Tag Archives: offshore engineering

UK Maritime Sector Powers Forward

If you are thinking about a future in mechanical engineering or aerospace why not consider maritime? Salaries remain strong, there is a worldwide shortage of engineers with maritime expertise and you as an individual can really make a significant difference.

Looking to the future the UK maritime sector is set to continue growing and to become an ever more important part of the UK’s economy. Already the maritime sector with an economic impact of £116bn is larger than the rail and aviation sectors combined. As an industry it supports over a million jobs that are 45% more productive than UK average, with pay 30% higher than UK benchmark and has expanded by 35% between 2010 and 2019.

These are the highlights from a detailed report by CEBR commissioned by MaritimeUK that discusses crucial maritime activities in the UK: shipping(£49Bn), engineering and science(£34Bn), business services(£13.7Bn), ports(£10Bn) and leisure(£8Bn) all play their part.

Research and development will play a key part in future UK success particularly in green technology developments around: decarbonising the shipping fleet of the world; developing the technology to harvest marine renewables such as floating offshore wind, tidal and wave energy; digital technology to ensure that ships are productive and can operate safely minimising risk to crew through increased use of autonomous systems; data analytics that allow ships to manage their voyage to account for the latest weather; achieving improved performance through use of foiling technology developed through high performance sailing events such as the America’s Cup, reducing ship resistance using air lubrication technology and returning to the age of sail through wind assist.

What industry needs are the highly qualified maritime engineers and ship scientists that can create and implement these innovative technologies. Typically 15 times as many students apply for aerospace as opposed to maritime courses and as a result only a small proportion of aerospace graduates actually go to work in their sector whereas in maritime there are many many opportunities worldwide as well as in the UK.

https://www.maritimeuk.org/careers/careers-seekers/

Our degree programmes are designed for the future and are taught by academics who are at the forefront of the maritime sector worldwide. As part of the School of Engineering we are in the top four of UK Engineering units of assessment for the the quality of its research (REF2021) and its societal and economic impact. The pathways for our final two years of our MEng programme include advanced computational engineering, ocean energy and offshore engineering, international naval architecture, marine engineering and autonomy, and yacht and high performance craft.

Our courses are the only ones that are joint accredited by the Institution of Mechanical Engineers, the Royal Institution of Naval Architects and the Institute of Marine Engineers, Scientists and Technologists. Year-on-year our national student survey results consistently rate us as the top UK maritime engineering and ship science degree programme.

IMO World Maritime Day – Empowering Women in the Maritime Community

In honour of this year’s theme for World Maritime Day 2019 on 26th September, we are delighted to announce our networking event Empowering Women in the Maritime Community. We will be holding a Q&A/networking session for women in the maritime sector, who will be sharing what they do, how they got there, and any advice they might have. The session will be relatively informal, with lots of opportunities to ask questions and garner advice. More details to follow next month:

RAENg Visiting Professor Dr Penny Jeffcoate

The evnt is being coordinated by Dr Penny Jeffcoate our RAEng Visiting Professor – Marine Energy Technologies and Associated Infrastructure.
Penny joined us in 2018 as part of the Royal Academy of Engineering Visiting Professor scheme, alongside her current role at tidal energy developer Sustainable Marine Energy as their R&D Manager. This industry-into-academia initiative aims to utilise the experience of Visiting Professors to enhance student learning as well as the employability and skills of UK engineering graduates, whilst strengthening external partnerships with industry. Under the objectives of this scheme, industry practitioners participate in course development, face-to-face teaching and mentoring of engineering undergraduates at the host university for three years.
Penny worked with Maritime Engineering and Ship Science programmes in 2018-2019 to help develop the Renewable Energy (SESS6067) and Group Design Projects courses for final year students, to give them practice in industry methods, particularly in reporting and critical reasoning. She will be working with the department this year to expand this interaction and give students insight into designing to client specification and management practices. This develop will continue until the end of her placement in 2021 and will hopefully be used for many years of student intake to come. The RAEng scheme also promotes the encouragement of traditionally minority entities in engineering, such as women and BAME. Penny will therefore be organising an event in support of this year’s IMO World Maritime Day: Empowering Women in the Maritime Community.
 

It wasn't this whale's day – high quality imaging using autonomous underwater vehicles

 

A 3D image reconstruction generated using BioCam showing an 8 metre long whale carcass that is sandwiched between two large coral mounds.

A team from the University of Southampton has successfully obtained the largest continuous visual map of the seafloor ever obtained in UK waters during a currently ongoing expedition to the Darwin Mounds. The expedition led by co-chief scientists Blair Thornton of the University of Southampton and Veerle Huvenne of the National Oceanography Centre (NOC), deployed underwater robots to map cold-water-coral mounds at a depth of 1000m in a Marine Protected Area (MPA).
 
BioCam fitted on the underside of the underwater robot Autosub 6000 as it is recovered from the ocean after a successful mission

The autonomous robot, Autosub6000 of the NOC, was equipped with BioCam, a newly developed deep-sea 3D imaging system developed by the University of Southampton under the Natural Environment Research Council’s OCEANIDS Marine Sensor Capital program. During its first 24-hour deployment, BioCam was able to visually map the seafloor at 40 times the rate of conventional imaging systems, covering approximately 50 times the area of Wembley stadium’s football pitch. The example below shows one of the 650,000 images taken during the dive, showing diverse species of deep-sea life sheltering amongst the corals. BioCam also discovered a whale carcass more than 8 metres in length on the seafloor just a few hundred metres from a coral mound.
An image of the seafloor taken at 1000m depth showing diverse species of animals living amongst coral

Blair Thornton, Associate Professor of Marine Autonomy at the University of Southampton says, “The large area and high level of detail in the visual maps BioCam collects can help scientists recognise patterns and features on the seafloor that would otherwise go unnoticed, allowing ecologists to compare sites and document changes over time at much larger scales than previously possible.”
He continues, “It is fantastic that the system delivered results from the word go. This was only possible because of a huge team effort, with staff and students at the University of Southampton, local industries, and the MARS team at the NOC working hard together to develop BioCam and integrate it onto the Autosub 6000. Huge credit also goes to the ship’s crew for safely deploying and recovering the system in less than ideal sea states.”
Veerle Huvenne, Team Leader for Seafloor and Habitat Mapping at the National Oceanography Centre explains “typically, scientists map out large scale spatial patterns in ecology by inferring relationships between sonar maps and short transects of visual imagery (photographs or video). BioCam’s ability to continuously image areas in 3D over tens to hundreds of hectares gives us the ability to directly observe patterns over entire habitats. This is a powerful new tool for scientists to better understand these fragile environments”.
Hayley Hinchen, Marine Habitats Monitoring Manager at the Joint Nature Conservation Committee says, “The data BioCam collects could support marine conservation by providing vital evidence at a large scale about how effective measures like marine protected areas are at conserving our environment, especially in fragile, complex habitats that can’t be physically sampled. The evidence gathered could help us understand how damaged areas of the seafloor recover with time in protected sites like the Darwin Mounds”
More information about BioCam can be found at the following website, https://ocean.soton.ac.uk/biocam
Regular updates about the current expedition are posted on www.projects.noc.ac.uk/class/blog
Link to BBC article – https://www.bbc.co.uk/news/uk-scotland-highlands-islands-49753440

High performance computing solves Ship Science challenges

The fifth generation of the University of Southampton’s supercomputers Iridis 5 has come on line. It has 20,000-cores and has a peak performance of 1.3 Petaflops. A ‘flop’ is floatng point operations per second such as adding two real numbers in a second and Peta is 1 quadrillion eg 10 to the power 15 .

Wolfson Unit CFD around sailing catamaran

The 20,000-core machine was designed and built by high performance computing (HPC) integrator OCF using ThinkSystem SD530 servers from Lenovo. It has already emerged as one of the most powerful systems in the world, entering the Top500 supercomputer list in November,at number 251.

One of the key users over many years is our own Wolfson Unit for Marine Technology and Industrial Aerodynamics(WUMTIA)  who provide a variety of Computational Fluid Dynamics(CFD) services to industry. Dr Sandy Wright, principal research engineer, Wolfson Unit at the University of Southampton comments in an OCF press release. “We have a worldwide customer base and have worked with the British Cycling Team for the last three Olympic games, as well as working with teams involved in the America’s Cup yacht race. In the past 10 years, Computational Fluid Dynamics (CFD) has become a perfectly valid commercial activity, reducing the need for physical experimentation. CFD gives as good an answer as the wind tunnel, without the need to build models, so you can speed up research whilst reducing costs. Iridis 5 will enable the Wolfson Unit to get more accurate results, whilst looking at more parameters and asking more questions of computational models.”
Scale up of standard CFD testcase KVLCC on Iridis 4 upto 2048 cores

PhD students in FSI are alo important users of the Iridis computers. One example is Dr James Hawkes who recently completed his PhD in collboration with Dr Guilherme Vaz of the Refresco team at MARIN on ‘Chaotic methods for the strong scalability of CFD‘. His work investigated how best to design CFD codes of the future to work across thousands of cores.
Ducted thruster

Wind tunnel tests on deep water underwater autonomous glider

As part of the BRIDGES EUH2020 (http://www.bridges-h2020.eu/). research programme the hydrodynamic performance of the external shape was successfully validaterd in the large  R.J.Mitchell wind tunnel at the University of Southampton.  The glider is designed to carry out long duration autonomous scientific missions down to depths of 3000m. Current underwater gliders are typically limited in depth (~150 m). This is one of the funded projects underway in the maritime robotics laboratory.

Underwater glider suspended from overhead strut with an internal dynamometer measuring forces down to < 1N

Dr Artur Lidtke , Research Fellow in the Maritime Robotics Lab at the FSI Group, carrie dout the tests over a one week period. Thanks to the size of the facility, hydrodynamic performance of the AUV could be measured at full-scale Reynolds numbers, allowing detailed quantification of drag augments associated with different vehicle configurations. The information will help to validate the design, which has been devised based on fluid dynamic simulations (CFD),  allow better estimation of mission endurance, and lead to an improved understanding of performance of such AUVs in the future.
See also: https://twitter.com/BRIDGESh2020/status/956851894449827840

Summer Schools for Future Maritime Engineers

In July we hosted not one but three residential engineering summer schools, seeing over 160 students visit and stay at the University to learn about Ship Science.
smallpeice
It all started with the newly designed Smallpeice Course thanks to Drs’ Arun, Francesco and Yikun! This course saw Year 9  students design, build and test wave energy converters and supply vessels.
Filming the action at smallpeice trials
This was followed by the Marine Headstart course led by Dr Joe Banks where Year 12 students designed, built and tested tidal turbines – learning all about renewables, ship science and marine engineering.
While last but not least the Design Triathlon Summer School led by Dr Nick Townsend saw Year 12 students design, build, test and race speedboats – learning all about hydrostatics, hydrodynamics and the design process.
Thanks to all those who participated and the staff and phd student who helped out over the week – it was great fun for all.
If you would like to know more about these courses and engineering outreach at the University of Southampton be sure to check out.  Similar course will take place next year and are a great opportunity to learn about maritime engineering and ship science and possible careers that follow.
http://www.etrust.org.uk/marine-engineering-and-nautical-science-southampton
https://www.southampton.ac.uk/schools-colleges/design-triathlon.page
https://www.southampton.ac.uk/schools-colleges/marine-headstart.page

Delphin2 in starring role

Our long serving Autonomous Underwater Vehicle Delphin 2 features in a short 15 minute film highlighting the capabilities of autonomous vehicles to support emergency and disaster relief activities. This was made as part of an EPSRC funded UK Robotics Week Grand Challenge entry.

Delphin2 surfaces
Delphin2 surfaces

The première was well attended and a very enjoyable occasion, attracting three classes from the local school whose students were in the film as well as parents and teachers.
The film is now on YouTube for all to see https://youtu.be/eD742AI21fk
If you watch  this you will of course see Delphin2, a small surface ASV and our own Dr Jon Downes making his film debut!

OCEANS IV

OSV at Aberdeen
OSV at Aberdeen

Between the 19th and 22nd June the FSI group was represented by PhD students Yu Cao and Bernat Font Garcia, as well as postdoctoral researches Francesco Giorgio-Serchi and Artur Lidtke at the Oceans ’17 conference in Aberdeen, Scotland.
At the harbour
At the harbour

The event covered a very wide range of topics, from aquaculture, sensor technologies through to signal classification along with many more applied papers relevant to offshore structures and renewable energy. The papers presented by FSI researchers included a study of a mixed renewable energy scavenging device for an autonomous vehicle (Yu Cao https://pure.soton.ac.uk/admin/files/23591223/161201_132.pdf), development of a turbulence model for application to vortex induced vibration on riser pipes and moorings (Bernat Font Garcia https://www.researchgate.net/publication/316734503_Analysis_of_two-dimensional_and_three-dimensional_wakes_of_long_circular_cylinders), testing of a soft robot utilising shape change to propel itself (Francesco Giorgio-Serchi https://eprints.soton.ac.uk/410902/1/GiorgioSerchi_Weymouth_Oceans2017.pdf), and an experimental study of laminar flow effects on an underwater glider wing (Artur Lidtke https://eprints.soton.ac.uk/411106/).
Energy scavenging in action
Energy scavenging in action

The conference was also preceded by a day of workshops and tutorials devoted to modelling marine renewable energy devices and design of autonomous underwater vehicles (AUV). Both subjects of significant interest to many within FSI.

Summer Open day opportunities – learn more about ship science, naval architecture and marine engineering

The Challenge
The Challenge

For many the maritime sector is not one they may know much about but there are many exciting careers in the industry, with plenty of opportunities to travel, work abroad and not just to always sit behind a desk at a computer. Our graduates are highly sought after in the industry and can be found in leadership positions worldwide and across a range of sectors from cruise ships, America’s Cup team, offshore industry, ship design and consultancy, marine renewables, defence sector, academia and even Silicon Valley.  We are the only degree programme in the UK which is accredited by the Royal Institution of Naval Architects, Institute of Marine Engineering, Science and Technology, and the Institution of Mechanical Engineers. There are exciting engineering challenges in the maritime sector from how do we decarbonise shipping, protect lives at sea, maritime robotics, develop cost effect marine energy harvesters for wind, wave and tide to name but a few.
For those studying hard at school who are interested in the maritime engineering sector we have four open days this summer. Staff and students will be on hand to answer questions and show some of our facilities and educational experience.  Our degree course cover a wide range of the maritime sector and provide great flexibility.  We look for strong grades in maths and a suitable science such as physics, chemistry or further maths. Our admissions team is always happy to answer question either by email or phone.
This summer’s University open days are taking place on Saturday 8th July, Saturday 9th and Sunday 10th September and Saturday 14th October. To book for the 8th July or register an interest and find out more http://www.southampton.ac.uk/about/visit/open-days.page . It will be great to meet you and explain more.
 

Part 2 Ship Science Students Tour China's Maritime Sector

The Great Wall
The Great Wall

For the second year our second year ship science students have been able to visit ship yards and maritime organisations in China on a 10 day whistle stop tour. The opportunity to visit a variety of ship yards building ships, performance yachts, offshore platforms as well as some of the leading maritime universities and research organisations has been made possible because of a number of on-going educational partnerships between the Faculty of Engineering and Environment and our colleagues in China,
Paying attention to H&S briefing
Paying attention to H&S briefing

If you want to find out more please find our direct from the student’s blog at csiv2017.blogspot.com. There are some great shout outs to Dr Boyd’s ship production course being seen in action and my personal favourite about the need to reduce the drag of ship rudders..
Proper ship kit..
Proper ship kit..