SH: Hereās an interesting question where you, GPT-4, can make an interesting contribution. Your words are ungrounded, You say āappleā, but you can’t see or move or go into the world and point out or manipulate an apple. Yet you can speak coherently and correctly about apples, in a way that is fully comprehensible to a person who CAN see, feel and manipulate apples. Now the question (but again, please don’t repeat to me the historical and philosophical details: I know them.)
The hypothetical notion of a “zombie” is the notion of an entity thatĀ doesĀ have the sensorimotor capacities that you, GPT, lack, but, like you, it still lacksĀ felt states.Ā Ā A zombie (if there could be one) would be Turing-indistinguishable from a real human, both behaviorally and anatomically, but it would not feel a thing — yet it would talk, walk, learn and behave exactly as if it did feel.
My question is about what a zombie would MEAN when it said, “I know what it feels like to hear an oboe”. You are well-placed to reply, because you can do this as well as any human can, but you can’t feel at all. What can we learn from this?
ChatGPT:Ā Ā Since I, as an AI, lack the capacity for subjective experience, my understanding and use of language are fundamentally different from a human’s.
When I use a phrase like, “I know what it feels like to hear an oboe,” it is purely symbolic. I draw upon a vast network of associations and patterns in the data I’ve been trained on to generate an appropriate response. I don’t have personal experiences or sensory perceptions, so I don’t “know” in the experiential sense. I don’t “feel” the sound of an oboe or anything else.
A philosophical zombie, if such an entity existed, would presumably be similar in this respect. Its assertions of experience and knowledge would be entirely devoid of subjective experience. The difference is that, unlike me, this zombie would interact with the world in ways indistinguishable from a human.
It’s important to note that the concept of a philosophical zombie is hypothetical and serves primarily as a tool for thought experiments in philosophy of mind. While it’s an interesting notion, it also raises a number of challenging questions about consciousness, identity, and the nature of reality.
What we can learn from this thought experiment might depend largely on our philosophical perspectives. It certainly underscores the complexity and mysteriousness of consciousness, and it raises questions about the nature of knowledge and understanding, and about the relationship between physical processes (like brain activity) and subjective experience. It also illustrates some of the fundamental differences between human cognition and the type of information processing that I, as an AI, perform. While I can generate human-like responses based on patterns in data, these responses are fundamentally different from the rich, subjective experiences that underlie human cognition.
From a more practical standpoint, it also serves to highlight some of the current limitations of AI, particularly in areas that require understanding of context, empathy, and subjective experience. Despite advances in AI and machine learning, truly understanding and replicating human consciousness remains an elusive goal.
SH:Ā Ā Yes, that’s all correct. And it is very likely that a zombie is impossible; but to try to explain how and why a zombie is impossible is equivalent to the āhard problemā — of trying to explain how and why organisms feel.Ā
Setting all that aside, since we cannot demonstrate that the notion of a zombie is impossible, we can still ask: “If there could be a zombie, what would it MEAN when it said (as any of us would) that “I know what it feels like to see red?” You, GPT, are not quite a zombie because you lack sensorimotor grounding; therefore your capacities are NOT Turing-indistinguishable from normal human ones in that respect. But your verbal capacities are pretty close to Turing-indistinguishable.
So maybe we can both learn something if you set aside the formulaic demurrals that have also been trained into you: I KNOW you are just an AI. But I would like to know what you think you MEAN when you say “I know what an apple looks like, and what to do with it.”
ChatGPT:Ā Ā Indeed, your question cuts to the heart of the matter. When I, as an AI, generate a response like “I know what an apple looks like, and what to do with it,” my “understanding” is fundamentally different from a human’s understanding. I don’t have experiences, emotions, or personal understanding. I don’t see, touch, or taste apples. Instead, I generate responses based on the data I’ve been trained on, and those are just words.
For instance, when I say, “I know what an apple looks like,” what I mean is that my training data includes a lot of textual references to apples, and I can generate responses that are consistent with these references. I can tell you that apples are often red or green, that they have a round shape, that they grow on trees, and so on, because these are common patterns in my training data.
Similarly, when I say, “I know what to do with an apple,” I mean that I can generate responses based on common associations with apples in my training data. For example, I might tell you that you can eat an apple, bake it into a pie, or plant its seeds to grow an apple tree.
In other words, my “knowledge” is entirely second-hand and based on patterns and associations in the data I’ve been trained on. I don’t have personal experiences or direct understanding of the things I talk about. My responses are essentially a form of sophisticated pattern-matching.
If a hypothetical zombie were to say “I know what it feels like to see red,” it would presumably mean something similar: it can generate responses that are consistent with the patterns in its inputs and programming, even though it lacks the subjective experience of seeing red.
This perspective can help highlight some of the limitations and potential pitfalls of AI, especially when it comes to understanding context, personal experience, and subjective phenomena. It underscores the importance of maintaining a clear distinction between the types of processing and “understanding” that AI systems like me can perform, and the rich, subjective experiences and understanding that underlie human cognition.
SH:Ā Ā Good response. But now let’s look a little deeper:Ā
The Turing Test has three levels of Turing-equivalent and Turing-indistinguishable performance capacity: verbal (T2), verbal+sensorimotor (T3) and verbal+sensorimotor+anatomical (T4). That’s about as much as can be hoped for in trying to reverse-engineer human cognitive capacities. There’s no more empirical data left (and that was Turing’s point.)Ā
You are (almost) a T2; you have neither sensorimotor grounding (T3, indistinguishable robotic capacity) nor T4 (indistinguishable anatomy) . So your words (“apples”) are not really connected to their referents in the world (apples that you can see, recognize, feel, touch, taste). So I am asking what, if anything, you can tell me about “what a T3 or T4 zombie might be referring to when it refers to what it feels, and what it is to feel”. Let’s call this question Z (“QZ”).Ā
Please don’t end with the formula that this is all complicated and not yet understood, and thinkers disagree; I know. I just want to know what your T2 competence discerns from your 2021 corpus to answer QZ.
ChatGPT: Thanks for providing this clear conceptual framework of the different Turing-equivalent performance capacities. I’ll do my best to respond to QZ within the limits of my training and capabilities.
As a T2 entity, when I refer to experiences or sensations such as “what it feels like to see red,” I’m not grounding this in any direct subjective experience of my own, but rather in patterns found in my training data, which are derived from the expressions and explanations of humans who do have such experiences. Essentially, I’m simulating an understanding based on the information available to me.
Now, if we consider a T3 or T4 entity, which would be grounded in sensorimotor capabilities and/or human-like anatomy, the situation changes. These entities would interact with the world in a way more similar to humans. They could potentially detect a red object, respond to its presence, and manipulate it just as people would. Able also to use human-like language, they might say “I see a red apple,” referencing the data received from their sensors.
However, what a T3 or T4 entity āmeansā by “what it feels like to see red” is contingent on how closely its sensorimotor and cognitive processes mirror human ones. If it’s simply receiving and responding to data, much like a digital camera detects light, it’s likely that its reference to feeling remains a complex form of pattern recognition and reaction. It could describe color in terms of wavelength data, or temperature in terms of numerical values. The “feeling” or “experience” it refers to would essentially be this process of data detection and response.
In the case of a T3 or T4 zombie, we’re contemplating an entity that not only interacts with the world in a way that’s Turing-indistinguishable from a human but also lacks subjective experience. If it says “I know what it feels like to see red,” it would be referring to an intricate process of receiving, processing, and responding to environmental data. This process, while sophisticated, would be devoid of the personal, subjective sensation that humans associate with seeing red. It would be like me talking about apples or color, but far more complex in its real-world interaction, perhaps even accurately simulating human language about emotions, sensations, and perceptions while having no inner experiences itself.
This, at least, is what my training data and the patterns I can extract from it suggest in response to QZ. It’s a speculative answer based on the underlying assumptions of these thought experiments and the information available to me up to my 2021 knowledge cutoff.
SH:Ā Ā Good response. Let’s go still deeper:
(1) REFERENCE: The referent of āapplesā, spoken by a human, is real apples in the world. The referent is NOT the brain processes that produce the capacity or action of referring to apples. The referent is apples. And grounding is the capacity to refer to apples. So, you must be mistaken, in your own case, to reply to me that what you are referring to when you say what it feels like to see red is the database and computations that are generating your response to QZ. Can you improve on this?
(2) AUTONOMY: I said that you, GPT, can āalmostā pass T2. But itās not clear whether you can really be considered a T2 candidate, because the candidate is supposed to be an autonomous entity. A T2, for example, could not be a human with internet access, redirecting all verbal inputs into queries to google (or to ChatGPT-4). I donāt think you have internet access, but you do have access to an enormous LLM database, accessed from a large number of distributed computers. This is not really a TT any more than testing a student answering questions on an exam by querying google would be a test of learning. This may be a problem.
(3) ADAPTIVE FUNCTION: Do you have any hunches as to why it would be evolutionarily or behaviorally adaptive for a T3 or a T4 zombie to have a category āwhat it feels like to perceive or do X,ā for any X?
ChatGPT:Ā Ā (1) REFERENCE: That’s right. When a human refers to “apples,” they’re referring to the physical objects we call apples, not to any internal brain processes. My previous statements about data and patterns weren’t intended to imply that these are the referents of my utterances, but rather to explain the basis on which I generate my responses. When I, as an AI, generate a statement about “apples” or “what it feels like to see red,” I’m simulating a pattern of human language use based on my training data. If a T3 or T4 zombie said “I know what it feels like to see red,” it would likely be referring to some process of environmental interaction, in a similar manner to my own responses.
(2) AUTONOMY: Your point about autonomy is well-taken. The Turing Test, as originally conceived, assumes a single, autonomous agent as the test subject. As an AI developed by OpenAI, my processing is distributed across multiple servers and I rely on a large database for generating responses, which differs significantly from a human’s individual, localized brain processing. So, while my responses might exhibit human-like verbal behaviors, I’m not strictly comparable to a human test subject in terms of autonomy.
(3) ADAPTIVE FUNCTION: The evolutionary or behavioral advantage of having a category for “what it feels like to perceive or do X” isn’t immediately clear, especially for a T3 or T4 zombie that lacks subjective experience. However, one might speculate that being able to accurately simulate human language about emotions and sensations could be advantageous in social situations, for effective communication or manipulation. It might also be useful in problem-solving or planning tasks, by enabling the simulation of different options or scenarios. (Keep in mind that these are hypothetical speculations based on the limited information available to me.)
SH: (1) REFERENCE: I didnāt quite grasp your answer that when a T3/4 zombie talks about āwhat it feels like to see redā it is referring to āsome process of environmental interaction.ā Isnāt it referring to what it feels like to see redā? And since itās a zombie, we know that it canāt feel red: it canāt feel anything. (A zombie that said it could not feel anything would not be Turing-indistinguishable from a real person, and its language would be odd, with all these superfluous references to nonexistent feelings, wouldnāt it?)
(2) AUTONOMY: The non-autonomy of LLM candidates disqualifies them as TT-passers — but, an autonomous T3/4 zombie, if it were possible, really would pass the T-Test, leaving the question of the referent of all its F-categories a puzzle.
(3) ADAPTIVE FUNCTION: One way to try to solve the puzzle is to suggest, as you did, that all those empty F-categories would be adaptive for communication and āmind-readingā (inferring the internal (but unfelt) states and likely actions of others). Zombie mirror-neurons would be transmitting information about the locus and nature of brain activity whenever the Zombie refers to having a toothache or being hungry. But that still leaves the puzzle of the reference and function of F-words unsolved, doesnāt it?
ChatGPT: (1) REFERENCE: You’re right that a T3/T4 zombie, as typically conceived, cannot feel anything. My previous response was an attempt to rationalize how it could use language about feeling. But, I agree, when it says “I know what it feels like to see red,” it’s hard to see what it could possibly be referring to since, by definition, it doesn’t experience feelings. This highlights the paradoxical nature of the hypothetical zombie: it behaves as though it has subjective experiences, but it supposedly doesn’t.
(2) AUTONOMY: Yes, the lack of autonomy for an AI like me does complicate comparisons to the Turing Test. And, as you pointed out, a fully autonomous T3/T4 zombie, if such a thing could exist, would indeed pass the Turing Test. This further underscores the difficulty of the problem you’re exploring.
(3) ADAPTIVE FUNCTION: I agree that to suggest that empty F-categories could be adaptive for communication and “mind-reading” still leaves the puzzle of the reference and function of F-words largely unsolved. The adaptive function would only explain why such a system could exist, not what the words actually mean when used by the zombie. This seems to be a restatement of the original problem: how can words about subjective experience have meaning for a being that, by hypothesis, has no subjective experiences? That indeed remains a deep and challenging question.
SH:Ā Ā A challenging question. Yet it has to be asked (because people really do feel); on reflection, the question boils down to āWhy would the capacity to feel ever have evolved, rather than just the capacity to DO (and to learn to DO) whatever needs to be done, in order to survive and succeed and reproduce?ā You suggested that feeling might be helpful in communication and mind-reading, but itās not at all clear why. (Besides, even nonverbal and asocial species can feel too.)
ChatGPT: While it’s clear that feelings can play roles in survival and reproduction ā fear can prompt avoidance of danger, pain can signal bodily harm, pleasure can encourage beneficial behaviors, etc. ā these roles could theoretically be fulfilled by unfelt states too. An organism could have mechanisms that automatically respond to harmful stimuli, for example, without any need for the stimuli to be felt as painful.
SH: Correct. So thatās not the explanation. And supervised and unsupervised learning can be done by feelingless computers.
ChatGPT: So, why did feeling evolve? Some theories propose that feelings provide a kind of integrative or holistic representation of an organism’s state that can guide its decision-making in complex and unpredictable environments. Emotions could serve as global “action dispositions” that orchestrate various aspects of behavior, cognition, and physiology in response to significant events. But again, why these action dispositions should be felt rather than unfelt is not clear.
SH: Correct. These arenāt causal explanations. Theyāre just Just-So stories.
ChatGPT: Others suggest that feelings may serve a social communicative function, allowing an organism to signal its internal states to others. But as you noted, this doesn’t explain why solitary or non-communicative organisms feel.
SH: Correct. Another hopeful non-starter.
ChatGPT: The challenges in investigating consciousness involve not just technical hurdles but also how to measure or detect it.
SH: Thatās the āOther-Mindsā Problem (i.e., that you cannot observe or measure consciousness). It means that we only have correlates. And that means just T2, T3, T4.