SIGNALS AND SENTIENCE

Yes, plants can produce sounds when they are stressed by heat or drought or damage.

They can also produce sounds when they are swayed by the wind, and when their fruit drops to the ground.

They can also produce sights when their leaves unfurl, and when they flower.

And they can produce scents too.

And, yes, animals can detect those sounds and sights and scents, and can use them, for their own advantage (if they eat the plant), or for mutual advantage (e.g., if they are pollinators).

Plants can also produce chemical signals, for signalling within the plant, as well as for signalling between plants.

Animals (including humans) can produce internal signals, from one part of their immune system to another, or from a part of their brain to another part, or to their muscles or their immune system.

Seismic shifts (earth tremors) can be detected by animals, and by machines.

Pheromones can be produced by human secretions and detected and reacted to (but not smelled) by other humans.

The universe is full “signals,” most of them neither detected nor produced by living organisms, plant or animal.

Both living organisms and nonliving machines can “detect” and react to signals, both internal and external signals; but only sentient organisms can feel them. 

To feel signals, it is not enough to be alive and to detect and react to them; an organ of feeling is needed: a nervous system.

Nor are most of the signals produced by living organisms intentional; for a signal to be intentional, the producer has to be able to feel that it is producing it; that too requires an organ of feeling.

Stress is an internal state that signals damage in a living organism; but in an insentient organism, stress is not a felt state.

Butterflies have an organ of feeling; they are sentient. 

Some species of butterfly have evolved a coloration that mimics the coloration of another, poisonous species, a signal that deters predators who have learned that it is often poisonous. 

The predators feel that signal; the butterflies that produce it do not.

Evolution does not feel either; it is just an insentient mechanism by which genes that code for traits that help an organism to survive and reproduce get passed on to its progeny.

Butterflies, though sentient, do not signal their deterrent color to their predators intentionally.

Nor do plants that signal by sound, sight or scent, to themselves or others, do so intentionally.

All living organisms except plants must eat other living organisms to survive. The only exceptions are plants, who can photosynthesize with just light, CO2 and minerals.

But not all living organisms are sentient.

There is no evidence that plants are sentient, even though they are alive, and produce, detect, and react to signals. 

They lack an organ of feeling, a nervous system.

Vegans need to eat to live.

But they do not need to eat organisms that feel.

Khait, I., Lewin-Epstein, O., Sharon, R., Saban, K., Perelman, R., Boonman, A., … & Hadany, L. (2019). Plants emit informative airborne sounds under stress. bioRxiv 507590.

Wilkinson, S., & Davies, W. J. (2002). ABA‐based chemical signalling: the co‐ordination of responses to stress in plantsPlant, cell & environment25(2), 195-210.

SIGNAUX ET SENTIENCE

Oui, les plantes peuvent produire des sons lorsqu’elles sont stressĂ©es par la chaleur, la sĂ©cheresse ou les dommages.

Elles peuvent Ă©galement produire des sons lorsqu’elles sont agitĂ©es par le vent et lorsque leurs fruits tombent au sol.

Elles peuvent Ă©galement produire des vues lorsque leurs feuilles se dĂ©ploient et lorsqu’elles fleurissent.

Et elles peuvent aussi produire des parfums.

Et, oui, les animaux peuvent dĂ©tecter ces sons, ces vues, et ces odeurs, et ils peuvent les utiliser, pour leur propre avantage (s’ils mangent la plante) ou pour un avantage mutuel (s’ils sont des pollinisateurs).

Les plantes peuvent Ă©galement produire des signaux chimiques, pour la signalisation Ă  l’intĂ©rieur de la plante, ainsi que pour la signalisation entre les plantes.

Les animaux (y compris les humains) peuvent produire des signaux internes, d’une partie de leur systĂšme immunitaire Ă  une autre, ou d’une partie de leur cerveau Ă  une autre partie, ou Ă  leurs muscles ou Ă  leur systĂšme immunitaire.

Les dĂ©placements sismiques (tremblements de terre) peuvent ĂȘtre dĂ©tectĂ©s par les animaux ainsi que par les machines.

Les phĂ©romones peuvent ĂȘtre produites par les sĂ©crĂ©tions humaines et elles peuvent ĂȘtre dĂ©tectĂ©es et rĂ©agies (mais non sentis) par d’autres humains.

L’univers est plein de « signaux », dont la plupart ne sont ni dĂ©tectĂ©s ni produits par des organismes vivants, vĂ©gĂ©taux ou animaux.

Les organismes vivants et les machines non vivantes peuvent « dĂ©tecter Â» et rĂ©agir aux signaux, qu’ils soient internes ou externes ; mais seuls les organismes sentients peuvent les ressentir.

Pour ressentir des signaux, il ne suffit pas d’ĂȘtre vivant, de les dĂ©tecter et d’y rĂ©agir ; il faut un organe du ressenti : un systĂšme nerveux.

La plupart des signaux produits par les organismes vivants ne sont pas non plus intentionnels ; pour qu’un signal soit intentionnel, il faut que le producteur puisse ressentir qu’il le produit ; cela aussi exige un organe du ressenti.

Le stress est un Ă©tat interne qui signale des dommages dans un organisme vivant ; mais dans un organisme non sentient, le stress n’est pas un Ă©tat ressenti.

Les papillons ont un organe du ressenti ; ils sont sentient.

Certaines espĂšces de papillons ont Ă©voluĂ© une coloration qui imite la coloration d’une autre espĂšce vĂ©nĂ©neuse, un signal qui dissuade les prĂ©dateurs qui ont appris que c’est souvent toxique.

Les prédateurs ressentent ce signal; les papillons qui le produisent ne le ressentent pas.

L’Ă©volution darwinienne ne ressent pas non plus ; c’est juste un mĂ©canisme non sentient par lequel les gĂšnes qui encodent les traits qui aident un organisme Ă  survivre et Ă  se reproduire sont transmis Ă  sa progĂ©niture.

Les papillons, bien que sentients, ne signalent pas intentionnellement leur couleur dissuasive à leurs prédateurs.

Les plantes qui signalent par le son, la vue ou l’odeur, Ă  elles-mĂȘmes ou aux autres, ne le font pas non plus intentionnellement.

Tous les organismes vivants, Ă  l’exception des plantes, doivent manger d’autres organismes vivants pour survivre. Les seules exceptions sont les plantes, qui peuvent effectuer la photosynthĂšse avec juste de la lumiĂšre, du CO2 et des minĂ©raux.

Mais tous les organismes vivants ne sont pas sentients.

Il n’y a pas de preuve que les plantes soient sentientes, mĂȘme si elles sont vivantes, et produisent, dĂ©tectent et rĂ©agissent aux signaux.

Il leur manque un organe de ressenti, un systĂšme nerveux.

Les véganes nécessitent manger pour survivre.

Mais ils ne nécessitent pas manger les organismes qui ressentent.

Khait, I., Lewin-Epstein, O., Sharon, R., Saban, K., Perelman, R., Boonman, A., … & Hadany, L. (2019). Plants emit informative airborne sounds under stress. bioRxiv 507590.

Wilkinson, S., & Davies, W. J. (2002). ABA‐based chemical signalling: the co‐ordination of responses to stress in plantsPlant, cell & environment25(2), 195-210.

What Matters

Based on my last few years’ experience in teaching my McGill course on human cognition and consciousness, I now regret that I had previously been so timid in that course about pointing out the most fundamental bioethical point there is — the basis of all morality, of all notions of right and wrong, good and bad; indeed the basis of the fact that anything matters at all. I think it leads quite naturally to the nutritional points some want to convey, but starting from the bioethical side and then moving to the human health benefits. (Bioethics is not “politics”!)


Biological organisms are living beings. Some (not all) living beings (probably not plants, nor microbes, nor animals with no nervous system) are also sentient beings. That means they are not just alive, surviving and reproducing; they also feel.


And with feeling comes the capacity to be hurt. Chairs & tables, glaciers & shorelines, and (probably) plants & microbes can be damaged, but they cannot be hurt. Only sentient beings can be hurt because it feels like something to be hurt.


Most organisms are heterotrophic, meaning that they have to consume other organisms in order to survive. (The exceptions are autotrophs like green plants, algae and photosynthetic bacteria.)


This means that nature is full of conflicts of vital (life-or-death) interests: predator vs. prey. If the prey is sentient (i.e., not a plant), this means that the predator has to harm the prey in order to survive (by killing and eating it) — and the prey has to harm the predator to survive (by fighting back or escaping, depriving the predator of food).


It also has to be pointed out that there is no point trying to make conflicts of vital interest into a moral issue. They are a biological reality — a matter of biological necessity, a biological imperative — for heterotrophic organisms. And there is no right or wrong or choice about it: The survival of one means the non-survival of the other, as a matter of necessity.


But now comes the unique case of the human species, which is sentient and also, like all heterotrophic species, a predator. Its prey are plants (almost certainly insentient)  and animals (almost certainly sentient). But unlike obligate carnivores (like the felids), humans also have a choice. They can survive, in full health, as either carnivores or herbivores, or both. We are facultative omnivores.


The primates probably evolved from earlier herbivore/insectivore species, but there is no doubt that most primates, including the great apes, are also able to eat small mammals, and sometimes do. Our own species’ evolutionary history diverged from this mostly herbivore origin; we became systematic meat hunters; and there is no doubt that that conferred an adaptive advantage on our species, not just in getting food but also in evolving some of the cognitive traits and the large brain that are unique to our species.


Far fewer of our ancestors would have survived if we had not adapted to hunting. They did it out of necessity; a biological imperative — just as it was under pressure of a biological imperative that our ancestors, especially children, evolved a “sweet tooth,” a predilection for sugar, which was rare, and it was important to consume as much as we could when we could get it, because we had many predators and needed the energy to escape. By the same token, our predilection for aggression and violence, toward other species as well as our own, had been adaptive in our ancestral environment.


But in our current environment many of these ancestral predilections are no longer necessary, and indeed some of them have become (mildly) maladaptive : Our predilection for sugar, now abundant (whereas predators are almost nonexistent), when unchecked, has become an important cause of dental cavities, hyperactivity, obesity and diabetes (but not maladaptive enough to kill or prevent enough of us from reproducing to eliminate their genes from our gene pool). Our predilection for aggression and violence, when unchecked, is leading to ever more deadly forms of warfare and devastation (but not deadly enough, yet).


And in the same way, our unchecked taste for animal protein has led to industrial production of livestock, water depletion, air pollution, climate change, antibiotic overuse (creating superbugs), and a large variety of human ailments (on which others are more expert than I). But the point is that we have retained our hominid capacity to survive, in full health, without animal protein. We are, and always have been, facultative omnivores — with two metabolic modes herbivore and omnivore — that could adapt to different environments. 


So far, I’ve only mentioned the negative consequences of animal protein consumption for us along with the positive consequences of  not consuming animal protein, for us.
But let me not minimize the moral/bioethical aspect. Even if, setting aside the climatic aspects, the direct health benefits of our no longer eating meat are, for us, only mild to moderate, the harm and hurt of our continuing to eat meat are, for our sentient victims, monstrous.


And it should not be left unsaid that the clinical hallmark of a psychopath is the fact that if they want to get something, psychopaths are unmoved if getting it hurts others, even when what they want to get is not a vital necessity. That is why it is so important that people are fully informed of the fact that meat eating is not necessary for human health and causes untold suffering to other sentient beings. Because most people are not, and do not want to be, psychopaths.

Norms

The selfish and amoral side of human nature and of the human population has an advantage: the advantage of lying over honesty, cheating over fairness, theft over toil, aggression over negotiation.

If these were paired genetic alleles, we’d have to admit that the selfish ones have the edge.

But bullying and rule-breaking is also, by its nature, a minority strategy, because to open an unfair advantage a baseline of fairness has to be the norm.

So cheating must keep waxing and waning — an unstable, unsustainable strategy, whether genetically or socially — because if everyone lies, cheats, steals, bullies, the strategy has no victims left: Its advantage is over innocent victims. So a critical mass of those has to be sustained, otherwise cheating implodes…

…unless there is a way to enslave the victims, as humans have done to nonhuman animals.

Feeling vs. Moving

Sentience — which means the capacity to feel *something* (anything) — can differ in quality (seeing red feels different from hearing a cricket), or in intensity (getting kicked hard feels worse than getting lightly tapped) or in duration (now you feel, now you don’t).

But the difference between whether an organism has or lacks the capacity to feel anything at all , be it ever so faint or brief, is all-or-none, not a matter of degree along some sort of “continuum.”

Mammals, birds, reptiles, fish, and probably most or all invertebrates can feel (something, sometimes) — but not rhododendrons or Rhizobium radiobacter or Rutstroemia firma… or any of today’s robots.

There is no more absolute difference than that between a sentient entity and an insentient one, even if both are living organisms.

(Sedatives can dim feeling, general anesthesia can temporarily turn it off, and death or brain-death can turn it off permanently, but the capacity or incapacity to feel anything at all, ever, is all-or-none.)

Zeno's Paradoxes | Interesting Thing of the Day

Anna Netrebko: па-ЎД-ЎД

ĐĐœĐœŃŽŃˆĐșĐ°, ĐŽĐŸŃ€ĐŸĐłĐ°Ń, just figure out a way to say that you are against war (who’s for war?) without giving the slightest indication of who started this war, or why. 

“I have taken some time to reflect because I think the situation is too serious to comment on without really giving it thought.

Yes, ĐżŃ€ĐžŃŃ‚Đ”Đ»ŃŒĐșĐ°. no call for snap judgments when unprovoked bombs are again raining on Ukraine from a nuclear superpower, thrice its size, and people are dying. Just stress that you are a patriot, and apolitical.

“First of all: I am opposed to this war


And that is of course what you say to тĐČĐŸĐ”ĐŒŃƒ ĐżŃ€ĐžŃŃ‚Đ”Đ»ŃŒĐœĐžĐșу, Đ’ĐŸĐ»ĐŸĐŽĐșĐ”, each time you meet


 â€œI am Russian and I love my country
 

Very reassuring, and very Ă  propos – when your country is bombing Ukraine


“
but I have many friends in Ukraine and the pain and suffering right now breaks my heart.

To hear what you are going through breaks my heart


“ I want this war to end and for people to be able to live in peace. This is what I hope and pray for. 

And what I wanted when I presented 1M rubles to the Russian nationalist leader, draped in the Russian secessionist flag, when my country invaded and annexed Crimea
 


“I want to add one thing, however: forcing artists, or any public figure, to voice their political opinions in public and to denounce their homeland is not right. This should be a free choice. Like many of my colleagues, I am not a political person. I am not an expert in politics. I am an artist and my purpose is to unite people across political divides.’

Which was also what I had in mind when I presented 1M rubles to the Russian nationalist leader, draped in the Russian secessionist flag, when my country invaded and annexed Crimea


To hear what you are having to go through to save your career breaks the whole world’s heart


Dale Jamieson on sentience and “agency”

Dale Jamieson’s heart is clearly in the right place, both about protecting sentient organisms and about protecting their insentient environment.

Philosophers call deserving such protection “meriting moral consideration” (by humans, of course).

Dale points out that humans have followed a long circuitous path — from thinking that only humans, with language and intelligence, merit moral consideration, to thinking that all organisms that are sentient (hence can suffer) merit moral consideration.

But he thinks sentience is not a good enough criterion. “Agency” is required too. What is agency? It is being able to do something deliberately, and not just because you were pushed.

But what does it mean to be able to do something deliberately? I think it’s being able to do something because you feel like it rather than because you were pushed (or at least because you feel like you’re doing it because you feel like it). In other words, I think a necessary condition for agency is sentience. 

Thermostats and robots and microbes and plants can be interpreted by humans as “agents,” but whether humans are right in their interpretations depends on facts – facts that, because of the “other-minds problem,” humans can never know for sure: the only one who can know for sure whether a thing feels is the thing itself. 

(Would an insentient entity, one that was only capable of certain autonomous actions — such as running away or defending itself if attacked, but never feeling a thing – merit moral consideration? To me, with the animal kill counter registering grotesque and ever grandescent numbers of human-inflicted horrors on undeniably sentient nonhuman victims every second of every day, worldwide, it is nothing short of grotesque to be theorizing about “insentient agency.”)

Certainty about sentience is not necessary, however. We can’t have certainty about sentience even for our fellow human beings. High probability on all available evidence is good enough. But then the evidence for agency depends on the evidence for sentience. It is not an independent criterion for moral consideration; just further evidence for sentience. Evidence of independent “choice” or “decision-making” or “autonomomy” may count as evidence for “agency,” but without evidence for sentience we are back to thermostats, robots, microbes and plants.

In mind-reading others, human and nonhuman, we do have a little help from Darwinian evolution and from “mirror neurons” in the brain that are active both when we do something and when another organism, human or nonhuman, does the same thing. These are useful for interacting with our predators (and, if we are carnivores, our prey), as well as with our young, kin, and kind (if we are K-selected, altricial species who must care for our young, or social species who must maintain family and tribal relationships lifelong). 

So we need both sentience-detectors and agency-detectors for survival. 

But only sentience is needed for moral consideration.

Symbols, Objects and Features

0. It might help if we stop “cognitizing” computation and symbols. 

1. Computation is not a subset of AI. 

2. AI (whether “symbolic” AI or “connectionist’ AI) is an application of computation to cogsci.

3. Computation is the manipulation of symbols based on formal rules (algorithms).

4. Symbols are objects or states whose physical “shape” is arbitrary in relation to what they can be used and interpreted as referring to.

5. An algorithm (executable physically as a Turing Machine) manipulates symbols based on their (arbitrary) shapes, not their interpretations (if any).

6. The algorithms of interest in computation are those that have at least one meaningful interpretation.

7. Examples of symbol shapes are numbers (1, 2, 3), words (one, two, three; onyx, tool, threnody), or any object or state that is used as a symbol by a Turing Machine that is executing an algorithm (symbol-manipulation rules).

8. Neither a sensorimotor feature of an object in the world, nor a sensorimotor feature-detector of a robot interacting with the world, is a symbol (except in the trivial sense that any arbitrary shape can be used as a symbol).

9. What sensorimotor features (which, unlike symbols, are not arbitrary in shape) and sensorimotor feature-detectors (whether “symbolic” or “connectionist”) might be good for is connecting symbols inside symbol systems (e.g., robots) to the outside objects that they can be interpreted as referring to.

10. If you are interpreting “symbol” in a wider sense than this formal, literal one, then you are closer to lit-crit than to cogsci.

Propositional Placebo

To learn to categorize is to learn to do the correct thing with the correct kind of thing. In cognition much (though not all) of learning is learning to categorize.

We share two ways to learn categories with many other biological species: (1) unsupervised learning (which is learning from mere repeated exposure, without ant feedback) and (2) supervised (or reinforcement) learning (learning through trial and error, guided by corrective feedback that signals whether we’ve done the correct or incorrect thing).

In our brains are neural networks that can learn to detect and abstract the features that distinguish the members from the nonmembers of a category. through trial, error and corrective feedback, so that once our brains have detected and abstracted the distinguishing features, we can do the correct thing with the correct kind of thing.

Unsuperviseed and supervised learning can be time-consuming and risky, especially if you have to learn to distinguish what is edible from what is toxic, or who is friend from who is foe.

We are the only species that also has a third way of learning categories: (3) language.

Language probably first evolved around 200,000 years ago from pointing, imitation, miming and other kinds of purposive gestural communication, none of which are language.

Once gesture turned into language — a transformation I will discuss in a moment — it migrated, behaviorally and neurologically, to the much more efficient auditory/vocal medium of speech and hearing.

Gesture is slow and also ineffective in the dark, or at a distance, or when your hands are occupied doing other things, But before that migration to the vocal medium, language itself first had to begin, and there gesturing had a distinct advantage over vocalizing, an advantage that semioticians call “iconicity”: the visual similarity between the gesture and the object or action that the gesture is imitating.

Language is much more than just naming categories ( like “apple”). The shape of words in language is arbitrary; words do not resemble the things they refer to. And language is not isolated words, naming categories. It is strings of words with certain other properties beyond naming categories.

Imitative gestures do resemble the objects and actions that they imitate, but imitation, even with the purpose of communicating something, is not language. The similarity between the gesture and the object or action that the gesture imitates does, however, establish the connection between them. This is the advantage of “iconicity.”

The scope of gestural imitation, which is visual iconicity, is much richer than the scope of acoustic iconicity. Just consider how many more of the objects, actions and events in daily life can be imitated gesturally than can be imitated vocally.

So gesture is a natural place to start . There are gestural theories of the origin of language and vocal theories of the origin of language. I think that gestural origins are far more likely, initially, mainly because of iconicity. But keep in mind the eventual advantages of the vocal medium over the gestural one. Having secured first place because of the rich scope of iconicity in gesture, iconicity can quickly become a burden, slowing and complicating the communication.

Consider gesturing, by pantomime, that you want something to eat. The gesture for eating might be an imitation of putting something into your mouth. But if that gesture becomes a habitual one in your community, used every day, there is no real need for the full-blown icon time after time. It could be abbreviated and simplified, say just pointing to your mouth, or just making an upward pointing movement.

These iconic abbreviations could be shared by all the members of the gesturally communicating community, from extended family, to tribe, because it is to everyone’s advantage to economize on the gestures used over and over to communicate. This shared practice, with the iconicity continuously fading and becoming increasingly arbitrary would keep inheriting the original connection established through full-blown iconicity.

The important thing to note is that this form of communication would still only be pantomime, still just showing, not telling, even when the gestures have become arbitrary. Gestures that have shed their iconicity are still not language. They only become language when the names of categories can be combined into subject/predicate propositions that describe or define a named category’s features. That’s what provides the third way of learning categories; the one that is unique to our species. The names of categories, like “apple” and their features (which are also named categories, like “red” and “round”) can then be combined and recombined to define and describe further categories, so that someone who already knows the features of a category can tell some one who doesn’t know: “A ‘zebra’ is a horse with stripes.” Mime is showing. Language is telling.

Propositions, unlike imitative gestures, or even arbitrary category-names, have truth values: True or False. This should remind you, though, of the category learning by trial and error we share with other species, under the guidance of positive and negative feedback: Correct or Incorrect.

True and False is related to another essential feature of language, which is negation. A proposition can either affirm something or deny something: “It is true that an apple is red and round” or “It is not true that an apple is red and round.” P or not-P.

The trouble with being able to learn categories only directly, through unsupervised and supervised learning, is that it is time-consuming, risky, and not guaranteed to succeed (in time). It is also impoverished: most of the words in our vocabularies and dictionaries are category names; but other than the concrete categories that can be learned from direct sensorimotor trial-and-error-experience (“apple,” “red,” “give,” “take”), most category names cannot be learned without language at all. (All category names, even proper names, refer to abstractions, because they are based on abstracting the features that distinguish them. But consider how we could have learned the even more abstract category of “democracy” or “objectivity” without the words to define or describe them by their features, through unsupervised and supervised learning alone.)

When categories are learned directly through unsupervised learning (from sensorimotor feature-correlations) or supervised learning (from correlations between sensorimotor features and doing the right or wrong thing) the learning consists of the detection and abstraction of the features that distinguish the members from the non-members of the category. To learn to do the correct thing with the correct kind of thing requires learning – implicitly or explicitly, i.e., unconsciously or consciously – to detect and abstract those distinguishing features.

Like nonhuman species, we can and do learn a lot of categories that way; and there are computational models for the mechanism that can accomplish the unsupervised and supervised learning, “deep learning” models. But, in general, nonhuman animals do not name the things they can categorize. Or, if you like, the “names” of those categories are not arbitrary words but the things they learn to do with the members and not to do with the members of other categories. Only humans bother to name their categories. Why?

What is a name? It is a symbol (whether vocal, gestural, or written) whose shape is arbitrary (i.e., it does not resemble the thing it names). Its use is based on a shared convention among speakers: English-speakers all agree to call cats “cats” and dogs “dogs.” Names of categories are “content words”: words that have referents: nouns, adjectives, verbs, adverbs. Almost all words are content words. There exist also a much smaller number of “function words,” which are only syntactic or logical, such as theifandwhen, who: They don’t have referents; they just have “uses” — usually defined or definable by a syntactic rule. 

(Unlike nouns and adjectives, verbs do double duty, both in (1) naming a referent category (just as nouns and adjectives do, for example, “cry”) and in(2) marking predication, which is the essential function of propositions, distinguishing them from just compound content words: “The baby is crying” separates the content word, which has a referent — “crying” — from the predicative function of the copula: “is”. “The crying baby” is not a proposition; it is just a noun phrase, which is like a single word, and has a referent, just as “the baby” does. But the proposition “The baby is crying” does not have a referent: it has a sense – that the baby is crying – and a truth value (True or False).

It is with content words that the gestural origin of language is important: Because before a category name can become a shared, arbitrary convention of a community of users, it has to get connected to its referent. Iconic communication (mime) is based on the natural connection conveyed by similarity, like the connection between an object and its photo. 

(In contrast, pointing – “ostension” — is based on shared directed attention from two viewers. Pointing alone cannot become category-naming as it is dependent on a shared line of gaze, and on what is immediately present at the time (“context”); it survives in language only with “deictic” words like herethisnowme, which have no referent unless you are “there” too, to see what’s being pointed at!)

A proposition can be true or false, but pointing and miming cannot, because they are not proposing or predicating anything; just “look!”. Whatever is being pointed at is what is pointed at, and whatever a gesture resembles, it resembles. Resemblance can be more or less exact, but it cannot be true or false; it cannot lie. (

Flattering portraiture is still far away in these prelinguistic times, but it is an open question whether iconography began before or after language (and speech); so fantasy, too, may have preceded falsity. Copying and depicting is certainly compatible with miming; both static and dynamic media are iconic.)

It is not that pointing and miming, when used for intentional communication, cannot mislead or deceive. There are some examples in nonhuman primate communication of actions done to intentionally deceive (such as de Waal’s famous case of a female chimpanzee who positions her body behind a barrier so the alpha male can only see her upper body while she invites a preferred lower-ranking male to mate with her below the alpha’s line of sight, knowing that the alpha male would attack them both if he saw that they were copulating).

But, in general, in the iconic world of gesture and pointing, seeing is believing and deliberate deception does not seem to have taken root within species. The broken-wing dance of birds, to lure predators away from their young, is deliberate deception, but it is deception between species, and the disposition also has a genetic component.

Unlike snatch-and-run pilfering, which does occur within species, deliberate within-species deceptive communication (not to be confused with unconscious, involuntary deception, such as concealed ovulation or traits generated by “cheater genes”) is rare. Perhaps this is because there is little opportunity or need for deceptive communication within species that are social enough to have extensive social communication at all. (Cheaters are detectable and punishable in tribal settings — and human prelinguistic settings were surely tribal.) Perhaps social communication itself is more likely to develop in a cooperative rather than a competitive or agonistic context. Moreover, the least likely setting for deceptive communication is perhaps also the most likely setting for the emergence of language: within the family or extended family, where cooperative and collaborative interests prevail, including both food-sharing and knowledge-sharing.

(Infants and juveniles of all species learn by observing and imitating their parents and other adults; there seems to be little danger that adults are deliberately trying to fool them into imitating something that is wrong or maladaptive, What would be the advantage to adults in doing that?)

But in the case of linguistic communication – which means propositional communication – it is hard to imagine how it could have gotten off the ground at all unless propositions were initially true, and assumed and intended to be true, by default. 

It is not that our species did not soon discover the rewards to be gained by lying! But that only became possible after the capacity and motivation for propositional communication had emerged, prevailed and been encoded in the human brain as the strong and unique predisposition it is in our species. Until then there was only pointing and miming, which, being non-propositional, cannot be true or false, even though it can in principle be used to deceive.

So I think the default hypothesis of truth was encoded in the brains of human speakers and hearers as an essential feature of the enormous adaptive advantage (indeed the nuclear power) of language in transmitting categories without the need for unsupervised or supervised learning, instantly, via “hearsay.” The only preconditions are that (1) the speaker must already know the features (and their names) that distinguish the members from the nonmembers of the new category, so they can be conveyed to the hearer in a proposition defining or describing the new category. And (2) the hearer must already know the features of the features (and their names) used to define the new category. (This is  the origin of the “symbol grounding problem” and its solution). 

The reason it is much more likely that propositional language emerged first in the gestural modality rather than the vocal one is that gestures’ iconicity (i.e., their similarity to the objects they are imitating) first connected them to their objects (which would eventually become their referents) and thereafter the gestures were free to become less and less iconic as the gestural community – jointly and gradually – simplified them to make communication faster and easier.

How do the speakers or hearers already know the features (all of which are, of course, categories too)? Well, either directly, from having learned them, the old, time-consuming, risky, impoverished way (through supervised and unsupervised learning from experience) or indirectly, from having learned them by hearsay, through propositions from one who already knows the category to one who does not. Needless to say, the human brain, with its genetically encoded propositional capacity, has a default predilection for learning categories by hearsay (and a laziness about testing them out through direct experience).

The consequence is a powerful default tendency to believe what we are told — to assume hearsay to be true. The trait can take the form of credulousness, gullibility, susceptibility to cult indoctrination, or even hypnotic susceptibility. Some of its roots are already there in unsupervised and supervised learning, in the form of Pavlovian conditioning as well as operant expectancies based on prior experience. 

Specific expectations and associations can of course be extinguished by subsequent contrary experience: A diabetic’s hypoglycemic attack can be suppressed by merely tasting sugar, well before it could raise systemic glucose level (or even by just tasting saccharine, which can never raise blood sugar at all). But repeatedly “fooling the system” that way, without following up with enough sugar to restore homeostatic levels, will extinguish this anticipatory reaction. 

And, by the same token, we can and do learn to detect and disbelieve chronic liars. But the generic default assumption, expectation, and anticipatory physiological responses to verbal propositions remain strong with people and propositions in general  â€“ and in extreme cases they can even induce “hysterical” physiological responses, including hypnotic analgesia sufficient to allow surgical intervention without medication. And it can induce placebo effects as surely as it can induce Trumpian conspiracy theories.

Singer/Salatin Debate About Meat Eating

The host of the Munk debate was terrible. Verbose, with silly sallies into “agency” and other trivia.

The farmer, Salatin, was neither intelligent, nor well-informed, nor consistent; he was selling something (non-factory farming), and he justified what he was doing by appeals to superficial, under-informed environmentalism and religion, so he did not do a very convincing job on his end of the debate.

Singer is far more intelligent, has given it all a lot more and deeper thought, yet in the end I think he could have done a better job. He is very phlegmatic, and seemed to be basing his many valid points on a vague ethical premise that “we can and should do better” — that instrumentalism is somehow intrinsically wrong.

It’s not really a debating matter, but an ethical matter. Singer’s analogies with slavery and the subjugation of women are all valid. Supernatural justifications from religion are obviously nonsense (regardless of how many  cling to them). 

What’s needed is a coherent moral criterion, but one that is grounded on what most of us feel is morally right (without appeal to the supernatural).

And I think what most  of us feel is right is that it is wrong to cause suffering unnecessarily. For if that’s not true, then nothing is wrong, and psychopathy rules.

Of course the devil is in the details about what is “necessary”. 

A Darwinian would say that what an animal has to do so it and its young can survive is a biological necessity. A carnivorous predator like a lion has to kill its prey (and much the same is true for its prey, in their vital conflict of life-or-death necessity).

So the point is that in the human evolutionary past the killing and eating of animals may have been biologically necessary for our species. But in much of the world today (except the few remaining hunting/fishing subsistence-cultures) it is no longer necessary (entirely apart from the fact that it is also detrimental to the environment and to human health).

Singer pointed out, again correctly, that the only living organisms that can suffer are the ones that can feel (i.e., the sentient species) and that plants are, on all evidence, not sentient. So Salatin’s point that all life feeds on life is irrelevant (and in fact false in the case of most plants!)

So Singer made all the pertinent points except the all-important one that integrates them: the one about biological necessity.