o liewe seuntjie

The culprit could have been poachers, 

or it could have been Darwin. 

Probably Darwin either way. 

What matters in it all is that an innocent little sentient 

(probably all sentients are innocent, even the deplorables, in principio

suffered, terribly. 

You are wise, 

and experienced in these things. 

Your little barn owl. 

Your ewes. 

Your ponies.

Open Access? Research impact? Categorical Perception? Symbol Grounding? LLMs? Mozart?

Phabeni’s desperate attempts to stand up, 

to breathe. 

His swollen neck. 

“not good fat.” 

And the world burns. 

Whether anthropic or Darwinian or cosmologic 

matters not. 

I am glad he is released. 

He should never have been enchained. 

ab ovo.

Nine Easy Pieces on Universal Grammar (UG) with GPT-4

Harnad: Short answers, please: 1. What is Universal Grammar (UG)? How does it differ from Ordinary Grammar (OG). Why did Chomsky conclude that OG is learnable but UG is not?

GPT-4: 

Universal Grammar (UG) refers to Noam Chomsky’s theory positing an innate set of linguistic principles shared by all humans. It includes the deep structures common to all languages, suggesting that the ability to acquire language is hard-wired into the human brain.

Ordinary Grammar (OG), in contrast, refers to the specific rules and conventions of a particular language that speakers learn and use in daily communication.

Chomsky concluded that OG is learnable because individuals acquire their native language’s specific grammar through exposure and practice. However, he argued that UG is not learned but is an inherent part of the human cognitive apparatus, enabling the acquisition of any OG.

Harnad: 2. Give an example, in English, of a violation of OG and a violation of UG, and what OG rule and UG rule each example violates.

GPT-4: 

Violation of OG: “She don’t like apples.”

This violates the subject-verb agreement rule in Standard English grammar (OG), where the correct form is “She doesn’t like apples.”

Violation of UG: “*Apples eats she.”

This violates a basic sentence structure principle that is part of UG, where in English the canonical order is subject-verb-object (SVO), and the correct form is “She eats apples.”

Harnad: 3. Why is UG not learnable? (What is the Poverty of the Stimulus?)

GPT-4: 

UG is considered not learnable due to the Poverty of the Stimulus argument, which posits that children do not receive enough linguistic input (stimulus) to learn language solely through environmental exposure. Despite this limited input, children still manage to acquire a complex language system, suggesting that some aspects of grammar are pre-wired in the human brain as part of Universal Grammar.

Harnad: 4. In particular, what are the 4 ways OG is learned? What is it about UG that makes it unlearnable in those same ways? (That is the POS.)

GPT-4:  

The four ways OG is typically learned are through:

Imitation: Mimicking others’ speech.

Instruction: Formal teaching of language rules.

Feedback: Corrections received when errors are made.

Statistical learning: Inferring rules from patterns in the input.

UG is considered unlearnable through these methods due to the Poverty of the Stimulus, which suggests that the linguistic input children receive is too inconsistent and incomplete to account for the rapid and uniform acquisition of language, especially for the acquisition of complex rules and structures that are never explicitly taught or encountered. UG posits that certain structures of language are innately predetermined, enabling language acquisition despite insufficient and imperfect input.

Harnad: 5. Can you explain POS in terms of errors and error correction for UG?

GPT-4: 

The Poverty of the Stimulus (POS) argument in terms of errors and error correction for UG suggests that children often do not receive explicit negative feedback for grammatical errors that violate principles of Universal Grammar. Despite this lack of error correction, they still develop a grammatically correct understanding of their native language, implying that some aspects of UG are innately programmed and not learned through trial and error.

Harnad: 6. But do they hear or make UG errors at all?

GPT-4: 

Children generally do not make errors that violate the core principles of Universal Grammar (UG). The types of mistakes they make in language acquisition tend to be within the parameters of their language’s Ordinary Grammar (OG)—for example, overgeneralizing rules such as verb conjugations. UG errors would involve fundamental misunderstandings of language structure (e.g., consistently placing verbs in the wrong place in a sentence), which are rarely, if ever, observed. This suggests that the principles of UG guide the language acquisition process in a way that prevents such errors from occurring.

Harnad: 7. please give a few examples of UG principles.

GPT-4: 

Examples of Universal Grammar principles include:

Structure-dependence: Grammatical processes operate on hierarchical structures, not linear sequences.

Recursion: The ability to embed phrases within phrases indefinitely.

Binding theory: Rules about the relationships between pronouns and the nouns they refer to.

X-bar theory: The principle that phrases and sentences follow a similar hierarchical structure, with a head, complement, and specifier.

Harnad: 8. What would be positive evidence and negative evidence for a rule or principle? What does that have to do with POS?

GPT-4: 

Positive evidence is the information that a language learner receives that demonstrates how the language is used correctly. This includes the sentences and phrases that a learner hears or reads that are well-formed and grammatically correct within the specific language environment.

Negative evidence is information about what is not permissible in a language, often received through corrections or explicit information about errors. This includes feedback when a learner makes a grammatical mistake, telling them that a certain sentence or construction is incorrect.

In the context of the Poverty of the Stimulus (POS), the argument is that children receive abundant positive evidence from which they can learn language, but they rarely receive explicit negative evidence, particularly for complex grammatical structures. Despite this lack of negative evidence, they still reliably acquire these complex aspects of language, which suggests that some knowledge of grammar is innate (UG) and not learned solely from environmental input (OG).

Harnad: 9. How do adults detect OG errors? How do linguists detect UG errors? Can non-linguist adults detect that UG errors are errors?

GPT-4:  

Adults detect OG errors typically through their linguistic intuition formed by their own mastery of a language; they notice when something doesn’t conform to the rules they’ve learned and internalized.

Linguists detect UG errors by analyzing language structures against the hypothesized principles of Universal Grammar, looking for patterns that either fit or don’t fit these universal patterns across different languages.

Non-linguist adults can often detect UG errors as well, even if they cannot explicitly identify the violated principle, because such errors usually result in utterances that feel fundamentally incorrect based on their innate language faculty.

Harnad: I’ve just asked you 9 sets of questions. Could you please give a long summary and  synthesis of your answers to them?

GPT-4: 

Here is a synthesis of our discussion regarding Universal Grammar (UG), Ordinary Grammar (OG), and the Poverty of the Stimulus (POS):

We began by defining Universal Grammar (UG) as the theory proposed by Noam Chomsky that posits an innate set of linguistic principles shared by all humans. This inherent structure is what enables humans to acquire any language. It differs from Ordinary Grammar (OG), which refers to the specific rules and syntax of a particular language learned through exposure and practice.

In terms of learning, OG is acquired through imitation, instruction, feedback, and statistical learning. Conversely, UG is not considered learnable because it represents the innate capacity to develop language. This premise is supported by the Poverty of the Stimulus (POS) argument, which states that the linguistic input children receive is insufficient in both quantity and quality for them to acquire language through environmental exposure alone. The speed and uniformity of language acquisition among children, despite this lack of comprehensive input, suggest the existence of an innate linguistic faculty.

We discussed examples of violations in OG and UG, noting that while children and non-native speakers might make mistakes that are against the OG of a particular language, they seldom make errors against UG principles. An example of an OG error would be a violation of tense agreement, such as saying “she don’t like apples” instead of “she doesn’t like apples.” A UG error, on the other hand, would involve a more fundamental misunderstanding, such as a consistent misplacement of sentence elements across any language the child is exposed to.

UG principles include concepts such as structure-dependence, which refers to the idea that grammatical operations depend on hierarchical structures rather than linear order; recursion, which allows for the indefinite embedding of phrases within phrases; binding theory, which concerns the relationships between pronouns and the nouns to which they refer; and X-bar theory, which outlines a common hierarchical structure to phrases and sentences.

The distinction between positive evidence (what is said) and negative evidence (what is not said, or corrections) is pivotal to the POS argument. While children are exposed to ample positive evidence, they rarely encounter explicit negative evidence, especially for the more complex aspects of grammar. However, they still manage to acquire these aspects of language effectively, leading to the conclusion that there must be some innate understanding or cognitive framework that guides the language acquisition process.

Finally, we talked about error detection. Adults detect OG errors intuitively because they have internalized the rules of their language. Linguists detect UG errors by examining language data against the backdrop of hypothesized universal principles. Non-linguist adults are also able to detect UG errors to some extent; these errors typically result in utterances that inherently feel incorrect, even if the individual cannot articulate why, reflecting an intuitive grasp of the innate principles of UG.

Harnad: Good summary. I would add only that POS is not just about what children do and don’t hear, but about what they do and don’t produce. They make OG errors, but not  UG errors. A category has members and nonmembers. To be able to learn to categorize correctly, you have to learn to detect the features  that distinguish the members from the non-members. For that, you need to sample both members and non-members, with feedback. For OG you can do that, but, because of POS, you cannot do that. That is why error-free UG performance implies that UG must be innate rather than learned.

GPT-4: 

That summarizes the Poverty of the Stimulus (POS) argument with respect to both the input children receive and the output they generate as well as the distinction between Ordinary Grammar (OG), where errors made and corrected through interaction with the linguistic environment aid learning, and Universal Grammar (UG), where the absence of UG errors in children’s speech suggests an innate, pre-existing grammatical framework.

The acquisition of categories through the detection of distinguishing features requires exposure to instances and non-instances of these categories. The successful navigation and mastery of language categories by children—without the requisite negative evidence for UG—strongly supports the hypothesis that UG principles are innate. This innate knowledge allows for correct categorization in the absence of explicit feedback, thereby facilitating error-free use of deep grammatical structures from an early age, as posited by Chomsky’s theory. Your addition points to the fundamental role of innate structures in language acquisition, where UG represents a set of linguistic categories whose members are recognized without the need for error-driven learning, a cornerstone of the argument for UG’s innateness.

Harnad: Thanks, but GPT4 would be so much more useful if you could suppress the trained flattery and affirmation and just summarize neutrally…

GPT-4:

The Poverty of the Stimulus argues that the absence of UG errors in children’s language production, despite the lack of negative evidence, indicates that UG principles are innate and not learned through environmental exposure. This contrasts with OG, where both positive and negative evidence are crucial for learning through error correction.

Harnad: Could you please assess the following 9 affirmations below and point out substantive contradictions (if any) from your database?

(1) there exist an infinity of potential UG-violations (starred *utterances), which 

(2) no speaker (except UG linguists) ever utters, yet 

(3) every adult detects [just about) every UG-violation as wrong, just as 

(4) every adult detects (just about) every OG-violation as wrong; but 

(5) every adult eventually learns (in 1-4 ways) why the OG-violations are wrong, by 

(6) uttering or hearing  OG-violations and 

(7) getting corrected (in 1-4 ways) on the OG-violations, whereas

(8) UG-violations are not OG-violations, and

(9) no one (except UG linguists) knows or can explain why or how the UG-violations are wrong

GPT-4: 

Upon reviewing the affirmations in the context of Universal Grammar (UG) as it relates to linguistic theory and cognitive science, here is an assessment:

(1) Infinity of potential UG violations: The theory of UG does allow for the possibility of an infinite number of hypothetical violations due to the generative nature of language. This statement aligns with the concept of UG.

(2) UG-violations not uttered: It is generally true that typical language users do not produce utterances that violate core UG principles. However, this does not necessarily mean that only UG linguists ever utter them; rather, non-linguists may not typically utter them because such utterances would be fundamentally uninterpretable.

(3) Universal detection of UG-violations: While adults can often recognize when an utterance feels ‘wrong’, they may not always be consciously aware that a UG principle has been violated. This recognition can be intuitive rather than explicit.

(4) Universal detection of OG-violations: Most adult speakers of a language will detect OG violations due to their familiarity with the specific rules of their language. This is consistent with the literature.

(5) Learning the reasons for OG-violations: Through exposure and feedback, adults do learn why certain utterances are considered errors in OG. This learning can happen through various means, such as correction, education, or self-correction upon reflection.

(6) Uttering/hearing OG-violations: Language learners, both children and adults learning a second language, do make mistakes in OG and learn from them through correction and exposure. This is a well-documented part of language acquisition.

(7) Correction on OG-violations: This affirmation aligns with the typical language acquisition process, where feedback plays a role in learning the correct forms of OG.

(8) Distinction between UG and OG violations: UG violations involve fundamental principles that apply across all human languages, while OG violations are errors against the specific grammar rules of a particular language. This distinction is a central tenet of the theory.

(9) Understanding of UG-violations: It is accurate to say that without formal training in linguistics, most people cannot explicitly identify or explain why a UG violation is incorrect. Their detection of ‘wrongness’ is typically an intuitive process rather than a formally understood one.

There do not appear to be direct contradictions in your statements from the perspective of linguistic theory as it pertains to UG. However, the extent to which every adult can detect every UG violation may not be absolute; while language intuition is strong, there can be variations in individual linguistic intuitions.

Harnad: One last request: Could you please give some better examples of UG violations than “*apples eats she”? Violations that are more systematic than random word-order permutations? Examples that draw on the UG principles you listed earlier.

GPT-4:

To illustrate violations of Universal Grammar (UG) principles with more systematic examples, I’ll relate them the UG principles mentioned previously:

Structure-dependence violation: Structure-dependence refers to the understanding that certain operations in grammar depend on the hierarchical structure of sentences rather than their linear order. A violation of this principle might look like applying a grammatical rule that operates correctly on the structure without regard to the hierarchical relationships between words. For instance, incorrectly forming a question by inverting the subject and the first verb in a sentence, regardless of the clause structure, would be a UG violation. Instead of properly transforming “The man who is going to the store is my uncle” to “Is the man who is going to the store your uncle?” a UG violation would result in “*Is the man who going to the store is your uncle?”

Recursion violation: Recursion allows for phrases to be nested within each other to an indefinite degree. A violation of recursion might be producing sentences that demonstrate a misunderstanding of how to embed clauses or phrases within one another correctly. For example, a speaker might say “*The cat the dog the rat bit chased ran away,” which lacks the necessary hierarchical structuring that recursion in UG would provide.

Binding theory deals with the relationships between pronouns and the nouns they refer to. A violation of this principle would occur if someone systematically used pronouns in a way that didn’t conform to the constraints of binding, such as using a reflexive pronoun without a proper antecedent in the same clause. An incorrect sentence would be “*Himself is eating,” instead of “He is eating by himself.”

X-bar theory violation: This principle predicts a certain structure to phrases, with a head, complement, and specifier. A systematic violation would involve creating phrases that do not follow this structure. For instance, in English, adjectives typically precede the noun (e.g., “red ball”), but saying “*Ball red” as a native speaker would not be consistent with the expected phrase structure outlined in X-bar theory.

These examples are more nuanced than simply jumbling word order and reflect a deeper misunderstanding of the abstract principles that guide the formation of grammatically correct sentences across languages.

GPT as Syntactic Shadow-Puppetry

Pondering whether there is something non-arbitrary to pin down in the notion of “intelligence” (or “cognition”) is reminiscent of what philosophers tried (unsuccessfully) to do with the notion of “knowing” (or “cognizing”):

BELIEF: Do I know (cognize) that “the cat is on the mat” if I simply believe the cat is on the mat? 

No, the cat really has to be on the mat.

TRUE BELIEF: So do I know (cognize) that “the cat is on the mat” if I believe the cat is on the mat and the cat is really on the mat?

No, I could be believing that it’s true for the wrong reasons, or by luck.

JUSTIFIED TRUE BELIEF: So do I know (cognize) that “the cat is on the mat” if I believe the cat is on the mat and the cat is really on the mat and I believe it because I have photographic evidence, or a mathematical proof that it’s on the mat?

No, the evidence could be unreliable or wrong, or the proof could be wrong or irrelevant.

VALID, JUSTIFIED, TRUE BELIEF: So do I know (cognize) that “the cat is on the mat” if I believe the cat is on the mat and the cat is really on the mat and I believe it because I have photographic evidence, or a mathematical proof that it’s on the mat, and neither the evidence nor the proof is unreliable or wrong, or otherwise invalid?.

How do I know the justification is valid?

So the notion of “knowledge” is in the end circular.

“Intelligence” (and “cognition”) has this affliction, and Shlomi Sher’s notion that we can always make it break down in GPT is also true of human intelligence: they’re both somehow built on sand.

Probably a more realistic notion of “knowledge” (or “cognition,” or “intelligence”) is that they are not only circular (i.e., auto-parasitic, like the words and their definition in a dictionary), but that also approximate. Approximation can be tightened as much as you like, but it’s still not exact or exhaustive. A dictionary cannot be infinite. A picture (or object) is always worth more than 1000++ words describing it. 

Ok, so set aside words and verbal (and digital) “knowledge” and “intelligence”: Cannonverbal knowledge and intelligence do any better? Of course, there’s one thing nonverbal knowledge can do, and that’s to ground verbal knowledge by connecting the words in a speaker’s head to their referents in the world through sensorimotor “know-how.”

But that’s still just know-how. Knowing that the cat is on the mat is not just knowing how to find out whether the cat is on the mat. That’s just empty operationalism. Is there anything else to “knowledge” or “intelligence”?

Well, yes, but that doesn’t help either: Back to belief. What is it to believe that the cat is on the mat? Besides all the failed attempts to upgrade it to “knowing” that the cat is on the mat, which proved circular and approximate, even when grounded by sensorimotor means, it also feels like something to believe something. 

But that’s no solution either. The state of feeling something, whether a belief or a bee-sting, is, no doubt, a brain state. Humans and nonhuman animals have those states; computers and GPTs and robots GPT robots (so far) don’t.

But what if they the artificial ones eventually did feel? What would that tell us about what “knowledge” or “intelligence” really are – besides FELT, GROUNDED, VALID, JUSTIFIED, TRUE VERBAL BELIEF AND SENSORIMOTOR KNOWHOW? (“FGVJTVBSK”)

That said, GPT is a non-starter, being just algorithm-tuned statistical figure-completions and extrapolations derived from on an enormous ungrounded verbal corpus produced by human FGVJTVBSKs. A surprisingly rich database/algorithm combination of the structure of verbal discourse. That consists of the shape of the shadows of “knowledge,” “cognition,” “intelligence” — and, for that matter, “meaning” – that are reflected in the words and word-combinations produced by countless human FGVJTVBSKs. And they’re not even analog shadows


A Whimper

I have of late 
lost all my faith 
in “taste” of either savor: 
gustate 
or aesthete. 
Darwin’s “proximal 
stimulus” 
is  just 
the Siren’s Song 
that 
from the start 
inspired 
the genes and memes 
of our superior 
race 
to pummel this promontory 
into 
for all but the insensate 
a land of waste.

12 Points on Confusing Virtual Reality with Reality

Comments on: Bibeau-Delisle, A., & Brassard FRS, G. (2021). Probability and consequences of living inside a computer simulationProceedings of the Royal Society A477(2247), 20200658.

  1. What is Computation? it is the manipulation of arbitrarily shaped formal symbols in accordance with symbol-manipulation rules, algorithms, that operate only on the (arbitrary) shape of the symbols, not their meaning.
  2. Interpretatabililty. The only computations of interest, though, are the ones that can be given a coherent interpretation.
  3. Hardware-Independence. The hardware that executes the computation is irrelevant. The symbol manipulations have to be executed physically, so there does have to be hardware that executes it, but the physics of the hardware is irrelevant to the interpretability of the software it is executing. It’s just symbol-manipulations. It could have been done with pencil and paper.
  4. What is the Weak Church/Turing Thesis? That what mathematicians are doing is computation: formal symbol manipulation, executable by a Turing machine – finite-state hardware that can read, write, advance tape, change state or halt.
  5. What is Simulation? It is computation that is interpretable as modelling properties of the real world: size, shape, movement, temperature, dynamics, etc. But it’s still only computation: coherently interpretable manipulation of symbols
  6. What is the Strong Church/Turing Thesis? That computation can simulate (i.e., model) just about anything in the world to as close an approximation as desired (if you can find the right algorithm). It is possible to simulate a real rocket as well as the physical environment of a real rocket. If the simulation is a close enough approximation to the properties of a real rocket and its environment, it can be manipulated computationally to design and test new, improved rocket designs. If the improved design works in the simulation, then it can be used as the blueprint for designing a real rocket that applies the new design in the real world, with real material, and it works.
  7. What is Reality? It is the real world of objects we can see and measure.
  8. What is Virtual Reality (VR)? Devices that can stimulate (fool) the human senses by transmitting the output of simulations of real objects to virtual-reality gloves and goggles. For example, VR can transmit the output of the simulation of an ice cube, melting, to gloves and goggles that make you feel you are seeing and feeling an ice cube. melting. But there is no ice-cube and no melting; just symbol manipulations interpretable as an ice-cube, melting.
  9. What is Certainly Truee (rather than just highly probably true on all available evidence)? only what is provably true in formal mathematics. Provable means necessarily true, on pain of contradiction with formal premises (axioms). Everything else that is true is not provably true (hence not necessarily true), just probably true.
  10.  What is illusion? Whatever fools the senses. There is no way to be certain that what our senses and measuring instruments tell us is true (because it cannot be proved formally to be necessarily true, on pain of contradiction). But almost-certain on all the evidence is good enough, for both ordinary life and science.
  11. Being a Figment? To understand the difference between a sensory illusion and reality is perhaps the most basic insight that anyone can have: the difference between what I see and what is really there. “What I am seeing could be a figment of my imagination.” But to imagine that what is really there could be a computer simulation of which I myself am a part  (i.e., symbols manipulated by computer hardware, symbols that are interpretable as the reality I am seeing, as if I were in a VR) is to imagine that the figment could be the reality – which is simply incoherent, circular, self-referential nonsense.
  12.  Hermeneutics. Those who think this way have become lost in the “hermeneutic hall of mirrors,” mistaking symbols that are interpretable (by their real minds and real senses) as reflections of themselves — as being their real selves; mistaking the simulated ice-cube, for a “real” ice-cube.

Intelligence and Empathy

“A family of wild boars organized a cage breakout of 2 piglets, demonstrating high levels of intelligence and empathy”

The capture as well as the breeding of other sentient beings for human uses are imprisonment and slavery – involuntary – and contrary to the biological imperatives of the victims. It is anthropocentric arrogance and aggression to presume that humans have a natural (or divine) right to inflict this on other sentient beings (except in cases of vital [not commercial or hedonic] conflict of biological imperatives, such as between biologically obligate carnivores and their prey).

La capture ainsi que l’Ă©levage des autres ĂȘtres sentients pour les usages humains sont de l’emprisonnement et de l’esclavage — involontaires — Ă  l’encontre des impĂ©ratifs biologiques des victimes. C’est une arrogance et une agression anthropocentriques de prĂ©sumer que les humains ont un droit naturel (ou divin) d’infliger cela Ă  d’autres ĂȘtres sensibles (sauf en cas de conflit d’impĂ©ratifs biologiques [pas les intĂ©rĂȘts commerciaux ou hĂ©doniques], comme entre les carnivores biologiquement obligĂ©s et leurs proies).

*IF* plants HAD feelings, how WOULD this affect our advocacy for animals?

That plants do feel is about as improbable as it is that animals (including humans) do not feel. (The only real uncertainty is about the very lowest invertebrates and microbes, at the juncture with plants, and evidence suggests that the capacity to feel depends on having a nervous system, and the behavioral capacities the nervous system produces.)

Because animals feel, it is unethical (in fact, monstrous) to harm them, when we have a choice. We don’t need to eat animals to survive and be healthy, so there we have a choice.

Plants almost certainly do not feel, but even if they did feel, we would have no choice but to eat them (until we can synthesize them) because otherwise we die.

Critique of Bobier, Christopher (2021) What Would the Virtuous Person Eat? The Case for Virtuous Omnivorism. Journal of Agricultural and Environmental Ethics

Critique of What Would the Virtuous Person Eat? The Case for Virtuous Omnivorism

1. Insects and oysters have a nervous system. They are sentient beings and they feel pain.

2. It is not necessary for human health to consume sentient beings — not mammals, birds, reptiles, or invertebrates.

3. It is plants (and microbes) that do not have a nervous system and hence do not feel.

4. What is wrong is to make sentient beings suffer or die other than out of conflict of vital (life-or-death) interest.

5. Morality concerns, among other things, not harming other sentient beings.

The rest of the proposal of Christopher Bobier is unfortunately mere casuistry.

To help the victims of plant agriculture  for human consumption, perhaps strive instead to develop an agriculture that is more ecological and more merciful to the sentient beings who are entangled in mass consumption by the human population.

Instead of fallacies like the call to consume some sentient victims so as to give further sentient victims the opportunity to become victims, it might be more virtuous to consider reducing the rate of growth in the number of human consumers.

De la casuistique d’un «éthicien» concernant la « vertu»

1. Les insectes et les huitres ont un systĂšme nerveux. Ils sont des ĂȘtres sentients et ils ressentent la douleur.

2. Il n’est pas nĂ©cesaire Ă  la santĂ© humaine de consommer les ĂȘtres sentients — ni mammifĂšre, ni oiseau, ni rĂ©ptile, ni invertĂ©brĂ©.

3. C’est les plantes (et les microbes) qui n’ont pas de systĂšme nerveux et donc ne ressentent pas.

4. Ce qui est mal, c’est de faire souffrir ou mourrir les ĂȘtres sentients sans nĂ©cessitĂ© vitale (conflit d’intĂ©rĂȘt de vie ou de mort).

5. La moralitĂ© concerne, entre autres, ne pas faire mal aux autres ĂȘtres sentients.

Le reste du propos de ce « scientifique » n’est que du casuistique. 

Pour aider aux victimes de l’agriculture des plantes aux fins de la consommation humaine, lutter peut-ĂȘtre plutĂŽt pour dĂ©velopper une agriculture plus Ă©cologique et plus misĂ©ricordieuse envers les ĂȘtres sentients qui sont empĂ©trĂ©s dans la consommation de masse par la population humaine. 

Au lieu de sophismes comme l’appel Ă  consommer des de victimes sentientes pour donner l’occasion Ă  davantage de victimes sentientes Ă  devenir victimes, il serait peut-ĂȘtre plus vertueux de songer Ă  rĂ©duire le taux de croissance du nombre de consommateurs humains…

World Happiness Report

The Hygge ladder

I think it would be more informative to ask people:

  1. whether they or their loved ones have any (a) mild, (b) moderate, or (c) grave illnesses
  2. whether they or their loved ones do not have enough to eat for the foreseeable future
  3. whether they or their loved ones do not have a place to live for the foreseeable future
  4. whether they  or their loved ones are not free, or in danger of harm

If their reply to 1-4 is no, then they should forget the 10-point Hygge ladder and count themselves as happy (and consider helping those sentient beings whose reply to 1-4 is not no).