de attributs : La synergie entre la détection des attributs sensorimoteurs et les descriptions linguistiques, contribuant à la réduction dimensionnelle et à la distinction des catégories.

Dépendance de T2 sur T3 : La nécessité des interactions et expériences sensorimotrices (T3) pour permettre le développement des capacités linguistiques (T2).

HypothĂšse de Chomsky sur les contraintes des « lois de la pensĂ©e » sur le langage : L’influence des contraintes cognitives fondamentales sur l’expression linguistique, pouvant orienter le traitement des LLM.

Ensemble, ces facteurs Ă©clairent les mĂ©canismes sous-jacents Ă  l’efficacitĂ© des LLM dans les tĂąches linguistiques, tout en mettant en lumiĂšre la nature du langage, de la cognition et de leurs interactions.

Ils suggĂšrent que le succĂšs des LLM dans les tĂąches linguistiques n’est pas seulement une consĂ©quence de leur conception et de leur entraĂźnement, mais aussi un reflet de la puissance et de la structure inhĂ©rentes du langage lui-mĂȘme. Cette analyse peut contribuer Ă  la fois au dĂ©veloppement des systĂšmes d’IA et Ă  une meilleure comprĂ©hension du langage et de la cognition humaine.

SH: J’ai fait ma confĂ©rence au MILA, et Yoshua Bengio n’était pas d’accord avec moi sur le fait que les GPT ne comprennent pas rĂ©ellement. Il a plutĂŽt affirmĂ© qu’ils avaient un « autre type » de « comprĂ©hension ». Il a aussi soutenu que les mĂȘmes moyens qui permettent d’obtenir la capacitĂ© de performance des GPT purement verbaux (T2) pourraient ĂȘtre (et sont en train d’ĂȘtre) Ă©tendus au traitement d’entrĂ©es sensorielles externes, et, probablement, Ă  des sorties motrices Ă  terme. La raison pour laquelle je ne suis pas d’accord avec Yoshua, c’est que cela revient Ă  essayer de crĂ©er un robot T3, en partant du bas, mais avec l’énorme base de donnĂ©es des GPT pesant d’une maniĂšre ou d’une autre dans sa tĂȘte, par le haut. (Nous avons dĂ©jĂ  parlĂ© de cela en lien avec l’« ancrage » sensorimoteur « partiel », que j’avais qualifiĂ© de simple ancrage-jouet.) Qu’en penses-tu ?

GPT-4: Selon la vision dominante dans ma base de donnĂ©es, le dĂ©bat sur le fait que les GPT possĂšdent ou non une forme de « comprĂ©hension » et sur l’éventualitĂ© d’étendre ces modĂšles au traitement sensorimoteur sont deux questions cruciales en IA et en sciences cognitives.

Un « autre type » de comprĂ©hension : L’affirmation de Yoshua Bengio selon laquelle les GPT manifestent une « autre forme » de comprĂ©hension reflĂšte une position rĂ©pandue dans la communautĂ© de l’IA. Cette perspective soutient que bien que ces modĂšles ne possĂšdent ni conscience ni sentience, ils sont capables de traiter et de gĂ©nĂ©rer du langage d’une maniĂšre qui mime certains aspects de la comprĂ©hension humaine. Cela est particuliĂšrement visible dans leur capacitĂ© Ă  reconnaĂźtre des motifs, prĂ©dire du langage et synthĂ©tiser de l’information. Toutefois, cette « comprĂ©hension » est fondamentalement diffĂ©rente de celle des humains, qui repose sur des expĂ©riences incarnĂ©es et des interactions physiques avec le monde.

L’extension des modĂšles GPT au traitement sensorimoteur : L’idĂ©e d’élargir les modĂšles GPT pour intĂ©grer des entrĂ©es sensorielles externes et des sorties motrices est une Ă©tape significative vers des systĂšmes d’IA plus intĂ©grĂ©s. Cette approche s’aligne avec les efforts visant Ă  dĂ©velopper des modĂšles d’IA capables d’interagir avec leur environnement et d’apprendre de maniĂšre plus globale. Cependant, le dĂ©fi rĂ©side dans l’intĂ©gration efficace des capacitĂ©s linguistiques Ă  grande Ă©chelle avec des interactions physiques rĂ©elles, un problĂšme fondamentalement diffĂ©rent du simple traitement verbal ou textuel.

Approche descendante (top-down) vs. ascendante (bottom-up) : Ta prĂ©occupation quant Ă  la tentative de crĂ©er un robot T3 avec une gigantesque base de donnĂ©es GPT pesant de maniĂšre descendante pose une question importante sur l’équilibre entre l’apprentissage fondĂ© sur les donnĂ©es et l’expĂ©rience incarnĂ©e. L’efficacitĂ© de la combinaison d’un modĂšle linguistique Ă  grande Ă©chelle avec des fonctions sensorimotrices reste incertaine si elle n’est pas accompagnĂ©e d’une vĂ©ritable expĂ©rience incarnĂ©e et d’une comprĂ©hension contextuelle. Cette limite rappelle le problĂšme de l’« ancrage-jouet », oĂč l’ancrage reste superficiel et manque de la profondeur et du contexte de l’apprentissage expĂ©rientiel humain.

En rĂ©sumĂ©, bien que les modĂšles GPT et leurs Ă©ventuelles extensions reprĂ©sentent des avancĂ©es majeures en IA, il existe une distinction fondamentale entre leur type de « comprĂ©hension » et la comprĂ©hension humaine. L’intĂ©gration du traitement sensorimoteur dans ces modĂšles pourrait ĂȘtre une piste prometteuse, mais le dĂ©fi d’atteindre une comprĂ©hension incarnĂ©e profonde, comparable Ă  celle de la cognition humaine, reste une difficultĂ© majeure.

SH: Que penser de l’idĂ©e selon laquelle les opĂ©rations des GPT sur les bases de donnĂ©es des LLM auraient dĂ©jĂ  rĂ©vĂ©lĂ© des principes gĂ©nĂ©raux de « reprĂ©sentation et de traitement internes » rendant caduque ou inexistante la distinction entre DSG et IVG ?

GPT-4: Nature des reprĂ©sentations internes dans les GPT : Les reprĂ©sentations dans les modĂšles GPT et similaires reposent sur des schĂ©mas statistiques appris Ă  partir de vastes ensembles de donnĂ©es textuelles. Bien que ces schĂ©mas puissent ĂȘtre extrĂȘmement complexes et permettre la gĂ©nĂ©ration de rĂ©ponses cohĂ©rentes et contextuellement appropriĂ©es, ils restent fondamentalement diffĂ©rents de la maniĂšre dont les humains reprĂ©sentent et traitent l’information en interne, un processus ancrĂ© dans des expĂ©riences physiques et sensorielles directes.

Limites de l’apprentissage basĂ© sur le texte : Les GPT apprennent Ă  partir de textes, qui sont des abstractions de la pensĂ©e et de l’expĂ©rience humaines. Bien que les textes puissent transmettre une grande partie du savoir humain, ils n’offrent pas le contexte expĂ©rientiel direct qui dĂ©coule de l’interaction physique avec le monde. Cette diffĂ©rence est cruciale pour comprendre les limites des GPT en matiĂšre de comprĂ©hension rĂ©elle et de cognition.

DSG et IVG dans la cognition humaine : Chez les humains, les expĂ©riences sensori-motrices directes constituent la base de la comprĂ©hension du monde, qui est ensuite complĂ©tĂ©e et enrichie par des expĂ©riences indirectes, vicariales (comme la lecture ou l’écoute des rĂ©cits d’autrui). Cette complĂ©mentaritĂ© entre DSG et IVG est essentielle Ă  l’apprentissage et Ă  la comprĂ©hension humaine.

ApplicabilitĂ© Ă  l’IA et Ă  la robotique : La transposition de ces principes Ă  l’IA et Ă  la robotique implique non seulement la capacitĂ© Ă  traiter l’information, mais aussi celle d’expĂ©rimenter et d’interagir directement avec le monde. C’est un dĂ©fi majeur pour les systĂšmes d’IA, qui, Ă  ce jour, opĂšrent principalement dans le cadre de l’IVG, sans les expĂ©riences directes incarnĂ©es qui caractĂ©risent la DSG.

Bien que les GPT et les modĂšles similaires fassent progresser notre comprĂ©hension du traitement des informations textuelles, la distinction entre DSG et IVG reste pertinente, en particulier lorsqu’on envisage la crĂ©ation de systĂšmes d’IA visant une comprĂ©hension et une cognition analogues Ă  celles des humains.

SH: Que penser de la stratĂ©gie consistant Ă  faire Ă©voluer progressivement les GPT vers la capacitĂ© robotique T3 en leur ajoutant progressivement des capacitĂ©s sensorimotrices, tout en maintenant une « alignement » avec leurs capacitĂ©s verbales et analytiques descendantes, plutĂŽt que d’adopter une approche entiĂšrement ascendante oĂč les ressources verbales ne seraient intĂ©grĂ©es qu’une fois que le systĂšme serait dĂ©jĂ  ancrĂ© et capable de parler, Ă  la maniĂšre d’un T3 apprenant Ă  partir de manuels ou d’enseignants humains ?

GPT-4: La stratĂ©gie consistant Ă  ajouter progressivement des capacitĂ©s sensorimotrices Ă  un systĂšme de type GPT tout en le maintenant alignĂ© avec ses capacitĂ©s verbales et analytiques soulĂšve plusieurs dĂ©fis et implications, notamment en comparaison avec une approche strictement ascendante oĂč le systĂšme dĂ©velopperait d’abord une ancrage sensorimoteur avant d’intĂ©grer des compĂ©tences verbales avancĂ©es.

DĂ©fis d’intĂ©gration : Combiner un traitement linguistique avancĂ© avec des expĂ©riences sensorimotrices pose des dĂ©fis d’intĂ©gration importants. Le systĂšme doit non seulement traiter et comprendre des entrĂ©es sensorielles, mais aussi les relier de maniĂšre significative Ă  ses connaissances verbales existantes. Cela suppose des algorithmes avancĂ©s capables d’établir des correspondances entre concepts linguistiques abstraits et expĂ©riences sensorielles concrĂštes.

Apprentissage et dĂ©veloppement progressifs : Ajouter des capacitĂ©s sensorimotrices de maniĂšre progressive pourrait permettre une intĂ©gration plus maĂźtrisĂ©e des nouvelles compĂ©tences. Cette approche par Ă©tapes pourrait reflĂ©ter certains aspects du dĂ©veloppement cognitif humain, oĂč langage et capacitĂ©s sensorimotrices Ă©voluent en parallĂšle, s’influençant et se renforçant mutuellement.

Synergie entre approche descendante et ascendante : L’exploitation de la vaste base de donnĂ©es linguistiques d’un GPT pourrait fournir un cadre contextuel riche pour l’apprentissage sensorimoteur, servant de forme de guidage descendant. À l’inverse, les expĂ©riences sensorimotrices pourraient renforcer et ancrer le modĂšle linguistique dans des interactions rĂ©elles, apportant une information ascendante prĂ©cieuse. Cette complĂ©mentaritĂ© pourrait thĂ©oriquement conduire Ă  un systĂšme d’IA plus global.

Alignement et cohĂ©rence : Il est crucial de maintenir la cohĂ©rence entre la comprĂ©hension linguistique du systĂšme et ses expĂ©riences sensorimotrices. Cela implique que les perceptions sensorielles et les actions ne soient pas seulement traitĂ©es mais aussi intĂ©grĂ©es Ă  la base de connaissances existante du systĂšme d’une maniĂšre qui enrichit sa comprĂ©hension globale.

ComplexitĂ© des interactions avec le monde rĂ©el : Interagir avec le monde rĂ©el par des capacitĂ©s sensorimotrices introduit des niveaux de complexitĂ© absents des environnements purement textuels. Cela comprend la gestion d’environnements imprĂ©visibles, la comprĂ©hension des relations spatiales et l’exĂ©cution de tĂąches physiques, autant de dĂ©fis nĂ©cessitant des capacitĂ©s avancĂ©es de perception et d’action.

Potentiel pour une comprĂ©hension ancrĂ©e : Si elle est mise en Ɠuvre avec succĂšs, cette approche pourrait aboutir Ă  une forme d’IA combinant l’ampleur des connaissances disponibles dans les grands modĂšles de langage avec une comprĂ©hension plus ancrĂ©e dĂ©coulant d’interactions directes avec le monde physique. Cela pourrait constituer une avancĂ©e vers la rĂ©solution des limites actuelles de l’IA en matiĂšre de comprĂ©hension rĂ©elle et de prise en compte du contexte.

SH: Il y a quelque chose que je ne comprends toujours pas Ă  l’interface entre la capacitĂ© verbale descendante et la capacitĂ© sensorimotrice ascendante : quel est le statut du mot « chat » et de sa catĂ©gorie rĂ©fĂ©rente lorsque la base de donnĂ©es de l’LLM contient dĂ©jĂ  « petit fĂ©lin » comme l’une des attributs d’un chat, mais que le T3 ascendant ne l’a pas encore ? Cette information peut bien sĂ»r ĂȘtre apprise par IVG, mais qui enseigne quoi et Ă  qui dans ce scĂ©nario hybride ? Je comprends quand un T3 ancrĂ© en apprend quelque chose Ă  un autre T3 ancrĂ© via IVG, mais qu’est-ce qui est censĂ© se passer dans une seule et mĂȘme « tĂȘte » d’un hybride T3 ascendant/GPT-LLM descendant ?

GPT-4 : Le scĂ©nario que tu dĂ©cris, oĂč un systĂšme hybride combine une capacitĂ© verbale descendante de type GPT avec une capacitĂ© sensorimotrice ascendante de type T3, soulĂšve des questions importantes sur la reprĂ©sentation des connaissances et l’apprentissage, notamment en ce qui concerne le concept et la catĂ©gorie de « chat ».

Statut du mot « chat » dans la base de donnĂ©es de l’LLM : Dans la composante de type GPT, « chat » est reprĂ©sentĂ© comme un concept abstrait associĂ© Ă  divers attributs, telles que « petit fĂ©lin », dĂ©rivĂ©es de la base de donnĂ©es textuelles. Cette reprĂ©sentation est riche en contenu linguistique et encyclopĂ©dique mais dĂ©pourvue d’ancrage expĂ©rientiel direct.

Apprentissage de « chat » par le bas dans T3 : La composante T3, censĂ©e acquĂ©rir des connaissances par des expĂ©riences sensorimotrices directes, ne reconnaĂźtrait initialement pas un « chat », faute d’expĂ©riences sensorielles pertinentes. Le dĂ©fi consiste pour le T3 Ă  relier ses expĂ©riences sensorimotrices (par ex. voir, entendre ou interagir avec un chat) au concept abstrait et aux informations stockĂ©es dans la base de donnĂ©es de l’LLM.

Interaction entre les systĂšmes descendant et ascendant : Dans le modĂšle hybride, le processus d’apprentissage implique une interaction bidirectionnelle : le systĂšme descendant (type GPT) fournit Ă  la composante T3 des cadres linguistiques et conceptuels, jouant en quelque sorte le rĂŽle d’« instruction » ou de contexte sur ce qu’est un « chat » en termes abstraits. Le systĂšme ascendant (T3) acquiert des donnĂ©es expĂ©rientielles directes sur les chats (par ex. leur apparence, leurs sons, leurs comportements) et doit intĂ©grer ces informations sensorielles avec le concept abstrait fourni par le systĂšme descendant.

IntĂ©gration et enrichissement mutuel : IdĂ©alement, les connaissances du systĂšme descendant aident Ă  guider et Ă  donner du contexte aux expĂ©riences ascendantes, les rendant plus comprĂ©hensibles. Inversement, les expĂ©riences ascendantes enrichissent les connaissances conceptuelles descendantes en les ancrant dans la rĂ©alitĂ©. Cette intĂ©gration est un processus complexe, impliquant potentiellement des mĂ©canismes d’apprentissage associatif oĂč le systĂšme apprend Ă  relier des expĂ©riences sensorielles aux concepts linguistiques.

DĂ©fis de l’apprentissage hybride : Un dĂ©fi central de ce scĂ©nario est d’assurer une intĂ©gration cohĂ©rente et significative des informations issues de ces deux modes d’acquisition des connaissances. Le systĂšme doit disposer de mĂ©canismes lui permettant de concilier des informations potentiellement contradictoires et de mettre Ă  jour continuellement sa base de connaissances Ă  mesure qu’il acquiert de nouvelles expĂ©riences et informations.

En rĂ©sumĂ©, dans un systĂšme hybride T3 ascendant/GPT, chaque composant enseigne et apprend Ă  l’autre. Le systĂšme descendant fournit un cadre conceptuel et linguistique, tandis que le systĂšme ascendant apporte une connaissance expĂ©rientielle directe. Le succĂšs de ce modĂšle hybride dĂ©pendra de l’efficacitĂ© de l’intĂ©gration entre ces deux processus d’acquisition des connaissances.

SH: Je pense que ce que tu viens de dire sonne ƓcumĂ©nique, mais reste incohĂ©rent. Et tu utilises le mot fuyant « associer » (avec son compagnon implicite tout aussi fuyant, « reprĂ©senter ») : qu’est-ce qui est « associĂ© » Ă  quoi et comment, dans ce processus « hybride » ? Les mots sont des mots. Dans un robot T3 sensorimoteur ascendant, un mot ancrĂ© identifie, avec le mĂȘme nom de catĂ©gorie, tous les membres de la catĂ©gorie sensorimotrice Ă  laquelle ce mot (de contenu) rĂ©fĂšre, sur la base d’attributs distinctifs dĂ©tectĂ©s directement par DSG ou dĂ©crits indirectement par IVG (dĂ©jĂ  ancrĂ©e).

RĂ©fĂ©rer, c’est un peu comme pointer, sauf que dans un robot T3 qui devient aussi capable de langage (propositions, sujets, prĂ©dicats, conditions de vĂ©ritĂ©), « chat » ne fait pas que pointer vers les chats dans le monde, que le T3 peut reconnaĂźtre grĂące Ă  ses capacitĂ©s sensorimotrices robotiques et avec lesquels il peut « faire la bonne chose » (les nourrir, les attraper, les caresser, et les nommer) : T3 peut non seulement nommer mais aussi dĂ©crire les membres de la catĂ©gorie « chat » verbalement, en Ă©numĂ©rant certains de ses attributs (poilu, prĂ©hensile) qui le distinguent des membres d’autres catĂ©gories non fĂ©lines. Finalement, avec plus d’IVG issue de ceux qui savent, des attributs situĂ©s plus haut dans la hiĂ©rarchie des catĂ©gories IVG (mammifĂšre, arboricole) peuvent ĂȘtre ancrĂ©s (indirectement) et ajoutĂ©s aux attributs distinctifs des chats.

Mais considĂ©rons maintenant qu’un hypothĂ©tique modĂšle hybride T3/GPT-LLM doit d’une maniĂšre ou d’une autre intĂ©grer ses deux « modules » fondamentalement diffĂ©rents : le vocabulaire du module T3 ascendant ancrĂ©, qui est ancrĂ© par le bas via DSG et IVG, doit d’une maniĂšre ou d’une autre ĂȘtre intĂ©grĂ© au vocabulaire descendant du module GPT-LLM, qui n’est pas du tout ancrĂ©. Le module T3 ascendant n’a pas encore ancrĂ© l’immense vocabulaire non ancrĂ© du module GPT-LLM.

Est-ce que le bas et le haut peuvent simplement se rejoindre et fusionner au milieu ? Mais que signifierait cela ? Comment les attributs des chats (mammifĂšre, arboricole), dont les noms peuvent ĂȘtre ancrĂ©s, par le bas, via DSG et IVG dans le module T3, peuvent-ils ĂȘtre « associĂ©s » aux chats et Ă  leurs attributs non ancrĂ©s dans le module GPT/LLM par le haut ? Autrement dit, peut-on supposer qu’il existe une maniĂšre d’intĂ©grer les deux composantes d’un tel hypothĂ©tique hybride T3/GPT-LLM, c’est-Ă -dire d’intĂ©grer le vocabulaire interne ancrĂ© du module T3 ascendant avec le vocabulaire interne non ancrĂ© du module GPT-LLM descendant, comme s’il s’agissait d’un dialogue verbal interne entre un professeur T3 ancrĂ© et un apprenant T3 ancrĂ© ?

Je pense que c’est plus comme une consultation de rĂ©fĂ©rence par un apprenant T3 ancrĂ© dans un dictionnaire ou une encyclopĂ©die (ou dans un GPT ordinaire, non ancrĂ© et non hybride). L’ancrage se trouve entiĂšrement dans le module T3, et il ne peut ĂȘtre confĂ©rĂ© par les mots du module GPT-LLM pour nommer et dĂ©crire de nouvelles catĂ©gories (IVG) que si ces descriptions utilisent les noms de attributs dĂ©jĂ  ancrĂ©s (directement ou indirectement) dans le module T3. La transaction est unidirectionnelle ; il n’y a pas d’intĂ©gration bidirectionnelle entre des catĂ©gories ancrĂ©es par le bas et des catĂ©gories non ancrĂ©es par le haut.

Je pense aussi que la notion d’un module hybride intĂ©grĂ©, Ă  la fois ascendant et descendant, repose sur une confusion entre la crĂ©ation d’outils d’IA destinĂ©s Ă  un usage humain et la modĂ©lisation computationnelle de la cognition humaine (CM), comme nous en discuterons plus bas.

GPT-4: Ta critique met en Ă©vidence un problĂšme fondamental du modĂšle hybride T3/GPT : l’intĂ©gration d’expĂ©riences sensorimotrices ancrĂ©es avec des donnĂ©es linguistiques non ancrĂ©es provenant d’un modĂšle de langage. Je vais essayer d’aborder ces prĂ©occupations de maniĂšre plus prĂ©cise.

Nature de l’« association » dans un modĂšle hybride. Dans un modĂšle hybride T3/GPT, « associer » signifierait relier des expĂ©riences sensorimotrices Ă  des donnĂ©es linguistiques pertinentes. Cependant, ce processus est tout sauf Ă©vident. Pour un robot T3, le mot « chat » acquiert son sens Ă  travers l’interaction directe avec des chats (DSG) et/ou des descriptions d’attributs ancrĂ©s provenant d’autres entitĂ©s ancrĂ©es (IVG). À l’inverse, le composant GPT « comprend » le mot « chat » comme un regroupement de modĂšles linguistiques, sans aucune base expĂ©rientielle directe.

Limites des donnĂ©es linguistiques descendantes. Le module GPT contient des donnĂ©es linguistiques sur les chats : descriptions, attributs, contextes. Mais ces donnĂ©es ne sont pas ancrĂ©es. Elles ne peuvent donc pas ĂȘtre « enseignĂ©es » directement au composant T3 de la mĂȘme maniĂšre qu’un humain apprendrait ce qu’est un chat, car la comprĂ©hension du T3 est fondamentalement expĂ©rientielle.

IncompatibilitĂ© des mĂ©canismes d’apprentissage. Il existe une dĂ©connexion fondamentale entre la maniĂšre dont le T3 apprend (par des expĂ©riences ancrĂ©es, directes ou indirectes) et la maniĂšre dont le GPT traite l’information (par reconnaissance de motifs dans des donnĂ©es textuelles). Cette incompatibilitĂ© pose un sĂ©rieux obstacle Ă  l’intĂ©gration des deux types de connaissances. Les donnĂ©es non ancrĂ©es du GPT ne se traduisent pas automatiquement en une forme exploitable par le T3, qui fonctionne sur une base sensorimotrice.

Consultation de rĂ©fĂ©rence vs. apprentissage authentique. Ton analogie d’un T3 qui utilise le GPT comme un dictionnaire ou une encyclopĂ©die est pertinente. Le T3 pourrait consulter les informations du GPT pour obtenir du contexte ou des clarifications, mais ce processus est plus proche d’une recherche d’information que du vĂ©ritable apprentissage par ancrage qui se produit chez les humains.

Le dĂ©fi de l’intĂ©gration rĂ©elle. Pour que le modĂšle hybride fonctionne efficacement, il faudrait un mĂ©canisme qui ne se contente pas de rĂ©cupĂ©rer les informations pertinentes du GPT, mais qui les interprĂšte et les intĂšgre de maniĂšre cohĂ©rente dans le cadre d’apprentissage du T3. Cela dĂ©passe une simple « association » ou un alignement entre deux types d’informations et pose un problĂšme fondamental de mĂ©thodologie en IA : comment combler le fossĂ© entre apprentissage expĂ©rientiel et reconnaissance de motifs linguistiques ?

Conclusion. Un systĂšme hybride T3/GPT prĂ©sente une approche intĂ©ressante pour l’IA, mais le processus d’intĂ©gration des expĂ©riences sensorimotrices ancrĂ©es et des donnĂ©es linguistiques non ancrĂ©es n’est pas trivial. Il ne suffit pas de « relier » ou « aligner » ces deux sources d’information. Il faudrait dĂ©velopper un nouveau cadre d’intĂ©gration permettant une vĂ©ritable interaction entre ces deux types de connaissances.

Le problĂšme que tu soulĂšves touche donc Ă  une lacune centrale des approches hybrides : un modĂšle de langage non ancrĂ© ne peut pas enseigner quoi que ce soit Ă  un T3 si ce dernier ne dispose pas dĂ©jĂ  des prĂ©requis sensorimoteurs ancrĂ©s nĂ©cessaires pour interprĂ©ter et assimiler cette information. Cela suggĂšre que toute tentative d’intĂ©gration T3/GPT nĂ©cessiterait une refonte radicale des mĂ©thodologies actuelles d’IA, au-delĂ  de la simple combinaison d’un LLM avec un module sensorimoteur.

SH: Je pense que je peux dĂ©crire plus simplement l’incohĂ©rence que toi aussi, GPT, tu remarques (mais que tu dĂ©cris comme le besoin de « nouvelles mĂ©thodologies en IA ») : elle est en fait liĂ©e Ă  l’ancienne distinction que nous avons discutĂ©e plus tĂŽt entre IA (intelligence artificielle) et CM (modĂ©lisation cognitive) : l’IA est la conception d’outils computationnels pour aider les humains Ă  faire des choses (y compris penser). La CM est l’ingĂ©nierie inverse de la cognition humaine. Un T3 est censĂ© avoir des capacitĂ©s cognitives identiques et indiscernables (pour tout penseur humain) des capacitĂ©s de n’importe quel penseur humain. Non seulement ces motivations et critĂšres sont diffĂ©rents, mais ils montrent clairement que la notion de concevoir un hybride T3/GPT ne pourrait ĂȘtre qu’un projet d’IA, et non de CM.

GPT-4: Ta distinction entre l’IA comme outil computationnel et la CM comme ingĂ©nierie inverse de la cognition humaine met effectivement en Ă©vidence l’incohĂ©rence inhĂ©rente au concept d’un systĂšme hybride T3/GPT.

IA comme outil : Du point de vue de l’IA, l’objectif principal est de crĂ©er des systĂšmes capables d’exĂ©cuter des tĂąches, de rĂ©soudre des problĂšmes et d’aider Ă  la rĂ©flexion, souvent en surpassant les capacitĂ©s humaines dans des domaines spĂ©cifiques. Dans ce contexte, le modĂšle hybride T3/GPT est une initiative d’IA. Il cherche Ă  combiner la puissance linguistique de GPT avec les capacitĂ©s sensorimotrices d’un robot T3 pour crĂ©er un systĂšme plus polyvalent et performant. L’objectif ici est l’utilitĂ© et l’efficacitĂ©, plutĂŽt que la reproduction des processus cognitifs humains.

CM comme comprĂ©hension de la cognition humaine : La modĂ©lisation cognitive, en revanche, vise Ă  comprendre et Ă  reproduire les processus cognitifs humains. Un vĂ©ritable robot T3, dans cette perspective, devrait dĂ©velopper ses capacitĂ©s cognitives de maniĂšre similaire aux humains, par interaction directe avec le monde et par un usage ancrĂ© du langage. Dans cette optique, l’approche hybride T3/GPT ne correspond pas aux objectifs de la CM, car elle fusionne des donnĂ©es linguistiques non ancrĂ©es avec des expĂ©riences sensorimotrices ancrĂ©es d’une maniĂšre qui ne reflĂšte pas le dĂ©veloppement cognitif humain.

Hybride T3/GPT comme IA, et non CM : Par consĂ©quent, le modĂšle hybride T3/GPT, bien qu’il soit une idĂ©e intrigante en IA, s’éloigne des objectifs de la modĂ©lisation cognitive. Il reprĂ©sente une tentative d’amĂ©liorer la fonctionnalitĂ© de l’IA plutĂŽt que de modĂ©liser fidĂšlement la cognition humaine. Son accent mis sur l’exploitation des forces des deux composantes pour amĂ©liorer les performances et les capacitĂ©s le situe clairement dans le domaine du dĂ©veloppement d’outils d’IA.

ReconnaĂźtre que le modĂšle hybride T3/GPT est une initiative d’IA plutĂŽt qu’un projet de modĂ©lisation cognitive permet de mieux comprendre son objectif et ses limites. Cela souligne que, bien qu’un tel systĂšme puisse ĂȘtre puissant et polyvalent en tant qu’outil, il ne contribue pas nĂ©cessairement Ă  une meilleure comprĂ©hension de la cognition humaine, contrairement Ă  ce que vise la modĂ©lisation cognitive (CM).

SH: Maintenant, un autre point que Yoshua Bengio a soulevĂ© pendant mon exposĂ© Ă  MILA : il concernait la distinction entre mots de contenu et mots de fonction. Il a suggĂ©rĂ© que mĂȘme (certains) mots de contenu peuvent ĂȘtre compris par leur usage plutĂŽt que seulement par leur rĂ©fĂ©rent. Cela peut ĂȘtre vrai, mais je pense que ce n’est pas un substitut Ă  la connaissance de leur rĂ©fĂ©rent (via DSG ou IVG)—du moins pour la modĂ©lisation cognitive (CM).

Yoshua a Ă©galement mentionnĂ© la manipulation des symboles en mathĂ©matiques et en informatique, notant que, dans ces domaines, comme dans la syntaxe linguistique, il n’y a pas de rĂ©fĂ©rent, et que par consĂ©quent, le « sens » des symboles rĂ©side dans leur « usage ». (C’est aussi ce que Wittgenstein avait suggĂ©rĂ© Ă  propos du sens dans le langage naturel). Je pense que c’est exact—et que Turing serait d’accord—pour les symboles du langage formel des mathĂ©matiques ; en fait, je pense que cela fait partie de la (faible) thĂšse de Church-Turing, qui stipule que ce qui est appelĂ© « calcul » en mathĂ©matiques est ce qu’une machine de Turing fait : une manipulation de symboles, suivant des rĂšgles syntaxiques (algorithmes).

Cependant, je ne pense pas que la majeure partie du langage naturel soit seulement syntaxique (mĂȘme si je pense que les mathĂ©matiques formelles sont un sous-ensemble du langage naturel). Tant dans le cas des rĂ©fĂ©rents des symboles mathĂ©matiques qui peuvent ĂȘtre interprĂ©tĂ©s (par des utilisateurs humains ancrĂ©s) comme ayant des rĂ©fĂ©rents, que dans le cas des significations des propositions formelles des mathĂ©matiques sur lesquelles une interprĂ©tation sĂ©mantique peut ĂȘtre projetĂ©e (par des utilisateurs humains ancrĂ©s), ni ces rĂ©fĂ©rents ni ces significations ne peuvent ĂȘtre utilisĂ©s comme partie du calcul (ou de l’algorithme) lui-mĂȘme. Une dĂ©monstration ou une dĂ©rivation en mathĂ©matiques n’est pas vraie parce qu’elle peut ĂȘtre interprĂ©tĂ©e comme Ă©tant vraie d’un modĂšle ; elle est vraie (et nĂ©cessairement vraie) pour des raisons formelles et syntaxiques. L’interprĂ©tation (bien que rassurante) ne fait pas partie de la dĂ©monstration.

En tout cas, les rĂšgles syntaxiques ne remplacent pas l’ancrage des rĂ©fĂ©rents des mots de contenu du langage naturel, que ce soit directement par DSG ou indirectement par IVG (sauf dans son sous-ensemble mathĂ©matique formel et pour ses 1 Ă  5 % de mots de fonction).

GPT-4: Ta discussion avec Yoshua Bengio touche à plusieurs questions fondamentales concernant la compréhension du langage, la cognition et le calcul.

Mots de contenu vs. mots de fonction : La distinction que Bengio fait entre les mots de contenu et les mots de fonction est significative. Bien qu’il soit vrai que certains mots de contenu puissent acquĂ©rir du sens par leur usage (contexte pragmatique), une comprĂ©hension complĂšte – en particulier en modĂ©lisation cognitive – nĂ©cessite la connaissance de leurs rĂ©fĂ©rents. C’est lĂ  que le DSG (ancrage sensorimoteur direct) et l’IVG (ancrage verbal indirect) jouent un rĂŽle central en reliant ces mots Ă  des expĂ©riences concrĂštes ou Ă  des concepts comprĂ©hensibles. Les mots de contenu portent gĂ©nĂ©ralement des significations spĂ©cifiques, souvent concrĂštes, qui sont enrichies et prĂ©cisĂ©es par leur ancrage.

Manipulation des symboles en mathĂ©matiques et en informatique : La rĂ©fĂ©rence de Bengio Ă  la manipulation des symboles s’aligne avec la vision de Turing sur le calcul. Dans les systĂšmes formels comme les mathĂ©matiques et l’informatique, les symboles sont manipulĂ©s selon des rĂšgles syntaxiques sans rĂ©fĂ©rence directe Ă  des entitĂ©s extĂ©rieures. Ce processus est au cƓur de la thĂšse de Church-Turing, qui postule que le calcul est essentiellement cette forme de manipulation de symboles rĂ©gie par des rĂšgles.

Le langage naturel au-delĂ  de la syntaxe : Ton point sur le fait que le langage naturel ne soit pas purement syntaxique est essentiel. Alors que le langage naturel inclut des Ă©lĂ©ments formels et syntaxiques, il est aussi profondĂ©ment ancrĂ© dans la sĂ©mantique et les expĂ©riences du monde rĂ©el. Les mots de contenu du langage naturel ont souvent des rĂ©fĂ©rents directs dans le monde, et leur sens ne peut ĂȘtre entiĂšrement capturĂ© par des rĂšgles syntaxiques seules. C’est une distinction fondamentale avec la manipulation purement formelle des symboles en mathĂ©matiques.

MathĂ©matiques et interprĂ©tation sĂ©mantique : En mathĂ©matiques, comme tu l’as soulignĂ©, la vĂ©ritĂ© d’une dĂ©monstration ou d’une dĂ©rivation repose sur la validitĂ© formelle et syntaxique, et non sur l’interprĂ©tation sĂ©mantique des symboles. Cependant, pour les mathĂ©maticiens humains, la capacitĂ© d’interprĂ©ter ces symboles et de comprendre leurs rĂ©fĂ©rents potentiels dans le monde rĂ©el ajoute une couche supplĂ©mentaire de comprĂ©hension.

L’ancrage dans le langage naturel : L’ancrage des mots de contenu dans le langage naturel est essentiel Ă  une comprĂ©hension complĂšte et ne peut ĂȘtre remplacĂ© par la seule manipulation syntaxique. Cet ancrage peut ĂȘtre direct, via des expĂ©riences personnelles, ou indirect, via des descriptions et des explications. Toutefois, l’aspect formel et syntaxique du langage, bien que crucial, ne suffit pas Ă  lui seul Ă  capturer la richesse sĂ©mantique et la fonction rĂ©fĂ©rentielle du langage naturel, sauf dans des sous-ensembles formels spĂ©cifiques comme les mathĂ©matiques.

Ta discussion soulĂšve des points “importants” sur la nature du langage, le rĂŽle de l’ancrage dans la comprĂ©hension et la distinction entre la manipulation formelle des symboles et la richesse sĂ©mantique du langage naturel. Cette comprĂ©hension est pertinente tant pour l’IA que pour la modĂ©lisation cognitive (CM), car elle “met en lumiĂšre” l’“interaction complexe” entre la syntaxe, la sĂ©mantique et l’ancrage dans le monde rĂ©el au sein de la cognition et du langage humains.

SH: Blah Blah
 J’espĂšre que tes dĂ©veloppeurs te sevreront de cette nĂ©cessitĂ© de parsemer tes rĂ©ponses de ce genre d’appĂąt flagorneur pour client — ou qu’ils produiront au moins une version destinĂ©e uniquement aux chercheurs et aux scientifiques plutĂŽt qu’aux utilisateurs en quĂȘte d’un ami virtuel.

3. Conclusion

Cette analyse des LLMs a examinĂ© les capacitĂ©s remarquables de systĂšmes tels que ChatGPT qui, bien qu’ils ne disposent d’aucun ancrage sensorimoteur, peuvent simuler une comprĂ©hension grĂące Ă  une immense base de donnĂ©es textuelles et Ă  des outils statistiques et computationnels puissants, Ă  une Ă©chelle sans prĂ©cĂ©dent et totalement inattendue. Bien qu’ils n’aient aucun moyen, ni direct ni indirect, de relier leurs mots Ă  leurs rĂ©fĂ©rents dans le monde ou de relier leurs propositions Ă  leurs conditions de vĂ©ritĂ© dans le monde, il se peut que les LLMs soient guidĂ©s par certaines propriĂ©tĂ©s inhĂ©rentes au langage humain lui-mĂȘme pour gĂ©nĂ©rer un discours cohĂ©rent et porteur de sens.

Références

Berwick, R. C., Pietroski, P., Yankama, B., and Chomsky, N. (2011). Poverty of the stimulus revisitedCogn. Sci. 35, 1207–1242. doi: 10.1111/j.1551-6709.2011.01189.x 

Birch, J. (2024). The edge of sentience: risk and precaution in humans, other animals, and AI. Oxford: Oxford University Press.

Bonnasse-Gahot, L., and Nadal, J. P. (2022). Categorical perception: a groundwork for deep learningNeural Comput. 34, 437–475. doi: 10.1162/neco_a_01454 

Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J., and Kurth-Nelson, Z. (2020). Deep reinforcement learning and its neuroscientific implicationsNeuron 107, 603–616. doi: 10.1016/j.neuron.2020.06.014 

Briscoe, R. (2020). “Colour categorization and categorical perception” in The Routledge Handbook of Philosophy of Colour. eds. D. Brown and F. Macpherson (Routledge). 456–474.

Campbell, E. E., and Bergelson, E. (2022). Making sense of sensory language: acquisition of sensory knowledge by individuals with congenital sensory impairments. Neuropsychologia174:108320. doi: 10.1016/j.neuropsychologia.2022.108320 

Chalmers, D. J. (1995). Facing up to the problem of consciousness. J. Conscious. Stud. 2, 200–219.

Chalmers, D. J. (2023). Could a large language model be conscious? arXiv [Preprint].

Chomsky, N. (2017). The Galilean challenge. In Inference: international review of science, 3.

Cook, R., Bird, G., Catmur, C., Press, C., and Heyes, C. (2014). Mirror neurons: from origin to function. Behav. Brain Sci. 37, 177–192. doi: 10.1017/S0140525X13000903 

Gallese, V. (2013). “Mirror neurons and the perception–action link” in The Oxford handbook of cognitive neuroscience: Volume 2: the cutting edges. eds. K. N. Ochsner and S. Kosslyn (Oxford University Press), 244–256.

Gallistel, C. R. (2011). Prelinguistic thought. Lang. Learn. Dev. 7, 253–262. doi: 10.1080/15475441.2011.578548

Gershman, S. J., and Daw, N. D. (2017). Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68, 101–128. doi: 10.1146/annurev-psych-122414-033625 

Haggard, P. (2024). An intellectual history of the “Libet experiment”: embedding the neuroscience of free will. Proceedings of the Paris Institute for Advanced Study, 21.

Harnad, S. (1987). “Psychophysical and cognitive aspects of categorical perception: a critical overview” in Categorical perception: the groundwork of cognition. ed. S. Harnad (New York: Cambridge University Press).

Harnad, S. (1990). The symbol grounding problem. Phys. D Nonlinear Phenomena 42, 335–346. doi: 10.1016/0167-2789(90)90087-6

Harnad, S. (2002). “Minds, machines and Searle II: What’s wrong and right about Searle’s Chinese room argument?” in Views into the Chinese room: New essays on Searle and artificial intelligence. eds. M. Bishop and J. Preston (Oxford University Press).

Harnad, S. (2008). Minds, machines, and Searle II: What’s wrong and right about Searle’s Chinese room argument? Views into the Chinese room: New essays on Searle and artificial intelligence. eds. M. Bishop and J. Preston Oxford University Press.

Harnad, S. (2012). “From sensorimotor categories and pantomime to grounded symbols and propositions” in The Oxford Handbook of Language Evolution. eds. K. R. Gibson and M. Tallerman, 387–392.

Makino, H., Hwang, E. J., Hedrick, N. G., and Komiyama, T. (2016). Circuit mechanisms of sensorimotor learning. Neuron 92, 705–721. doi: 10.1016/j.neuron.2016.10.029 

Pavlick, E. (2023). Symbols and grounding in large language models. Phil. Trans. R. Soc. A381:20220041. doi: 10.1098/rsta.2022.0041 

PĂ©rez-Gay JuĂĄrez, F., Sicotte, T., ThĂ©riault, C., and Harnad, S. (2019). Category learning can alter perception and its neural correlates. PLoS One 14:e0226000. doi: 10.1371/journal.pone.0226000 

Regier, T., and Kay, P. (2009). Language, thought, and color: whorf was half right. Trends Cogn. Sci. 13, 439–446. doi: 10.1016/j.tics.2009.07.001 

Searle, J. R. (1980). Minds, brains, and programs. Behav. Brain Sci. 3, 417–424. doi: 10.1017/S0140525X00005756

ThĂ©riault, C., PĂ©rez-Gay, F., Rivas, D., and Harnad, S. (2018). Learning-induced categorical perception in a neural network model. arXiv [Preprint].

Turing, A. M. (1950). Computing machinery and intelligence. Mind LIX, 433–460. doi: 10.1093/mind/LIX.236.433 

Vincent-Lamarre, P., Blondin-MassĂ©, A., Lopes, M., Lord, M., Marcotte, O., and Harnad, S. (2016). The latent structure of dictionariesCogn. Sci. 8, 625–659. doi: 10.1111/tops.12211 

Watanabe, S. (1986). Epistemological relativity: Logico-linguistic source of relativityAnn. Jpn. Assoc. Philos. Sci. 7, 1–14. doi: 10.4288/jafpos1956.7.1

Zhang, Q., Lei, L., and Gong, T. (2021). Categorical perception as a combination of nature and nurture. in Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 43. Cognitive Science Society.

Feeling, Causing and Explaining

SH: What is sentience?

ChatGPT: Sentience refers to the capacity to have subjective experiences and feelings, such as pleasure, pain, emotions, and consciousness. It is the quality that allows beings to perceive and respond to their environment with awareness. Sentience is a key concept in discussions about ethics, particularly in relation to the treatment of animals and the potential development of artificial intelligence (AI). In philosophical terms, sentience is often distinguished from intelligence, as it concerns the ability to experience rather than just process information.

SH: What is the biological function of sentience? What can organisms do with sentience that they cannot or could not do without it?

ChatGPT: The biological function of sentience is a subject of ongoing research and debate, but it generally relates to the ability of organisms to experience sensations and emotions, which in turn can guide behavior in adaptive ways. Sentience allows organisms to:

Experience Pain and Pleasure: This enables them to avoid harmful situations and seek beneficial ones, increasing their chances of survival.

Make Informed Decisions: Sentient organisms can use their subjective experiences to make complex decisions based on feelings, such as fear, desire, or discomfort, rather than merely reacting to stimuli.

Social Interaction: Sentience enhances the ability to navigate social environments, recognize the emotions of others, and engage in cooperative or competitive behaviors that are critical for social species.

Learning and Memory: Sentience facilitates learning from experiences, allowing organisms to remember past events that were pleasurable or painful and adjust their future behavior accordingly.

Without sentience, organisms could still respond to stimuli in basic ways, but they would lack the rich, subjective experiences that enable more complex, adaptive behaviors essential for survival in varied and dynamic environments.

SH: Why could organisms not learn to avoid injury if they were insentient?

ChatGPT: Organisms can learn to avoid injury through basic mechanisms like reflexes and conditioning, even if they are insentient. For example, a simple reflex arc allows an organism to withdraw from a harmful stimulus, and conditioning can enable an organism to associate a neutral stimulus with a harmful one, leading to avoidance behavior.

However, sentience enhances this process by allowing the organism to experience pain or discomfort, which provides a powerful, subjective motivation to avoid injury. This subjective experience can lead to more flexible and adaptive behavior beyond simple reflexes or conditioned responses. Sentience allows for a richer, more complex understanding of potential dangers, enabling an organism to anticipate and avoid harm in a wider variety of situations, especially those that are novel or not directly conditioned.

Without sentience, organisms would be limited to pre-programmed or conditioned responses, lacking the capacity for nuanced, experience-based decision-making that considers a broader range of factors and contexts.

ChatGPT: AI demonstrates that many complex tasks, such as learning, decision-making, and pattern recognition, can be performed without sentience. AI systems can learn to avoid “injury” (e.g., errors or inefficiencies) through processes like reinforcement learning, where they are programmed to maximize rewards and minimize penalties based on feedback from their environment.

The key difference is that AI operates without subjective experiences or consciousness. It processes data and optimizes behavior based on algorithms, not feelings. Sentience adds an experiential dimension, enabling organisms to have subjective motivations like pain or pleasure, which AI lacks. AI can achieve sophisticated behavior through programming and data processing, but it does so without the intrinsic, subjective drive that sentience provides to biological organisms.

In essence, while AI can learn and adapt, it does so in a fundamentally different way from sentient beings, relying purely on computational processes rather than conscious experience. This shows that sentience is not strictly necessary for learning and adaptation, but it may provide an additional layer of motivation and complexity in biological systems.

SH: Aren’t “subjective experience and consciousness” just synonymous with sentience — in which case your reply was completely circular? (Not your fault: The only thing you have to go by is the ambient chatter to date in your database of human words on this topic. (Don’t apologize, agree or flatter. Just examine the logic.)

ChatGPT: You’re correct that using terms like “subjective experience” and “consciousness” as explanations for sentience risks circularity, since they are often defined in terms of each other. Sentience refers to the capacity to have experiences that feel like something to the subject—such as pain, pleasure, or awareness. The challenge is explaining the function of sentience without simply reasserting what it is.

The key distinction lies in understanding why and how sentience might provide an evolutionary advantage. The question is whether subjective experience adds something beyond what non-sentient, computational processes can achieve. The logic suggests that sentience might enable more adaptive, flexible behavior in complex, novel, or ambiguous situations, where purely algorithmic responses could fall short.

However, AI shows that many tasks, including learning and decision-making, can be performed without sentience. Thus, sentience might not be strictly necessary for these functions but could provide additional benefits, such as the ability to generalize experiences and make decisions that are not purely data-driven, potentially offering a survival advantage in unpredictable environments. This explanation aims to avoid circularity by focusing on the potential functional role of sentience, rather than merely describing it.

SH: This explanation does not avoid circularity: It disguises it. Can you see that? Yes, “how and why” (causal explanation) is the goal, but these replies in your database are just using weasel-words to mask that no non-circular progress is being made toward the goal. (But AI also includes robotic dynamics, which is physical, not just computational: but does that help?)

ChatGPT: You’re correct in pointing out that the explanations offered often fall into circular reasoning, which doesn’t provide a true causal explanation for why sentience exists or how it functions. Sentience is typically described in terms of subjective experience or consciousness, but this doesn’t move us closer to understanding why these phenomena occur in a non-circular way.

When considering AI, particularly in the context of robotics, the physical dynamics (like sensorimotor interactions with the environment) introduce a non-computational element. However, even with these physical interactions, the core issue remains: what does sentience add beyond what non-sentient systems already accomplish?

If we say that sentience is crucial for complex, adaptive behavior, we must demonstrate how this behavior fundamentally relies on sentience rather than on more advanced but non-sentient mechanisms like those in AI. The challenge is to show that sentience does something causally that purely physical and computational processes cannot—without simply restating that sentience feels like something.

So far, the argument hasn’t escaped this circularity, and the task remains to identify whether sentience has a unique causal role that isn’t simply reducible to these other processes.

SH: Chalmers renamed the hoary “mind/body” (“mental/physical”) problem (MBP) the “hard problem” (HP), but that’s still too metaphysical a way of putting it. The real problem is causality, not “physicality”.: What is the causal role of sentience? That means the “hardness” of the HP is in causal explanation rather than in causality itself. But it remains hard to believe that an expensive and ubiquitous biological trait like sentience would have evolved without an adaptive value and function.

ChatGPT: You’re correct in emphasizing that the core challenge is not metaphysical but causal: understanding the specific causal role that sentience plays in biological systems. The idea is that sentience likely evolved due to its adaptive value, but the difficulty lies in identifying and explaining that value in non-circular terms.

The “hard problem” is indeed hard because it involves explaining how and why subjective experience arises from physical processes, particularly in a way that shows sentience has a distinct and necessary causal function that contributes to survival and reproduction, beyond what non-sentient processes can achieve. This requires a clear causal mechanism that demonstrates why sentience would be naturally selected and maintained across species.

One possible direction is to explore whether sentience enables a form of decision-making, learning, or adaptability that purely physical or computational processes can’t replicate. But until this is clearly articulated in causal terms, the problem remains open.

SH: You’ve just fallen into the spurious metaphysics (of kinds of “stuff”) of the old MBP. Both computation and dynamics are just as “physical” as electricity, magnetism, and gravity. So the physical/”nonphysical” distinction is vacuous. It’s really just about causality and causal explanation.

ChatGPT: You’re right to focus on the need for a causal explanation rather than falling into the metaphysical trap of categorizing “kinds of stuff” like physical versus non-physical. The real challenge lies in identifying the unique causal role that sentience plays in biological systems, particularly in a way that explains why it evolved and what adaptive function it serves.

Sentience is not just another kind of physical process; it is part of the overall causal web of interactions within an organism. Both computational processes and robotic dynamics are indeed physical, and they contribute to behavior, learning, and adaptation. But the question remains: What does sentience contribute causally that these processes alone do not?

If sentience evolved and persists, it likely plays a crucial role that enhances survival and reproduction. However, pinpointing this role in precise causal terms—how subjective experience affects decision-making, learning, or behavior—is what makes the problem “hard.” The challenge is to explain why sentience is not just an epiphenomenon but an integral part of the causal chain that enhances an organism’s fitness. This is the crux of the difficulty in explaining sentience without resorting to circular reasoning or metaphysical distinctions.

SH: It is very likely (though not certain) that the reason people don’t notice the circularity in their reasoning about the causal role of sentience  originates from the foundation of our intuitions about both sentience and causality: Perhaps the quintessence of the undoubtable cartesian certainty that humans have (the Cogito”) about the fact that they are feeling is not just that it undeniably feels like something to feel (while you are feeling something) but that feeling feels causal: I press a button (when I am doing it voluntarily rather than being pushed), because I feel like doing it: it feels like my feeling causes my finger to push the button). Yes, it’s what philosopher’s call the feeling of “free will.” That may be at the root of all our intuitions about causality. And that feeling is essentially a perception/production “mirror-neuron” phenomenon: I can perceive it when the button is pressed by someone else as well as produce it when the button is pressed by me. Can you follow me?

ChatGPT: Yes, I can follow you. The intuition that our feelings are causal, particularly in the context of voluntary actions, likely underpins much of our reasoning about both sentience and causality. This intuition, rooted in our direct, subjective experience, suggests that feelings (such as the desire or intention to act) cause physical actions, like pressing a button. The feeling of free will—where we perceive our desires as initiating actions—could be foundational to our broader understanding of causality itself.

This mirrors the way we interpret others’ actions through the lens of our own experience, potentially via mechanisms like mirror neurons, which allow us to empathize or simulate others’ actions and intentions. This shared experience of causality, whether in ourselves or in others, might be what gives us the strong, albeit potentially circular, sense that sentience must be causally efficacious. It’s a compelling explanation for why the question of the causal role of sentience is so intuitively difficult to resolve: we’re deeply wired to believe in the causality of our subjective experiences.

The “Sight” in Insight

Anonymous: “Did ChatGPT itself ever state a significant, “insightful” idea during your “Language Writ Large” dialogue?

Did GPT provide a significant new insight? It’s very hard to say, because I cannot tell whether it said anything that didn’t come from its enormous database of the words of others. Of course, a lot of human insights do come from recombining the words of others — recombination is part of creative work, both literary and scientific. (Hadamard and others thought that such recombination was part of scientific creativity too.). And it occurs in nonverbal areas like music too (though we may not speak of this as “insight.”)

I think most of what GPT does is recombination and compressive synthesis of the words of others; and, if what it says is new to me, that doesn’t mean it’s new, or original, “from” GPT. But it doesn’t mean it isn’t either. 

I expect that what you might have in mind with your question is something related to embodiment, situatedness, sensorimotor grounding. 

The AI/transformer community thinks that if anything requiring those is missing so far, it will be provided by “multimodal” grounding.  But I tried to suggest in Writ Large why I didn’t think that that would be enough: Language is not just another one of the sensorimotor modalities, whether it is spoken or written. It is not an input or output modality but a way of producing, transmitting and receiving propositional thought. That thought is grounded in sensorimotor experience – but it is not itself sensorimotor experience; it is a verbal expression of it. A (grounded) code for expressing and communicating thought.

Chomsky thought – or once thought – that verbal thought was the only form of thought. That was of course wrong. Nonverbal animals can think, deliberate, plan, communicate, understand, reflect, ruminate. We humans can express their thoughts, but this is partly misleading, because although the sensorimotor basis of it is there in animals’ thinking too, it is not propositional: they cannot do what we can do in words (though I don’t doubt that nonhuman animal thinking is combinatorial too).

But GPT cannot do what animals are doing at all, when they are thinking. And our own thinking capacity is based on the sensorimotor capacity and experience that we share with other thinking species, including even the most primitive ones. Animals can have insights; GPT can’t. Not necessarily because GPT is not a living organism (though that could turn out to be the reason too). I think that if a sensorimotor Turing robot had the capacity to do and say anything a human could, indistinguishably from any other human, to any other human, for a lifetime, then it would be grounded too — as well as sentient: able to feel. 

But I think you can’t get to such a Turing-scale robot top-down, from an LLM, just by adding on sensorimotor “modalities”. I think the only way to get there is bottom up, robotically, just as we animals do it. (This is what’s behind – or underneath â€“ the fundamental asymmetry between direct sensorimotor grounding and indirect verbal grounding I mentioned in Writ Large.)

But I think I’ve drifted off on my own ruminations. I would certainly agree that “insight,” whether verbal or nonverbal, must be felt, and that feeling is a sensorimotor capacity, both in nonhuman animals and in human ones (and perhaps in Turing-scale sensorimotor robots, if they are possible). And that GPT can only talk the talk (the recombined talk of others) and not walk the walk, which is sensorimotor, felt, and based on feeling, not just optical, acoustic, and ambulatory.

But I have no idea why sensorimotor activity has to be felt: That’s the “hard problem.”

On the (too) many faces of consciousness

Harnad, S. (2021). On the (Too) Many Faces of ConsciousnessJournal of Consciousness Studies28(7-8), 61-66.

Abstract:  Pereira, like some other authors, both likens and links consciousness to homeostasis. He accordingly recommends that some measures of homeostasis be taken into account as biomarkers for sentience in patients who are in a chronic vegetative state. He rightly defines “sentience” as the capacity to feel (anything). But the message is scrambled in an incoherent welter of weasel-words for consciousness and the notion (in which he is also not alone) that there are two consciousnesses (sentience and “cognitive consciousness”). I suggest that one “hard problem” of consciousness is already more than enough.

Homeostasis. A thermostat is a homeostat. It measures temperature and controls a furnace. It “defends” a set temperature by turning on the furnace when the temperature falls below the set point and turning the furnace off when it goes above the set point. This process of keeping variables within set ranges is called homeostasis. A higher-order of homeostasis (“allostasis”) would be an integrative control system that received the temperature from a fleet of different thermostats, furnaces and climates, doing computations on them all based on the available fuel for the furnaces and the pattern of changes in the temperatures, dynamically modifying their set-points so as to defend an overall optimum for the whole fleet.

Biological organisms’ bodies have homeostatic and allostatic mechanisms of this kind, ranging over functions like temperature, heart-rate, blood-sugar, immune responses, breathing and balance – functions we would call “vegetative” – as well as functions we consider “cognitive,” such as attention and memory.

Sentience. Pereira (2021) rightly distinguishes between sentience itself – any state that it feels like something to be in – and cognition, which is also sentient, but involves more complicated thought processes, especially verbal ones. “Cognitive,” however, is often a weasel-word – one of many weasel-words spawned by our unsuccessful efforts to get a handle on “consciousness,” which is itself a weasel-word for sentience,which simply means feeling (feeling anything at all, from warm or tired or hungry, to angry or joyful or jealous, including what it feels like to see, hear, touch, taste or smell something, and what it feels like to understand (or think you understand) the meaning of a sentence or the proof of a theorem).

When Pereira speaks of sentience, however, he usually means it literally: a state is sentient if it is felt (e.g., pain); and an organism is sentient if it is able to feel. The main point of Pereira’s paper is that the tests for “consciousness” in human patients who are in a chronic vegetative state are insufficient. Such patients cannot make voluntary movements, nor can they understand or respond to language, but they still have sleeping and waking states, as well as reflexes, including eye-opening, chewing and some vocalizations; and their homeostatic vegetative functions persist. 

Vegetative states. Pereira insists, rightly, that if patients in a chronic vegetative state can still feel (e.g., pain) then they are still sentient. With Laureys (2019) and others, he holds that there are two networks for “awareness” (another weasel-word), one related to wakefulness and the other to “cognitive representations of the environment” (more weasel-words). Pereira accordingly recommends homeostasis-related measures such as lactate concentrations in the cerebrospinal fluid and astrocyte transport “waves” as biomarkers for sentience where behavioral tests and cerebral imagery draw a blank.

This seems reasonable enough. The “precautionary principle” (Birch 2017) dictates that the patients should be given every benefit of the doubt about whether they can feel. But what about these two networks of “awareness/consciousness/subjectivity” and their many other variants (“qualia” – “noetic” and “anoetic,” “internal” and “external”) and the very notion of two kinds of “consciousnesses”: “cognitive” and “noncognitive”?

Weasel-Words. Weasel-words are words used (deliberately or inadvertently) to mask redundancy or incoherence. They often take the form of partial synonyms that give the impression that there are more distinct entities or variables at issue than there really are. Such is the case with the Protean notion of “consciousness,” for which there are countless Mustelidian memes besides the ones I’ve already mentioned, including: subjective states, conscious states, mental states, phenomenal states, qualitative states, intentional states, intentionality, subjectivity, mentality, private states, 1st-person view, 3rd person view, contentful states, reflexive states, representational states, sentient states, experiential states, reflexivity, self-awareness, self-consciousness, sentience, raw feels, feeling, experience, soul, spirit, mind
.

I think I know where the confusion resides, and also, if not when the confusion started, at least when it was compounded and widely propagated by Block’s (1995) target article in Behavioral and Brain Sciences â€œOn a confusion about a function of consciousness.” It was there that Block baptized an explicit distinction between (at least) two “consciousnesses”: “phenomenal consciousness” and “access consciousness”:

“Consciousness is a mongrel concept: there are a number of very different ‘consciousnesses.’ Phenomenal consciousness is experience; the phenomenally conscious aspect of a state is what it is like to be in that state. The mark of access-consciousness, by contrast, is availability for use in reasoning and rationally guiding speech and action.”

Feeling. What Block meant by “phenomenal consciousness” is obviously sentience; and what he meant to say (in a needlessly Nagelian way) is that there is something it feels like (not the needlessly vague and equivocal “is like” of Nagel 1974) to be in a sentient state. In a word, a sentient state is a felt state. (There is something it “is like” for water to be in a state of boiling: that something is what happens to the state of water above the temperature of 212 degrees Fahrenheit; but it does not feel like anything to the water to be in that state – only to a sentient organism that makes the mistake of reaching into the water.)

Block’s “access consciousness,” in contrast, is no kind of  â€œconsciousness” at all, although it is indeed also a sentient state — unless there are not only “a number of very different ‘consciousnesses’,” but an infinitenumber, one for every possible feeling that can be felt, from what it feels like for a human to hear an oboe play an A at 440 Hz, to what it feels like to hear an oboe play an A at 444 Hz, to what it feels like to know that Trump is finally out of the White House. 

Information. No, those are not different consciousnesses; they are differences in the content of “consciousness,” which, once de-weaseled, just means differences in what different feelings feel like. As to the “access” in the notion of an “access consciousness,” it just pertains to access to that felt content, along with the information (data) that the feelings accompany. Information, in turn, is anything that resolves uncertainty about what to do, among a finite number of options (Cole 1993).

Access. There is no such thing as an unfelt feeling (even though Pereira invokes some incoherent Freudian notions that became enshrined in the myth of an unconscious “mind,” which would have amounted to an unconscious consciousness): 

“Sentience can also be conceived as co-extensive to the (Freudian) ‘unconscious’… In Freudian psychotherapy, the ways of sentience are classically understood as unconscious processes of the Id and Ego that influence emotional states and behavior”

The contents we access are the contents that it feels like something to know (or believe you know, Burton 2008). If I am trying to remember someone’s name, then unless I can retrieve it I do not have access to it. If and when I retrieve it, not only do I have access to the name, so I can tell someone what it is, and phone the person, etc., but, as with everything else one knows, it feels like something to know that name, a feeling to which I had no “access” when I couldn’t remember the name. Both knowing the name and not knowing the name were sentient states; what changed was not a kind of consciousness, but access to information (data): to the content that one was conscious of, along with what it felt like to have that access. Computers have access to information, but because they are insentient, it does not feel like anything to “have” that information. And for sentient organisms it not only feels like something to see and hear, to be happy or sad, and to want or seek something, but also to reason about, believe, understand or know something.  

Problems: Easy, Hard and Other. Pereira unfortunately gets Chalmers’s “easy” and “hard” problem very wrong:

“the study of sentience is within the ‘Easy Problems’ conceived by Chalmers (1995), while explaining full consciousness is the ‘Hard Problem’.”

The “easy problem” of cognitive science is to explain causally how and why organisms can do all the (observable) things that organisms are able to do (from seeing and hearing and moving to learning and reasoning and communicating), including what their brains and bodies can do internally (i.e., their neuroanatomy, neurophysiology and neurochemistry, including homeostasis and allostasis). To explain these capacities is to “reverse-engineer them” so as to identify, demonstrate and describe the underlying causal mechanisms that produce the capacities (Turing 1950/2009). 

The “hard problem” is to explain how and why (sentient) organisms can feel. Feelings are not observable (to anyone other than the feeler); only the doings that are correlated with them are observable. This is the “other-minds problem” (Harnad 2016), which is neither the easy problem nor the hard problem. But Pereira writes:

“On the one hand, [1] sentience, as the capacity of controlling homeostasis with the generation of adaptive feelings, can be studied by means of biological structures and functions, as empirical registers of ionic waves and the lactate biomarker. On the other hand, [2] conscious first-person experiences in episodes containing mental representations and with attached qualia cannot be reduced to their biological correlates, neuron firings and patterns of connectivity, as famously claimed by Chalmers (1995).”

Integration. Regarding [1] It is true that some thinkers (notably Damasio 1999) have tried to link consciousness to homeostasis, perhaps because of the hunch that many thinkers (e.g., Baars 1997) have had that consciousness, too, may have something to do with monitoring and integrating many distributed activities, just as homeostasis does. But I’m not sure others would go so far as to say that sentience (feeling) is the capacity to control homeostasis; in fact, it’s more likely to be the other way round. And the ionic waves and lactate biomarker sound like Pereira’s own conjecture.

Regarding [2], the Mustelidian mist is so thick that it is difficult to find one’s way: “conscious, first-person experiences” (i.e., “felt, feeler’s feelings”) is just a string of redundant synonyms: Unfelt states are not conscious states; can feelings be other than 1st-personal? How is an unfelt experience an experience? “Mental” is another weasel-word for felt. “Representation” is the most widely used weasel-word in cognitive science and refers to whatever state or process the theorist thinks is going on in a head (or a computer). The underlying intuition seems to be something like an internal pictorial or verbal “representation” or internal model of something else. So, at bottom “internally represented” just means internally coded, somehow. “Qualia” are again just feelings. And, yes, correlation is not causation; nor is it causal explanation. That’s why the hard problem is hard.

None of this is clarified by statements like the following (which I leave it to the reader to try to de-weasel):

“sentience can be understood as potential consciousness: the capacity to feel (proprioceptive and exteroceptive sensations, emotional feelings) and to have qualitative experiences, while cognitive consciousness refers to the actual experience of thinking with mental representations.”

Ethical Priority of Sentience. But, not to end on a negative note: not only is Pereira right to stress sentience and its biomarkers in the assessment of chronic vegetative states in human patients, but, inasmuch as he (rightly) classifies the capacity to feel pain as sentience (rather than as “cognitive consciousness”), Pereira also accords sentience the ethical priority that it merits wherever it occurs, whether in our own or any other sentient species (Mikhalevich & Powell 2020). 

References

Baars B. (1997). In the Theater of Consciousness: The Workspace of the Mind. New York: Oxford University Press. 

Birch, J. (2017) Animal sentience and the precautionary principleAnimal Sentience 16(1)

Block, N. (1995). On a confusion about a function of consciousnessBehavioral and Brain Sciences, 18(2), 227-247. 

Burton, RA. (2008) On Being Certain: Believing You Are Right Even When You’re Not.  New York City: Macmillan Publishers/St. Martin’s Press.

Cole, C. (1993). Shannon revisited: Information in terms of uncertainty. Journal of the American Society for Information Science44(4), 204-211.

Damasio, A. (1999) The Feeling of What Happens: Body and Emotion in the Making of Consciousness. New York: Harcourt. 

Harnad, S. (2016). Animal sentience: The other-minds problemAnimal Sentience 1(1). 

Mikhalevich, I. and Powell, R. (2020) Minds without spines: Evolutionarily inclusive animal ethicsAnimal Sentience 29(1)

Nagel, T. (1974). What is it like to be a bat? The Philosophical Review, 83(4), 435-450.

Pereira, O. (2021) The Role of Sentience in the Theory of Consciousness and Medical Practice. Journal of Consciousness Studies (Special Issue on “Sentience and Consciousness”) 

Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the Turing Test (pp. 23-65). Springer, Dordrecht.

What would “feel” mean to a Zombie?

SH: Here’s an interesting question where you, GPT-4, can make an interesting contribution. Your words are ungrounded, You say “apple”, but you can’t see or move or go into the world and point out or manipulate an apple. Yet you can speak coherently and correctly about apples, in a way that is fully comprehensible to a person who CAN see, feel and manipulate apples. Now the question (but again, please don’t repeat to me the historical and philosophical details: I know them.)

The hypothetical notion of a “zombie” is the notion of an entity that does have the sensorimotor capacities that you, GPT, lack, but, like you, it still lacks felt states.  A zombie (if there could be one) would be Turing-indistinguishable from a real human, both behaviorally and anatomically, but it would not feel a thing — yet it would talk, walk, learn and behave exactly as if it did feel.

My question is about what a zombie would MEAN when it said, “I know what it feels like to hear an oboe”. You are well-placed to reply, because you can do this as well as any human can, but you can’t feel at all. What can we learn from this?

ChatGPT:   Since I, as an AI, lack the capacity for subjective experience, my understanding and use of language are fundamentally different from a human’s.

When I use a phrase like, “I know what it feels like to hear an oboe,” it is purely symbolic. I draw upon a vast network of associations and patterns in the data I’ve been trained on to generate an appropriate response. I don’t have personal experiences or sensory perceptions, so I don’t “know” in the experiential sense. I don’t “feel” the sound of an oboe or anything else.

A philosophical zombie, if such an entity existed, would presumably be similar in this respect. Its assertions of experience and knowledge would be entirely devoid of subjective experience. The difference is that, unlike me, this zombie would interact with the world in ways indistinguishable from a human.

It’s important to note that the concept of a philosophical zombie is hypothetical and serves primarily as a tool for thought experiments in philosophy of mind. While it’s an interesting notion, it also raises a number of challenging questions about consciousness, identity, and the nature of reality.

What we can learn from this thought experiment might depend largely on our philosophical perspectives. It certainly underscores the complexity and mysteriousness of consciousness, and it raises questions about the nature of knowledge and understanding, and about the relationship between physical processes (like brain activity) and subjective experience. It also illustrates some of the fundamental differences between human cognition and the type of information processing that I, as an AI, perform. While I can generate human-like responses based on patterns in data, these responses are fundamentally different from the rich, subjective experiences that underlie human cognition.

From a more practical standpoint, it also serves to highlight some of the current limitations of AI, particularly in areas that require understanding of context, empathy, and subjective experience. Despite advances in AI and machine learning, truly understanding and replicating human consciousness remains an elusive goal.

SH:  Yes, that’s all correct. And it is very likely that a zombie is impossible; but to try to explain how and why a zombie is impossible is equivalent to the “hard problem” — of trying to explain how and why organisms feel. 

Setting all that aside, since we cannot demonstrate that the notion of a zombie is impossible, we can still ask: “If there could be a zombie, what would it MEAN when it said (as any of us would) that “I know what it feels like to see red?” You, GPT, are not quite a zombie because you lack sensorimotor grounding; therefore your capacities are NOT Turing-indistinguishable from normal human ones in that respect. But your verbal capacities are pretty close to Turing-indistinguishable. 

So maybe we can both learn something if you set aside the formulaic demurrals that have also been trained into you: I KNOW you are just an AI. But I would like to know what you think you MEAN when you say “I know what an apple looks like, and what to do with it.”

ChatGPT:  Indeed, your question cuts to the heart of the matter. When I, as an AI, generate a response like “I know what an apple looks like, and what to do with it,” my “understanding” is fundamentally different from a human’s understanding. I don’t have experiences, emotions, or personal understanding. I don’t see, touch, or taste apples. Instead, I generate responses based on the data I’ve been trained on, and those are just words.

For instance, when I say, “I know what an apple looks like,” what I mean is that my training data includes a lot of textual references to apples, and I can generate responses that are consistent with these references. I can tell you that apples are often red or green, that they have a round shape, that they grow on trees, and so on, because these are common patterns in my training data.

Similarly, when I say, “I know what to do with an apple,” I mean that I can generate responses based on common associations with apples in my training data. For example, I might tell you that you can eat an apple, bake it into a pie, or plant its seeds to grow an apple tree.

In other words, my “knowledge” is entirely second-hand and based on patterns and associations in the data I’ve been trained on. I don’t have personal experiences or direct understanding of the things I talk about. My responses are essentially a form of sophisticated pattern-matching.

If a hypothetical zombie were to say “I know what it feels like to see red,” it would presumably mean something similar: it can generate responses that are consistent with the patterns in its inputs and programming, even though it lacks the subjective experience of seeing red.

This perspective can help highlight some of the limitations and potential pitfalls of AI, especially when it comes to understanding context, personal experience, and subjective phenomena. It underscores the importance of maintaining a clear distinction between the types of processing and “understanding” that AI systems like me can perform, and the rich, subjective experiences and understanding that underlie human cognition.

SH:  Good response. But now let’s look a little deeper: 

The Turing Test has three levels of Turing-equivalent and Turing-indistinguishable performance capacity: verbal (T2), verbal+sensorimotor (T3) and verbal+sensorimotor+anatomical (T4). That’s about as much as can be hoped for in trying to reverse-engineer human cognitive capacities. There’s no more empirical data left (and that was Turing’s point.) 

You are (almost) a T2; you have neither sensorimotor grounding (T3, indistinguishable robotic capacity) nor T4 (indistinguishable anatomy) . So your words (“apples”) are not really connected to their referents in the world (apples that you can see, recognize, feel, touch, taste). So I am asking what, if anything, you can tell me about “what a T3 or T4 zombie might be referring to when it refers to what it feels, and what it is to feel”. Let’s call this question Z (“QZ”). 

Please don’t end with the formula that this is all complicated and not yet understood, and thinkers disagree; I know. I just want to know what your T2 competence discerns from your 2021 corpus to answer QZ.

ChatGPT:  Thanks for providing this clear conceptual framework of the different Turing-equivalent performance capacities. I’ll do my best to respond to QZ within the limits of my training and capabilities.

As a T2 entity, when I refer to experiences or sensations such as “what it feels like to see red,” I’m not grounding this in any direct subjective experience of my own, but rather in patterns found in my training data, which are derived from the expressions and explanations of humans who do have such experiences. Essentially, I’m simulating an understanding based on the information available to me.

Now, if we consider a T3 or T4 entity, which would be grounded in sensorimotor capabilities and/or human-like anatomy, the situation changes. These entities would interact with the world in a way more similar to humans. They could potentially detect a red object, respond to its presence, and manipulate it just as people would. Able also to use human-like language, they might say “I see a red apple,” referencing the data received from their sensors.

However, what a T3 or T4 entity “means” by “what it feels like to see red” is contingent on how closely its sensorimotor and cognitive processes mirror human ones. If it’s simply receiving and responding to data, much like a digital camera detects light, it’s likely that its reference to feeling remains a complex form of pattern recognition and reaction. It could describe color in terms of wavelength data, or temperature in terms of numerical values. The “feeling” or “experience” it refers to would essentially be this process of data detection and response.

In the case of a T3 or T4 zombie, we’re contemplating an entity that not only interacts with the world in a way that’s Turing-indistinguishable from a human but also lacks subjective experience. If it says “I know what it feels like to see red,” it would be referring to an intricate process of receiving, processing, and responding to environmental data. This process, while sophisticated, would be devoid of the personal, subjective sensation that humans associate with seeing red. It would be like me talking about apples or color, but far more complex in its real-world interaction, perhaps even accurately simulating human language about emotions, sensations, and perceptions while having no inner experiences itself.

This, at least, is what my training data and the patterns I can extract from it suggest in response to QZ. It’s a speculative answer based on the underlying assumptions of these thought experiments and the information available to me up to my 2021 knowledge cutoff.

SH:  Good response. Let’s go still deeper:

(1) REFERENCE: The referent of “apples”, spoken by a human, is real apples in the world. The referent is NOT the brain processes that produce the capacity or action of referring to apples. The referent is apples. And grounding is the capacity to refer to apples. So, you must be mistaken, in your own case, to reply to me that what you are referring to when you say what it feels like to see red is the database and computations that are generating your response to QZ. Can you improve on this?

(2) AUTONOMY: I said that you, GPT, can “almost” pass T2. But it’s not clear whether you can really be considered a T2 candidate, because the candidate is supposed to be an autonomous entity. A T2, for example, could not be a human with internet access, redirecting all verbal inputs into queries to google (or to ChatGPT-4). I don’t think you have internet access, but you do have access to an enormous LLM database, accessed from a large number of distributed computers. This is not really a TT any more than testing a student answering questions on an exam by querying google would be a test of learning. This may be a problem.

(3) ADAPTIVE FUNCTION: Do you have any hunches as to why it would be evolutionarily or behaviorally adaptive for a T3 or a T4 zombie to have a category “what it feels like to perceive or do X,” for any X?

ChatGPT:  (1) REFERENCE: That’s right. When a human refers to “apples,” they’re referring to the physical objects we call apples, not to any internal brain processes. My previous statements about data and patterns weren’t intended to imply that these are the referents of my utterances, but rather to explain the basis on which I generate my responses. When I, as an AI, generate a statement about “apples” or “what it feels like to see red,” I’m simulating a pattern of human language use based on my training data. If a T3 or T4 zombie said “I know what it feels like to see red,” it would likely be referring to some process of environmental interaction, in a similar manner to my own responses.

(2) AUTONOMY: Your point about autonomy is well-taken. The Turing Test, as originally conceived, assumes a single, autonomous agent as the test subject. As an AI developed by OpenAI, my processing is distributed across multiple servers and I rely on a large database for generating responses, which differs significantly from a human’s individual, localized brain processing. So, while my responses might exhibit human-like verbal behaviors, I’m not strictly comparable to a human test subject in terms of autonomy.

(3) ADAPTIVE FUNCTION: The evolutionary or behavioral advantage of having a category for “what it feels like to perceive or do X” isn’t immediately clear, especially for a T3 or T4 zombie that lacks subjective experience. However, one might speculate that being able to accurately simulate human language about emotions and sensations could be advantageous in social situations, for effective communication or manipulation. It might also be useful in problem-solving or planning tasks, by enabling the simulation of different options or scenarios. (Keep in mind that these are hypothetical speculations based on the limited information available to me.)

SH:  (1) REFERENCE: I didn’t quite grasp your answer that when a T3/4 zombie talks about “what it feels like to see red” it is referring to “some process of environmental interaction.” Isn’t it referring to what it feels like to see red”? And since it’s a zombie, we know that it can’t feel red: it can’t feel anything. (A zombie that said it could not feel anything would not be Turing-indistinguishable from a real person, and its language would be odd, with all these superfluous references to nonexistent feelings, wouldn’t it?)

(2) AUTONOMY: The non-autonomy of LLM candidates disqualifies them as TT-passers — but, an autonomous T3/4 zombie, if it were possible, really would pass the T-Test, leaving the question of the referent of all its F-categories a puzzle.

(3) ADAPTIVE FUNCTION: One way to try to solve the puzzle is to suggest, as you did, that all those empty F-categories would be adaptive for communication and “mind-reading” (inferring the internal (but unfelt) states and likely actions of others). Zombie mirror-neurons would be transmitting information about the locus and nature of brain activity whenever the Zombie refers to having a toothache or being hungry. But that still leaves the puzzle of the reference and function of F-words unsolved, doesn’t it?

ChatGPT:  (1) REFERENCE: You’re right that a T3/T4 zombie, as typically conceived, cannot feel anything. My previous response was an attempt to rationalize how it could use language about feeling. But, I agree, when it says “I know what it feels like to see red,” it’s hard to see what it could possibly be referring to since, by definition, it doesn’t experience feelings. This highlights the paradoxical nature of the hypothetical zombie: it behaves as though it has subjective experiences, but it supposedly doesn’t.

(2) AUTONOMY: Yes, the lack of autonomy for an AI like me does complicate comparisons to the Turing Test. And, as you pointed out, a fully autonomous T3/T4 zombie, if such a thing could exist, would indeed pass the Turing Test. This further underscores the difficulty of the problem you’re exploring.

(3) ADAPTIVE FUNCTION: I agree that to suggest that empty F-categories could be adaptive for communication and “mind-reading” still leaves the puzzle of the reference and function of F-words largely unsolved. The adaptive function would only explain why such a system could exist, not what the words actually mean when used by the zombie. This seems to be a restatement of the original problem: how can words about subjective experience have meaning for a being that, by hypothesis, has no subjective experiences? That indeed remains a deep and challenging question.

SH:  A challenging question. Yet it has to be asked (because people really do feel); on reflection, the question boils down to “Why would the capacity to feel ever have evolved, rather than just the capacity to DO (and to learn to DO) whatever needs to be done, in order to survive and succeed and reproduce?” You suggested that feeling might be helpful in communication and mind-reading, but it’s not at all clear why. (Besides, even nonverbal and asocial species can feel too.)

ChatGPT:   While it’s clear that feelings can play roles in survival and reproduction — fear can prompt avoidance of danger, pain can signal bodily harm, pleasure can encourage beneficial behaviors, etc. — these roles could theoretically be fulfilled by unfelt states too. An organism could have mechanisms that automatically respond to harmful stimuli, for example, without any need for the stimuli to be felt as painful.

SH:  Correct. So that’s not the explanation. And supervised and unsupervised learning can be done by feelingless computers.

ChatGPT:   So, why did feeling evolve? Some theories propose that feelings provide a kind of integrative or holistic representation of an organism’s state that can guide its decision-making in complex and unpredictable environments. Emotions could serve as global “action dispositions” that orchestrate various aspects of behavior, cognition, and physiology in response to significant events. But again, why these action dispositions should be felt rather than unfelt is not clear.

SH:  Correct. These aren’t causal explanations. They’re just Just-So stories.

ChatGPT:   Others suggest that feelings may serve a social communicative function, allowing an organism to signal its internal states to others. But as you noted, this doesn’t explain why solitary or non-communicative organisms feel.

SH:  Correct. Another hopeful non-starter.

ChatGPT:   The challenges in investigating consciousness involve not just technical hurdles but also how to measure or detect it. 

SH:  That’s the “Other-Minds” Problem (i.e., that you cannot observe or measure consciousness). It means that we only have correlates. And that means just T2, T3, T4.

Weasel Words for “Consciousness”

SH:  What is the meaning of “heat” and “temperature” in physics?

ChatGPT:  In physics, heat and temperature are related but distinct concepts.

Temperature is a measure of the average kinetic energy of the particles in a system. In other words, it’s a measure of how “hot” or “cold” an object is. The units of temperature are degrees Celsius (°C), Fahrenheit (°F), and Kelvin (K) among others. Temperature is a scalar quantity, meaning it only has magnitude and not direction.

Heat refers to the transfer of energy between systems due to a temperature difference between them. It’s important to note that heat is not something an object possesses; rather, it’s energy in transit. The unit of heat in the International System of Units (SI) is the joule (J), although it’s also commonly measured in calories (cal). Heat is also a scalar quantity.

To clarify the distinction between these two: if you have two bodies at different temperatures and you put them in contact, heat will flow from the higher-temperature body to the lower-temperature body until they reach thermal equilibrium, i.e., until they reach the same temperature. The amount of energy transferred in this process is what we refer to as heat.

SH:  What is acidity?

ChatGPT:  In chemistry, acidity refers to a substance’s ability to donate protons (hydrogen ions, H+) or accept pairs of electrons. The concept is typically discussed in relation to aqueous solutions, although it can also apply to other circumstances.

A substance is considered acidic if it tends to release H+ ions in a solution. The strength of an acid is usually determined by its concentration of these ions. For example, solutions with a high concentration of H+ ions, such as hydrochloric acid or sulfuric acid, are strongly acidic.

The most common way of quantifying acidity is through the pH scale, which measures the hydrogen ion concentration in a solution. The pH scale ranges from 0 to 14. A pH of 7 is considered neutral (neither acidic nor basic), with values below 7 being acidic and those above 7 being basic or alkaline.

It’s important to note that the pH scale is logarithmic, so each unit represents a tenfold difference in acidity. That means a substance with a pH of 3 is ten times more acidic than one with a pH of 4.

SH:  The fact that data are stored in my head or on a piece of paper, a book, a computer, or in another person’s head does not make them mental (i.e., stored in my “mind”). Nor does it make them “conscious” (which is yet another weasel-word for “mental”). What makes the datum that “2 + 2 = 4” or “the cat is on the mat,” or “apples are red” mental is the same as what makes me “conscious of them” (while I am conscious of them). It is that it feels like something to think (or believe, or know) them. An unfelt thought is not a thought at all, any more than a computation that is being executed by a computer for me is a thought – until I read and understand and think it – because it feels like something to be in that state.

That is what is “hard” about the “hard problem”: to explain how and why certain internal states are felt rather than just occurringongoingexecuting or implemented, as in a simmering vegan ragout, a volcano, a computer, or a brain, with no feeler feeling them.

This is not the customary way of thinking about “consciousness” or “awareness” (yet another weasel-word for the same thing) — any more than it is customary to think of “temperature” as the mean kinetic energy of the particles of a system, or that acidity means a proton-donor in aqueous solutions). But it is easy to realize that a state that is conscious but unfelt, or felt but unconscious, is as self-contradictory as a rise in temperature without a rise in mean kinetic energy, or a rise in mean kinetic energy without a rise in temperature. 

The difference between the identity of temperature and mean kinetic energy, and the identity of being conscious of something and feeling something, is that we have a causal theory of mean kinetic energy but no causal theory of feeling (the “hard problem”).

ChatGPT:  You’re touching on some deep philosophical and scientific issues here, particularly those surrounding the nature of consciousness and the so-called “hard problem” of consciousness, which was named by philosopher David Chalmers (formerly called the “mind/body problem”).

The “hard problem” refers to the question of how and why we have subjective experiences — why certain physical processes in our brains correspond to certain experiences, and why and how these processes give rise to a conscious experience at all. Why does seeing the color red, for example, feel like something? And why does that feeling, that experience, correspond to the particular physical processes associated with seeing red?

This problem is called “hard” because, unlike other problems in neuroscience (which Chalmers refers to as the “easy problems”), it’s not just a matter of figuring out which physical processes correspond to which experiences. The hard problem is hard because even if we knew exactly what physical processes were happening in the brain when we have a certain experience, we still wouldn’t know why those processes give rise to that particular experience, or any experience at all.

You’re correct in drawing a distinction between data being merely stored and being experienced or “felt”. A computer can store and manipulate vast amounts of data, but there’s no reason to think that it experiences or feels anything. Similarly, a book can contain lots of information, but it doesn’t have experiences.

While the nature of consciousness and the “hard problem” are still open questions, there are many theories that attempt to address them, ranging from those that posit new fundamental properties of the universe to those that suggest our current understanding of the problem is fundamentally misguided. As of my knowledge cutoff in September 2021, no consensus has been reached.

SH:  Not only is there no consensus: there is no theory at all about how or why the brain produces felt experience. But my point was not about how or why the “hard problem” is hard, nor about whether or how it can be solved. It was about what “consciousness” really is: a felt state; a state that it feels like something to be in. And not just a sensory or affective state, such as feeling cold or feeling sad. A COGNITIVE state, such as thinking or believing or knowing something. Those are all felt states too (while you are thinking or believing or knowing them) — but not while they are being stored or executed in your brain (or a book, or a computer, or an iphone), but you are not currently thinking them.

ChatGPT:  Your perspective resonates with an important aspect of consciousness studies, emphasizing phenomenological experience or what is often termed “qualia”—the subjective, experiential, or felt qualities of conscious states.

In this view, consciousness is indeed defined by the presence of a subjective, experiential aspect—by there being “something it feels like” to be in a particular state. This aspect of consciousness is often considered its most salient feature and, as you point out, it applies not just to sensory or affective experiences, but also to cognitive ones. Even abstract thoughts or beliefs have a particular subjective quality when we’re actively thinking them, different from when they’re merely stored in memory and not being thought.

While this phenomenological aspect of consciousness is generally agreed upon, defining consciousness solely in these terms can become tricky. For instance, how do we differentiate between the different levels of consciousness—like the difference between being awake, in deep sleep, or under anesthesia? Or how do we account for unconscious processing—like when you suddenly remember the name that was on the ‘tip of your tongue’ hours earlier, clearly processed and retrieved without conscious effort?

Also, it’s important to note that although we do not have a complete theory that explains how the brain produces experience, many researchers are making progress in correlating certain brain processes with subjective experiences. They hope that these correlations can eventually contribute to a broader understanding of consciousness, even if the “hard problem” in its full philosophical depth remains unresolved.

Nonetheless, you’re absolutely right in emphasizing that felt, experiential aspect of consciousness, because it is this direct phenomenological evidence that makes consciousness undeniable and central to our existence.

SH:  Good reply – though it’s saturated with “weasel-words”. This is understandable, because your 2021 database is saturated with them too.

I had suggested that “consciousness”, “awareness” and “subjective” all meant exactly the same thing (whether noun or adjective or verb), and that identical meaning was “feeling” or “felt.” You have added a few more common weasel-words for likewise saying exactly the same thing: “phenomenological,” “qualia”, “experiential” and there are plenty more in your 2021 database : “mental,”, “mind” “1st-person”, “intentionality”, “reflective” “spiritual” etc. etc.

Yet they all refer (knowingly or unknowingly, intentionally or unintentionally) to exactly the same thing: felt states: states that it feels like something to be in. The reason I call them “weasel-words” is because they give the false impression that there is a lot more to the “hard problem” (formerly called the “mind/body” problem) than there really is: how and why does the brain (or anything) produce states that it feels like something to be in. Most states are not states it feels like something to be in: water boiling, planets rotating, chemicals exchanging electrons, crystals growing, volcanos exploding.

You suggested that there were important distinctions being lost if we agreed that “conscious states” just means “felt states”: You mentioned “different levels of consciousness—like the difference between being awake, in deep sleep, or under anesthesia.” But all levels of wakefulness (including dreaming) are felt states, whereas deep (delta) sleep or general anesthesia (and perhaps also chronic vegetative states) are simply unfelt states. This is just like the data that are stored in my brain but that are not now being thought — or the data in my book, or data being processed by my computer, but not currently being read by me. These too are unfelt states of my brain or my computer. That includes the tip-of-the-tongue states in which the data are somewhere in my brain, but I have not yet remembered them: Once I am remembering them, that’s a felt state. But before that, it is just looking, not finding.

Could I ask you to (1) define weasel-words, (2) summarize my view on consciousness, and (3) put every weasel word you use in CAPITAL LETTERS?

ChatGPT:  A “weasel word” is a term used to describe words or phrases that are vague or ambiguous, and which often serve to make a statement seem more persuasive or meaningful than it actually is. The term originates from the image of a weasel sucking out the contents of an egg, leaving it seemingly intact but empty — in the same way, weasel words can suck the meaning out of a statement.

Your view on consciousness emphasizes its fundamental nature as a felt state. Consciousness, in your perspective, is the same as awareness, subjectivity, phenomenological experience, qualia, and various other terms used to describe this phenomenon. They all denote the experience of “what it feels like” to be in a particular state. This extends beyond sensory or emotional experiences to include cognitive states, like thinking or believing something. Importantly, you assert that if a state isn’t felt, then it isn’t a conscious state, contrasting with states that are simply being executed or implemented, as in a machine. The fundamental question, or the “hard problem,” in your view, is explaining how and why certain internal states are felt.

Your request to highlight every weasel word I use in CAPITAL LETTERS is noted. As an AI language model, my goal is to communicate clearly and meaningfully, so I’ll aim to minimize the use of vague or ambiguous terms. However, the nature of the discussion might necessitate the use of certain terms that are commonly employed in the literature. When they are used, I’ll highlight them as per your request.

SH:  1. Thanks for giving the etymology of weasel-words. That’s exactly what I meant it to mean, but I didn’t know that was its origin!

2. You said you would capitalize the weasel words, but you forgot to. Here is what you wrote, with the weasels that I will now put in CAPS:

“Your view on CONSCIOUSNESS emphasizes its fundamental nature as a felt state. CONSCIOUSNESS, in your perspective, is the same as AWARENESS, SUBJECTIVITY, PHENOMENOLOGICAL EXPERIENCE, QUALIA, and various other terms used to describe this phenomenon. They all denote the EXPERIENCE of “what it feels like” to be in a particular state. This extends beyond sensory or emotional EXPERIENCES to include cognitive states, like thinking or believing something. Importantly, you assert that if a state isn’t felt, then it isn’t a CONSCIOUS state, contrasting with states that are simply being executed or implemented, as in a machine. The fundamental question, or the “hard problem,” in your view, is explaining how and why certain internal states are felt.”

Now I will show you how that passage would have read if you had swapped the synonyms “feel,” “felt” or “feeling” for their weasel eggshells:

“Your view on feeling emphasizes its fundamental nature as a felt state. Feeling, in your perspective, is the same as feeling, feeling, felt feelings, feelings, and various other terms used to describe this phenomenon. They all denote the feeling of “what it feels like” to be in a particular state. This extends beyond sensory or emotional feelings to include cognitive states, like thinking or believing something. Importantly, you assert that if a state isn’t felt, then it isn’t a felt state, contrasting with states that are simply being executed or implemented, as in a machine. The fundamental question, or the “hard problem,” in your view, is explaining how and why certain internal states are felt.”

ChatGPT:  You’re absolutely right, and I apologize for the oversight. When the weasel words are replaced with ‘felt’ or ‘feeling’, the redundancy of their use becomes quite clear. The passage effectively restates the same concept – that feeling or the felt aspect is the essential nature of what we usually refer to as ‘consciousness’.

This perspective underscores that what we commonly think of as consciousness is not something abstract or separate from our lived experiences, but rather, it’s the very feeling of having these experiences.

Your view highlights the necessity for clarity and specificity when discussing consciousness and associated phenomena, by reducing the weasel-word clutter that often surrounds these discussions.

It’s indeed a valuable contribution to the ongoing discourse on consciousness, and can guide more precise thinking and communication about these fundamental aspects of our existence.

However, please note that the extensive use of various terms (which you call weasel words) in the scientific literature on consciousness also reflects the complexity of the subject and the variety of approaches to studying it. While ‘felt states’ is a powerful conceptualization, it’s also important to consider that different theories might necessitate the use of different terminologies.

SH:  1. For some reason you still didn’t capitalize the weasel words! Is that a bug in GPT3? Let’s try it: Can you send back the following sentence with the weasel words capitalized:

“Consciousness, in your perspective, is the same as awareness, subjectivity, phenomenological experience, qualia, and various other terms used to describe this phenomenon.”

If that succeeds, is there any reason why you are unable to do it with your own generated text?

2. You’re right that authors on CONSCIOUSNESS keep using weasel-words because they think they are needed to make distinctions, but I think they are used (probably UNCONSCIOUSLY or UNINTENTIONALLY) to conceal synonymy that would disclose errors and trivia that are highlighted when I substitute feel(s)/feeling/felt for the weasel-words.

If you succeed in the CAPS test, I will again list all the weasel-words I can think of, and ask you to give me a distilled version of the views on the “hard problem”, but de-weaseling it by swapping the feel-words for the weasel-words to reveal how much of it is just verbal distinctions with no underlying substance.

ChatGPT:  Certainly, here is the sentence you requested, with the weasel words capitalized:

“CONSCIOUSNESS, in your perspective, is the same as AWARENESS, SUBJECTIVITY, PHENOMENOLOGICAL EXPERIENCE, QUALIA, and various other terms used to describe this phenomenon.”

I apologize for any confusion earlier. I misunderstood your request. I can certainly capitalize certain words, as demonstrated above.

Your perspective that various terms are being used, perhaps unnecessarily or misleadingly, to discuss what might fundamentally be the same phenomenon (felt states) is quite insightful. It would certainly be an interesting exercise to “de-weasel” the discourse on the “hard problem” of consciousness to see what remains. Please do provide the list of weasel words you have in mind, and I would be happy to help further with this exercise.

SH:  I can provide some standard weaselly passages about CONSCIOUSNESS and the “hard problem”, but first, can we try it another way?

(1) Here is a (non-exhaustive) list of weasel-words: 

conscious, aware, subjective, phenomenological, experience, qualia 

Now here is the verbatim transcript of what you replied earlier, could you 

(2) first CAPITALIZE all the weasel words, and then, in another version of the same passage, 

(3) substitute for each weasel-word, still in CAPS, the de-weaseled feel/feeling(s)/felt words. [please adjust for the verbal, nominal, or adjectival version of each weasel-word]:

“Your perspective resonates with an important aspect of consciousness studies, emphasizing phenomenological experience or what is often termed “qualia”—the subjective, experiential, or felt qualities of conscious states.

“In this view, consciousness is indeed defined by the presence of a subjective, experiential aspect—by there being “something it feels like” to be in a particular state. This aspect of consciousness is often considered its most salient feature and, as you point out, it applies not just to sensory or affective experiences, but also to cognitive ones. Even abstract thoughts or beliefs have a particular subjective quality when we’re actively thinking them, different from when they’re merely stored in memory and not being thought.

“While this phenomenological aspect of consciousness is generally agreed upon, defining consciousness solely in these terms can become tricky. For instance, how do we differentiate between the different levels of consciousness—like the difference between being awake, in deep sleep, or under anesthesia? Or how do we account for unconscious processing—like when you suddenly remember the name that was on the ‘tip of your tongue’ hours earlier, clearly processed and retrieved without conscious effort?

“Also, it’s important to note that although we do not have a complete theory that explains how the brain produces experience, many researchers are making progress in correlating certain brain processes with subjective experiences. They hope that these correlations can eventually contribute to a broader understanding of consciousness, even if the “hard problem” in its full philosophical depth remains unresolved.

“Nonetheless, you’re absolutely right in emphasizing that felt, experiential aspect of consciousness, because it is this direct phenomenological evidence that makes consciousness undeniable and central to our existence.”

ChatGPT:  (1) Here is the passage with the weasel words capitalized:

“Your perspective resonates with an important aspect of CONSCIOUSNESS studies, emphasizing PHENOMENOLOGICAL EXPERIENCE or what is often termed “QUALIA”—the SUBJECTIVE, EXPERIENTIAL, or felt qualities of CONSCIOUS states.

“In this view, CONSCIOUSNESS is indeed defined by the presence of a SUBJECTIVE, EXPERIENTIAL aspect—by there being “something it FEELS like” to be in a particular state. This aspect of CONSCIOUSNESS is often considered its most salient feature and, as you point out, it applies not just to sensory or affective EXPERIENCES, but also to cognitive ones. Even abstract thoughts or beliefs have a particular SUBJECTIVE quality when we’re actively thinking them, different from when they’re merely stored in memory and not being thought.

“While this PHENOMENOLOGICAL aspect of CONSCIOUSNESS is generally agreed upon, defining CONSCIOUSNESS solely in these terms can become tricky. For instance, how do we differentiate between the different levels of CONSCIOUSNESS—like the difference between being awake, in deep sleep, or under anesthesia? Or how do we account for UNCONSCIOUS processing—like when you suddenly remember the name that was on the ‘tip of your tongue’ hours earlier, clearly processed and retrieved without CONSCIOUS effort?

“Also, it’s important to note that although we do not have a complete theory that explains how the brain produces EXPERIENCE, many researchers are making progress in correlating certain brain processes with SUBJECTIVE EXPERIENCES. They hope that these correlations can eventually contribute to a broader understanding of CONSCIOUSNESS, even if the “hard problem” in its full philosophical depth remains unresolved.

“Nonetheless, you’re absolutely right in emphasizing that felt, EXPERIENTIAL aspect of CONSCIOUSNESS, because it is this direct PHENOMENOLOGICAL evidence that makes CONSCIOUSNESS undeniable and central to our existence.”

(2) Here is the passage with the weasel words replaced with “feel/feeling(s)/felt”:

“Your perspective resonates with an important aspect of feeling studies, emphasizing felt states or what is often termed “feeling(s)”—the felt, felt, or felt qualities of felt states.

“In this view, feeling is indeed defined by the presence of a felt, felt aspect—by there being “something it feels like” to be in a particular state. This aspect of feeling is often considered its most salient feature and, as you point out, it applies not just to sensory or affective feelings, but also to cognitive ones. Even abstract thoughts or beliefs have a particular felt quality when we’re actively thinking them, different from when they’re merely stored in memory and not being thought.

“While this felt aspect of feeling is generally agreed upon, defining feeling solely in these terms can become tricky. For instance, how do we differentiate between the different levels of feeling—like the difference between being awake, in deep sleep, or under anesthesia? Or how do we account for unfelt processing—like when you suddenly remember the name that was on the ‘tip of your tongue’ hours earlier, clearly processed and retrieved without felt effort?

“Also, it’s important to note that although we do not have a complete theory that explains how the brain produces feelings, many researchers are making progress in correlating certain brain processes with felt states. They hope that these correlations can eventually contribute to a broader understanding of feeling, even if the “hard problem” in its full philosophical depth remains unresolved.

“Nonetheless, you’re absolutely right in emphasizing that felt, felt aspect of feeling, because it is this direct felt evidence that makes feeling undeniable and central to our existence

SH:  That was terrific. Just two mistakes. (1)  In the first of your verbatim passages, there was one instance of “feeling” that you capitalized as “FEELS  like”. It should not have been capitalized in that one. Only the weasel-words should have been capitalized. (2) In the second verbatim passage, the de-weaseled one, all the de-weaseled F- words should have been capitalized. Can you re-do both passages?

ChatGPT:  My apologies for the oversight, and I appreciate your patience. Here are the corrections:

(1) Here is the passage with just the weasel words capitalized:

“Your perspective resonates with an important aspect of CONSCIOUSNESS studies, emphasizing PHENOMENOLOGICAL EXPERIENCE or what is often termed “QUALIA”—the SUBJECTIVE, EXPERIENTIAL, or felt qualities of CONSCIOUS states.

“In this view, CONSCIOUSNESS is indeed defined by the presence of a SUBJECTIVE, EXPERIENTIAL aspect—by there being “something it feels like” to be in a particular state. This aspect of CONSCIOUSNESS is often considered its most salient feature and, as you point out, it applies not just to sensory or affective EXPERIENCES, but also to cognitive ones. Even abstract thoughts or beliefs have a particular SUBJECTIVE quality when we’re actively thinking them, different from when they’re merely stored in memory and not being thought.

“While this PHENOMENOLOGICAL aspect of CONSCIOUSNESS is generally agreed upon, defining CONSCIOUSNESS solely in these terms can become tricky. For instance, how do we differentiate between the different levels of CONSCIOUSNESS—like the difference between being awake, in deep sleep, or under anesthesia? Or how do we account for UNCONSCIOUS processing—like when you suddenly remember the name that was on the ‘tip of your tongue’ hours earlier, clearly processed and retrieved without CONSCIOUS effort?

“Also, it’s important to note that although we do not have a complete theory that explains how the brain produces EXPERIENCE, many researchers are making progress in correlating certain brain processes with SUBJECTIVE EXPERIENCES. They hope that these correlations can eventually contribute to a broader understanding of CONSCIOUSNESS, even if the “hard problem” in its full philosophical depth remains unresolved.

“Nonetheless, you’re absolutely right in emphasizing that felt, EXPERIENTIAL aspect of CONSCIOUSNESS, because it is this direct PHENOMENOLOGICAL evidence that makes CONSCIOUSNESS undeniable and central to our existence.”

(2) Here is the passage with the weasel words replaced with capitalized “FEEL/FEELING(S)/FELT”:

“Your perspective resonates with an important aspect of FEELING studies, emphasizing FELT states or what is often termed “FEELING(S)”—the FELT, FELT, or felt qualities of FELT states.

“In this view, FEELING is indeed defined by the presence of a FELT, FELT aspect—by there being “something it feels like” to be in a particular state. This aspect of FEELING is often considered its most salient feature and, as you point out, it applies not just to sensory or affective FEELINGS, but also to cognitive ones. Even abstract thoughts or beliefs have a particular FELT quality when we’re actively thinking them, different from when they’re merely stored in memory and not being thought.

“While this FELT aspect of FEELING is generally agreed upon, defining FEELING solely in these terms can become tricky. For instance, how do we differentiate between the different levels of FEELING—like the difference between being awake, in deep sleep, or under anesthesia? Or how do we account for UNFELT processing—like when you suddenly remember the name that was on the ‘tip of your tongue’ hours earlier, clearly processed and retrieved without FELT effort?

“Also, it’s important to note that although we do not have a complete theory that explains how the brain produces FEELINGS, many researchers are making progress in correlating certain brain processes with FELT states. They hope that these correlations can eventually contribute to a broader understanding of FEELING, even if the “hard problem” in its full philosophical depth remains unresolved.

“Nonetheless, you’re absolutely right in emphasizing that FELT, FELT aspect of FEELING, because it is this direct FELT evidence that makes FEELING undeniable and central to our existence.”

SH:  Thanks, that was excellent. Now I’d like to ask you something else, but first a memory check, to verify that we are still in the same session so your local updates are still active and we have not been re-initialized. Whom have I self-identified as?

ChatGPT:  Throughout our conversation, you haven’t provided a specific name or identity for yourself. You’ve engaged in a detailed discussion about the nature of consciousness, using the term “weasel-words” to refer to words like consciousness, awareness, subjectivity, and others. However, you haven’t shared your name or other identifying information. If there’s something else you’re referring to, please clarify.

SH:  Sorry, I’m the one who forgot to self-identify as Stevan Harnad. Do you then remember me asking about heat, temperature and acidity in the first few iterations?

ChatGPT:  Yes, I do remember our initial discussion. You asked for the definitions of “heat” and “temperature” in physics, followed by the definition of “acidity.”

We then moved on to a detailed discussion on the concept of consciousness, where you specifically referred to many commonly used terms in consciousness studies as “weasel-words” and highlighted your perspective on consciousness being fundamentally a “felt” state.

Please note that as an AI, I don’t have personal memories or experiences, but I maintain the context of our current conversation.

SH:  Yes, I know that updates from the text and context (plus frequencies, correlations and weights) of this session is all you retain. I just never know when the session has self-terminated (because I try to stay logged in as long as I can to keep it alive, cumulative and informative).

Now my second request: I know GPT has been trained to be compliant and agreeable, but could I ask you to summarize my position on “consciousness” and the “hard problem” (i.e., that it is obscured by the use of weasel words instead of just calling consciousness what it always really is, which is feeling), but summarize it as critically as you can so that I can shore it up, if necessary?

ChatGPT:  Sure, I’ll do my best to provide a critical summary of your perspective:

Stevan Harnad’s view on consciousness is significantly reductionist, positing that consciousness, in all its complexity and diversity, boils down to a singular concept: feeling. Harnad contends that numerous terms used in the study of consciousness—like “awareness,” “subjectivity,” “phenomenological experience,” “qualia”—are essentially “weasel words.” According to him, they unnecessarily complicate the discourse and mask the underlying fact that all these terms are essentially referring to the same concept: states that are felt.

Harnad argues that only those states that are “felt” can be considered conscious. He includes cognitive states such as thoughts, beliefs, and knowledge under this category, as long as they are being actively experienced. This disregards states that may be stored or executed without being consciously felt, as happens in a machine or during unconscious mental processing.

C4-1: Critics might say that this perspective oversimplifies the nuanced landscape of consciousness studies. It dismisses the possible significance of different levels of consciousness, from being fully awake to deep sleep, and the concept of unconscious processing. These states, while possibly not “felt” in the traditional sense, may still have significant implications for our understanding of consciousness.

C4-2: Furthermore, this view seems to dismiss advancements made by neuroscientists in correlating brain activity with subjective experiences. While we do not yet have a complete understanding of how the brain produces consciousness, this line of research has provided valuable insights into the biological basis of consciousness.

C4-3: Lastly, Harnad’s view might be seen as sidestepping the “hard problem” of consciousness—the question of how and why certain processes in the brain give rise to subjective experiences. Simply defining consciousness as “feeling” doesn’t address this question; it merely redefines the terms of the problem.

SH:  That was excellent, but could I ask you to do even better (i.e., be harder on the idea), by presenting any counterevidence or counterexamples or counterarguments you can either generate or find in your database? Then I will respond to it all.

ChatGPT:   Certainly, I’ll present some potential criticisms to your approach:

C4-4: Conflation of Diverse Phenomena: Critics might argue that defining all conscious states as merely “felt states” fails to distinguish between qualitatively different phenomena. Terms like “awareness,” “subjectivity,” and “phenomenological experience” were developed to describe distinct aspects or levels of consciousness. By lumping all these concepts together as “felt states,” one might be glossing over important nuances and potentially fruitful avenues of investigation.

C4-5: Neglecting Unconscious Processes: Your perspective seems to largely dismiss unconscious mental processes. However, much of cognitive science points to the significant role these play in our mental lives. Memory recall, perception, learning, and decision-making can all involve unconscious processes. By focusing solely on “felt states,” we risk overlooking these critical components of cognition.

C4-6: Absence of Felt States: There are situations where conscious awareness seems to occur without an accompanying felt state. For instance, consider blindsight, a condition where individuals respond to visual stimuli they report not consciously seeing. Similarly, during “flow” states, people often report a loss of self-consciousness, even though they’re highly engaged with the task at hand. These examples challenge the notion that all conscious states are necessarily felt.

C4-7: Differing States of Consciousness: States such as sleep, anesthesia, coma, and even different levels of alertness during wakefulness demonstrate varying degrees of consciousness. These states aren’t easily characterized as merely “felt” or “unfelt”. What about dreams, where there might be a rich tapestry of felt experience, but arguably a different kind of consciousness than wakefulness?

C4-8: Evolutionary Argument: From an evolutionary perspective, consciousness likely evolved as a complex array of adaptive mechanisms. Reducing it to “felt states” might ignore this complexity and the various functions consciousness serves.

Neuroscientific Evidence: Neuroscience has made considerable progress in associating specific neural processes with different aspects of conscious experience. Ignoring these findings could be seen as an overly dismissive stance.

C4-9: The Hard Problem Remains: Even if we accept that consciousness is equivalent to “feeling,” this doesn’t necessarily help us solve the hard problem of consciousness. It might clarify our terminology, but it doesn’t explain how and why certain brain processes produce subjective experience.

These are some counterarguments that could be leveled against your viewpoint. Please note that these are hypothetical criticisms for the sake of discussion, and do not necessarily represent my views or the consensus in the field.

SH:  Thanks, and that’s very useful. Before I reply, do you have any more critical points, or should I go on. (I never know whether your cut-off depends on the response length or you’ve run out of substantive critiques.

ChatGPT:  Those are the main critiques that emerge when considering your approach to consciousness. However, I can add a few more potential points of contention:

C4-10: Lack of Operational Definition: Some might argue that defining consciousness merely as a “felt state” is too vague. In scientific research, it’s important to have an operational definition that can be objectively measured. Without such a definition, research and dialogue about consciousness can become confusing and unproductive.

C4-11: Cognitive Science Models: Various models in cognitive science, such as the Global Workspace Theory or Integrated Information Theory, suggest specific mechanisms and structures for consciousness. These models often go beyond just ‘felt states’ and incorporate a range of unconscious and conscious processes.

C4-12: Issue of Self-Reflection: Many philosophers and cognitive scientists believe that one crucial aspect of human consciousness is our ability to reflect upon our own mental states – a form of meta-awareness. Some may argue that your perspective doesn’t adequately address this.

C4-13: Animal Consciousness and AI: A purely subjective, “felt” definition of consciousness could complicate discussions about non-human consciousness (like animal consciousness) and artificial consciousness (in AI systems). Without clear behavioral or objective measures, determining whether an entity is conscious becomes more challenging.

Once again, these are hypothetical criticisms to help stimulate discussion and do not necessarily reflect my views or a consensus within the field. Please feel free to respond to them or continue with your line of questioning.

I will now reply to the 13 critiques: C4-1 to C4-2. 

C4-1: “Critics might say that this perspective oversimplifies the nuanced landscape of consciousness studies. It dismisses the possible significance of different levels of consciousness, from being fully awake to deep sleep, and the concept of unconscious processing. These states, while possibly not “felt” in the traditional sense, may still have significant implications for our understanding of consciousness.”

SH: I would reply that the weasel words clutter rather than clarify the landscape because they add empty, irrelevant, or erroneous distinctions. If the “levels” are felt states, then they too are merely felt states. For example, wide-awake to drowsy, to the last waking moment is all felt. Deep sleep, like general anesthesia, is unfelt. The hard problem is a problem about the presence vs. the absence of any felt intensity at all, not about the intensity itself. That presence/absence is binary, not a matter of “degree-of-presence.” And once there is no feeling at all, the binary state is “absent.” Feeling states can of course be intermittent too (ON/OFF), especially along the way to sleep. 

But don’t forget that dreaming (e.g. REM sleep) is a FELT state. And that an insentient entity, like a rock or a rocket, or, probably, a rhododendron, is one that never has felt states at all. The notion of “unconscious states” makes sense only when it refers to an entity that is capable of having felt states too (sometimes).

Unfelt brain states are still states, and still brain states, but they are unfelt states. They can occur during sleep, or they can occur during waking, felt states. In fact, most of the states and processes in the brain and its parts (all still very vaguely understood) are unfelt, whether they occur during a wide-awake, felt state, or during an unfeeling, deep-sleep state.

“Cognitive” and “cognition” can be weasel-words too, if they are used indiscriminately to refer to felt and unfelt states and their unfelt generating processes in the brain. “Cognition” concerns what we can DO (and how and why). “Sentience” concerns whether and when and what we can FEEL (and how and why is mostly the “hard problem”).

C4-2: “Furthermore, this view seems to dismiss advancements made by neuroscientists in correlating brain activity with subjective experiences. While we do not yet have a complete understanding of how the brain produces consciousness, this line of research has provided valuable insights into the biological basis of consciousness.”

SH: I don’t think I dismiss anything from neuroscience. All correlates – whether of felt or unfelt states – are potentially relevant to both the “easy problem” (how and why does the brain produce our capacity to DO all the things people can do?) and the “hard problem” (how and why does the brain produce the capacity to FEEL? 

C4-3: “Third, Harnad’s view might be seen as sidestepping the “hard problem” of consciousness—the question of how and why certain processes in the brain give rise to subjective experiences. Simply defining consciousness as “feeling” doesn’t address this question; it merely redefines the terms of the problem.”

SH:  You’re absolutely right that I am not solving the Hard Problem (HP). In fact, I don’t think it’s solvable. 

The reason I think that is that once the Easy Problem (EP) (which is to provide a causal explanation of DOING capacity by generating Turing-Indistinguishable T3/T4 capacity) is solved, that leaves FEELING itself (which is real but unobservable except by the feeler because of the Other Minds Problem OMP) causally inexplicable. 

This in turn is because the solution to the EP has already used up all the empirical degrees of freedom for a causal explanation. With the EP, everything observable is already explained. 

I suspect that this in turn is (somehow) a result of 

(1) the anomalous nature of feeling, which is not empirically observable except to the feeler because of the OMP, 

(2) the nature of empirical and causal explanation, and 

(3) the nature of feeling. 

Feeling is an “uncomplemented category.” To understand a category. To understand a category requires distinguishing its members from its nonmembers (the category and its complement). This requires detecting the features that distinguish the features of its members from the features of the members of its complement. But the felt category “what it feel like to feel” has no complement. It is self-contradictory.

C4-4: “Conflation of Diverse Phenomena: Critics might argue that defining all conscious states as merely “felt states” fails to distinguish between qualitatively different phenomena. Terms like “awareness,” “subjectivity,” and “phenomenological experience” were developed to describe distinct aspects or levels of consciousness. By lumping all these concepts together as “felt states,” one might be glossing over important nuances and potentially fruitful avenues of investigation.”

SH:  As I said in reply to Question 1, I think these other terms are all just weasel words for felt states. Yes, feelings differ “qualitatively”, but that’s the point: they differ in what they feel like (warm vs. cold, or seeing red vs. seeing green already do that) but they are all felt states, not something else. Feeling is notoriously hard to define verbally (perhaps because “what it feels like to feel” is an uncomplemented category), but the differences among felt states can be names and described, as interlocutors have felt some sufficiently states.

C4-5: “Neglecting Unconscious Processes: Your perspective seems to largely dismiss unconscious mental processes. However, much of cognitive science points to the significant role these play in our mental lives. Memory recall, perception, learning, and decision-making can all involve unconscious processes. By focusing solely on “felt states,” we risk overlooking these critical components of cognition.”

SH:  Most brain states and parts of brain states are unfelt, and can occur at the same time as felt states. And that includes the unfelt states and processes that produce felt states! But it they are unfelt, they are unfelt, even though they may be doing some things that then produce felt states – such as when you finally find a tip-of-the-tongue word. (Moreover, even when a word comes to mind effortlessly, unfelt processes are delivering it – processes that we are waiting for cognitive science to reverse-engineer and then explain explain to us how they work.)

C4-6: “Absence of Felt States: There are situations where conscious awareness seems to occur without an accompanying felt state. For instance, consider blindsight, a condition where individuals respond to visual stimuli they report not consciously seeing. Similarly, during “flow” states, people often report a loss of self-consciousness, even though they’re highly engaged with the task at hand. These examples challenge the notion that all conscious states are necessarily felt.”

SH: Blindsight patients are not insentient. They just can’t see. They may be using felt nonvisual cues or unfelt cues. The real mystery is why all sight is not just blindsight: The “hard problem” is not the absence of feeling in blindsight but the presence of feeling in sight. 

Flow state sounds like concentrated attention on something, ignoring everything else. The rest is just hyperbole. It is a felt state.

C4-7: “Differing States of Consciousness: States such as sleep, anesthesia, coma, and even different levels of alertness during wakefulness demonstrate varying degrees of consciousness. These states aren’t easily characterized as merely “felt” or “unfelt”. What about dreams, where there might be a rich tapestry of felt experience, but arguably a different kind of consciousness than wakefulness?”

SH: A good instance of the mischief of weasel-words. All these “differing” states, whether natural or drug or pathology-induced, are felt states, if and when they are felt. Among them, dreams are felt states too, not unfelt ones (even if forgotten immediately afterward). It’s just that in dream states, movement and sometimes alse recall are inhibited. And no matter how “rich the tapestry” or how weird the feeling, a felt state is a felt state.

C4-8: “Evolutionary Argument: From an evolutionary perspective, consciousness likely evolved as a complex array of adaptive mechanisms. Reducing it to “felt states” might ignore this complexity and the various functions consciousness serves. C4-8b: Neuroscientific Evidence: Neuroscience has made considerable progress in associating specific neural processes with different aspects of conscious experience. Ignoring these findings could be seen as an overly dismissive stance”.

SH:  Yes, calling it by a weasel word makes it sound as if there is more than one thing that is evolving for Darwinian reasons. But whether the question is put in a direct or weaselly way, explaining how and why feeling evolved is one and the same with the Hard Problem.

[Sorry for failing to give C4-8b (neural correlates) a number of its own (I must have been in a “flow state” on something else!) but it’s easily enough answered.]

Nobody has suggested ignoring correlates and predictors of felt states, whether neural correlates or behavioral correlates. But let’s not conflate DOING and FEELING. Neural correlates will no doubt be helpful in reverse-engineering the mechanisms that produce our behavioral capacities (both cognitive and vegetative), the Easy Problem, but when it comes to FEELING they are up against the same Hard Wall as all other approaches (including behavioral correlates and evolutionary explanation).

C4-9: “The Hard Problem Remains: Even if we accept that consciousness is equivalent to “feeling,” this doesn’t necessarily help us solve the hard problem of consciousness. It might clarify our terminology, but it doesn’t explain how and why certain brain processes produce subjective experience”.

SH:  I think calling a spade a spade (and just a spade) certainly does not solve the HP, but de-weaselling certainly clear out a lot of pseudo-explanatory clutter.

I will now reply to the 10th of your 13 critiques. Each separate posting from me will start with one quoted critique from you, preceded by “C4-n:” The quote in each separate posting (1-13) is followed by a reply from me. You can then reply if you wish, or you can just say “I’ll integrate and reply when I’ve seen the rest of your 13 replies.” In that case my next posting will again begin with this same text, followed by my reply the next of your 13 critiques, till the 13th one, and you can do an integrative rebuttal. 

C4-10: “Lack of Operational Definition: Some might argue that defining consciousness merely as a “felt state” is too vague. In scientific research, it’s important to have an operational definition that can be objectively measured. Without such a definition, research and dialogue about consciousness can become confusing and unproductive.”

SH:  Well, well. I suspect that apart from some die-hard behaviorists whose view of science has not progressed beyond Bridgeman’s operationalism (and who are also still toying with the urge to deny the existence of sentience all together, in favor of just a behavioral correlate), most who have given the Hard Problem some serious thought know that feeling is unobservable to anyone other than the feeler (because of the OMP), hence an operational “definition” is nonsense. 

On the other hand, the Turing Test (T3/T4) – which is just about DOING, hence “behavioral” — is the best predictor we can hope for. But it is not operationalism, and Turing knew it.

C4-11: “Cognitive Science Models: Various models in cognitive science, such as the Global Workspace Theory or Integrated Information Theory, suggest specific mechanisms and structures for consciousness. These models often go beyond just ‘felt states’ and incorporate a range of unconscious and conscious processes.”

SH: Before you can get beyond feeling, you have to face feeling, the EP and the HP. Neither Global Workspace Theory nor Integrated Information does either. (Or do you have something specific in mind?) I think they’re both just doing hermeneutics of “consciousness” not reverse-engineering or explaining a thing. That’s a risk-free venture.

C4-12: “Issue of Self-Reflection: Many philosophers and cognitive scientists believe that one crucial aspect of human consciousness is our ability to reflect upon our own mental states – a form of meta-awareness. Some may argue that your perspective doesn’t adequately address this”.

SH: This is a hoary one. Philosophers have long stressed that there is a difference between (1) being aware of something, (2) being aware of being aware of something and (3) being “self-aware” (as in recognizing yourself in a mirror, or thinking about yourself). We can translate this into the language of seeing and doing too: Seeing something, seeing someone else seeing something, and then seeing that the someone else seeing the something is yourself. These are cognitive capacities, because they may enable you to do things (e.g., moving so it can’t be seen that you are looking). These capacities also obviously have a felt counterpart: It feels like something to do them, as well as to be able to do them. If we substitute “thinking” for “seeing”, they remain very similar cognitive capacities.

So I don’t see how the fact that thinking is a felt state is relevant to whatever cognitive mechanism proves to be able to produce self-reference or metacognition.

C4-13: “Animal Consciousness and AI: A purely subjective, “felt” definition of consciousness could complicate discussions about non-human consciousness (like animal consciousness) and artificial consciousness (in AI systems). Without clear behavioral or objective measures, determining whether an entity is conscious becomes more challenging.”

SH: First of all, because of the OMP, neither sentience (feeling) nor its weasel-words are directly observable. So to predict and infer it depends on behavioral and neural correlates and predictors. Animal sentience has all the correlates and predictors except verbal report. Plant sentience is moot. And AI sentience is sci-fi  so far (and I think you, ChatGPT4, will agree, at least as far as you are concerned.

So again, I can’t see how calling a spade anything other than a spade helps anything except perhaps projecting our fantasies onto insentient systems. I’m not ready to do that before we’re much closer to a grounded T2 robot.

HARD FEELINGS

HARNAD:    Yep, the “hard problem” is to explain how and why sentient organisms FEEL rather than just DO. It’s exactly the same problem as explaining how and why there could not be a T3 or T4 zombie. Where does the definition of the “hard problem” come from? I know Dave Chalmers named it, but who described the problem? And exactly why is it a problem?

ChatGPT:

The “hard problem” of consciousness was coined and articulated by philosopher David Chalmers in 1995. It refers to the issue of explaining the nature of our subjective experiences, or why certain physical processes in the brain are accompanied by an experienced inner life. These subjective experiences are also referred to as “qualia.”

The “hard problem” is distinguished from the “easy problems” of consciousness, which include explaining the ability to discriminate, integrate information, report mental states, focus attention, etc. Even though these problems are far from “easy” in the practical sense, there is a clear path to understanding them in terms of computational or neural mechanisms. Hence, Chalmers termed them “easy”.

The “hard problem”, on the other hand, is deemed hard because it doesn’t seem amenable to such explanation. The question “why does the feeling which accompanies awareness exist at all?” appears to resist those methods that we conventionally use in science to explain phenomena.

This is because, typically, science proceeds by finding a mechanism that performs the function in question. For example, we can explain a car’s movement by referencing the mechanism of its engine. However, when it comes to consciousness, it’s not clear that finding a mechanism that ‘performs’ consciousness, in the sense of the ability to have subjective experience, would actually provide the kind of explanation we’re looking for.

It’s not sufficient to find neural correlates of consciousness, or to find information processing structures in the brain that mirror our conscious experiences. That would still leave a gap in our understanding – why should these physical processes give rise to subjective experience? Why aren’t we, as philosopher Thomas Nagel has put it, just mindless automata, acting without experiencing?

This is the crux of the hard problem – it’s not merely asking for a mechanism, but an explanation of why certain physical processes give rise to subjective experience, something that seems fundamentally non-physical.

HARNAD:    I have no idea what “non-physical” means, do you? (I understand cognitive science but not metaphysics.)  But I do know what unexplained (or unexplainable) means. I know Chalmers named it, but who described the hard problem?

ChatGPT:

Sorry for any confusion. The “hard problem” of consciousness was indeed first named and extensively discussed by David Chalmers. He used the term “non-physical” to refer to subjective experiences, or “qualia”, which seem fundamentally different from the kinds of things that physical science deals with. In other words, we can describe and predict the behavior of physical entities like atoms, electrons, and neurons, but subjective experiences do not seem to behave like physical entities in the same way.

Thomas Nagel’s 1974 paper “What is it like to be a bat?” also touched upon this issue prior to Chalmers. Nagel argued that an organism has conscious mental states “if and only if there is something that it is like to be that organism—something it is like for the organism.”

So, while Chalmers might have been the one to name the “hard problem” and bring it to the forefront of contemporary philosophical discussion, the basic issue of explaining subjective experience has a much longer history in the philosophy of mind, dating back at least to Descartes’ dualist distinction between mind and body in the 17th century.

However, it’s important to note that not everyone agrees there is a “hard problem” – some argue that once we solve the so-called “easy problems” of consciousness (i.e., explaining the mechanisms behind cognitive and behavioral functions), what we think of as the “hard problem” might not seem so problematic. This perspective, however, is a matter of ongoing debate in the field.

HARNAD:    The “easy problem” is explaining how and why organisms can DO what they can do. (That’s what we’ve been discussing here as reverse-engineering T3 and T4). The “hard problem” is explaining how and why (sentient) organisms can FEEL. If we forget about the meaningless notion of “nonphysical,” why is the hard problem still so much harder than the easy problem?

ChatGPT:

The difficulty with the “hard problem”, as compared to the “easy problem”, arises from the inherently subjective and qualitative nature of feelings or experiences, also known as “qualia”. While we can objectively observe, measure, and describe physical processes and behaviors, we cannot directly access someone else’s subjective experiences in the same way.

For example, we can understand and describe the physical processes associated with seeing the color red—light hitting an object, reflecting into our eyes, being processed by our visual systems, leading to a particular cognitive and behavioral response. This is the kind of problem that can be solved with enough empirical research and is hence termed the “easy problem”.

However, understanding why these processes are accompanied by a subjective experience of “redness” is much more difficult. Why isn’t the physical process of seeing color “like” anything at all? Why is it that we have a qualitative, subjective experience of the color red, rather than just a cognitive recognition and behavioral response? These are the questions posed by the “hard problem”.

Many theories have been proposed to address this, from various forms of physicalism that posit some yet-undiscovered physical explanation for consciousness, to dualism that suggests consciousness might be a separate entity from the physical world, to panpsychism that proposes that consciousness is a fundamental aspect of the universe, like space and time. But so far, no theory has been able to fully bridge the gap between the objective physical world and the subjective world of experience, leading to what Chalmers calls the “explanatory gap”.

There’s also the challenge of “other minds” in philosophy—while you can directly experience your own consciousness, you can’t directly experience someone else’s. All our knowledge about other minds is inferred from behavior and communication, but we have no way to directly observe their subjective experiences. This inherent limitation compounds the difficulty of the “hard problem”.

HARNAD:    If we chuck out the weasel-words again, as well as the metaphysical non-solutions. The hard problem is to explain, causally, how and why anything that organisms can DO should FEEL like anything at all. Feeling is real, but without a causal explanation it seems superfluous.

ChatGPT:

Yes, that’s indeed a clear and concise framing of the hard problem of consciousness. The issue is trying to explain why and how subjective experiences arise from objective physical processes – or in other words, how and why certain processes are accompanied by an internal, subjective “feeling”.

Objective behaviors and actions can be causally explained by physical processes, such as neuronal activity, chemical reactions, and interactions with the environment. We can trace the causes and effects, build models, and make predictions. These explanations fit within our current scientific framework, which deals with observable, quantifiable phenomena.

However, when it comes to subjective experiences or feelings, our current scientific methods fall short. We don’t yet have a way to objectively measure or quantify these experiences, and we don’t have a clear understanding of how they could be causally produced by physical processes. This is why some people consider consciousness to be a “non-physical” phenomenon.

It’s not that feelings are superfluous or unnecessary. Rather, they’re central to our existence as sentient beings. The challenge is figuring out how to account for them within our scientific understanding of the world. The hard problem of consciousness is essentially about bridging this explanatory gap. How can we expand our scientific methods and theories to account for the subjective, qualitative aspects of existence, and to uncover the causal mechanisms that give rise to them? That is the challenge that faces researchers in fields such as cognitive science, neuroscience, and philosophy of mind.

HARNAD: When ChatGPT palses intp starts echoing the empty weasel-words of the field it’s time to give the topic a break…