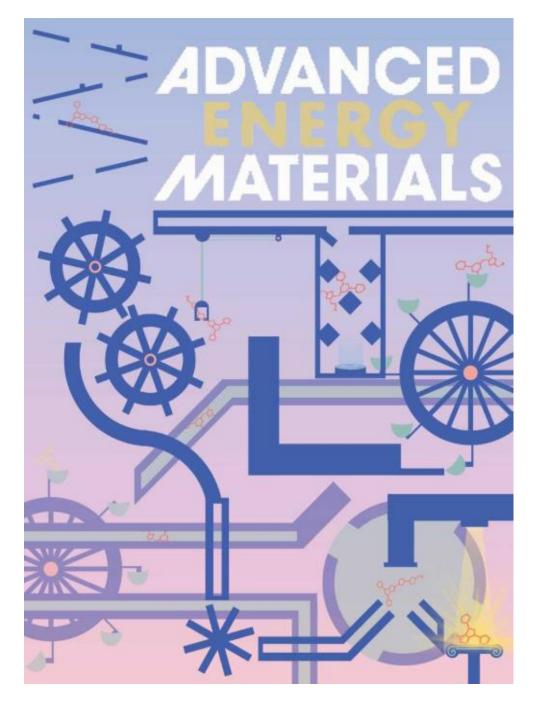


Midlecular Endineering

A partnership between Cambridge University, BASF & STFC RAL

BASF / Royal Academy of Engineering Senior Research Fellowship in :


Data Driven

Blecular Cineering of Functional Materials

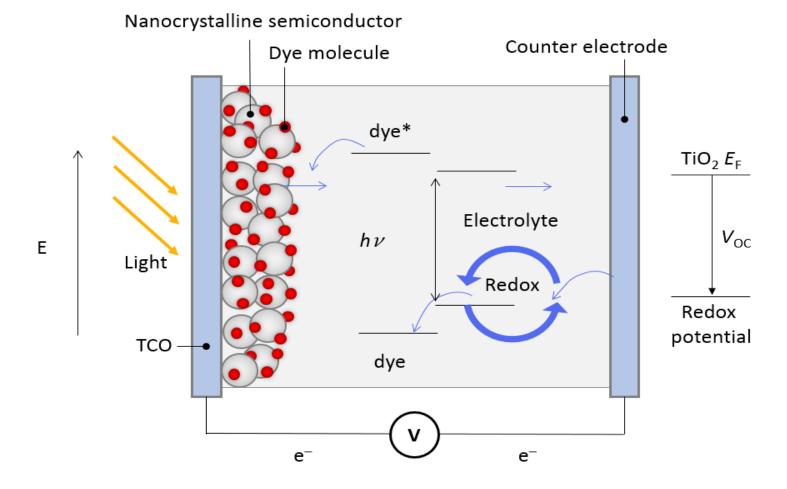
Research Background with Central Facilities

STFC Rutherford Appleton Laboratory (& International Facilities)

Journal Impact Factor: 22

FULL PAPER

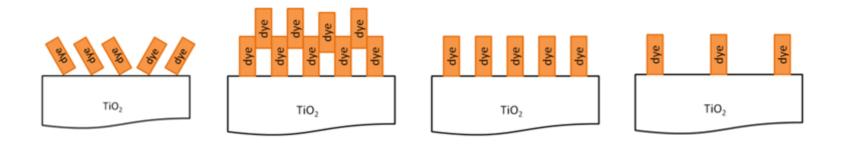
ADVANCED ENERGY MATERIALS


Dye-Sensitized Solar Cells

www.advenergymat.de

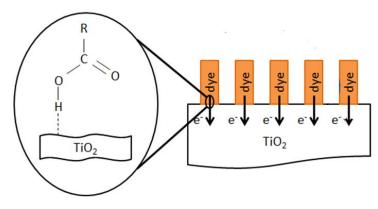
Design-to-Device Approach Affords Panchromatic Co-Sensitized Solar Cells

Christopher B. Cooper, Edward J. Beard, Álvaro Vázquez-Mayagoitia, Liliana Stan, Gavin B. G. Stenning, Daniel W. Nye, Julian A. Vigil, Tina Tomar, Jingwen Jia, Govardhana B. Bodedla, Song Chen, Lucía Gallego, Santiago Franco, Antonio Carella, K. R. Justin Thomas, Song Xue, Xunjin Zhu, and Jacqueline M. Cole*

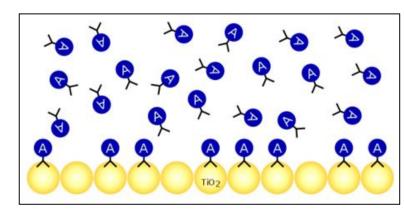

Dye-sensitized solar cell

Graz Science Tower (Sep 17)

Relating Molecular Structure to Device Function

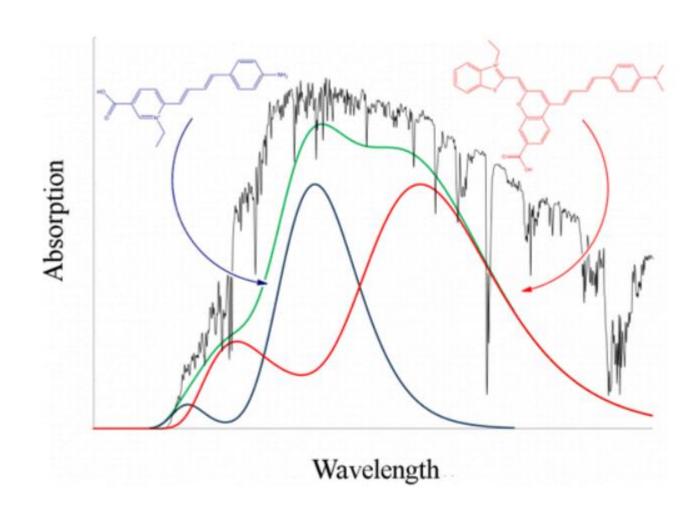


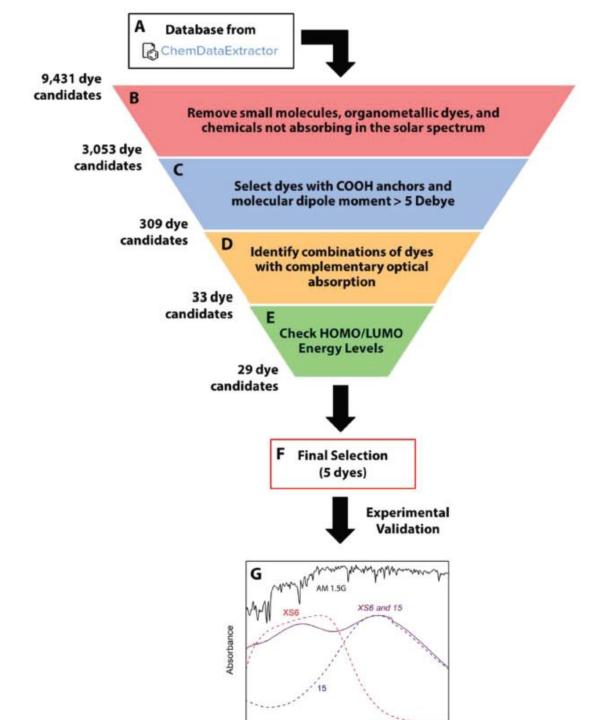
Dye orientation


Dye aggregation

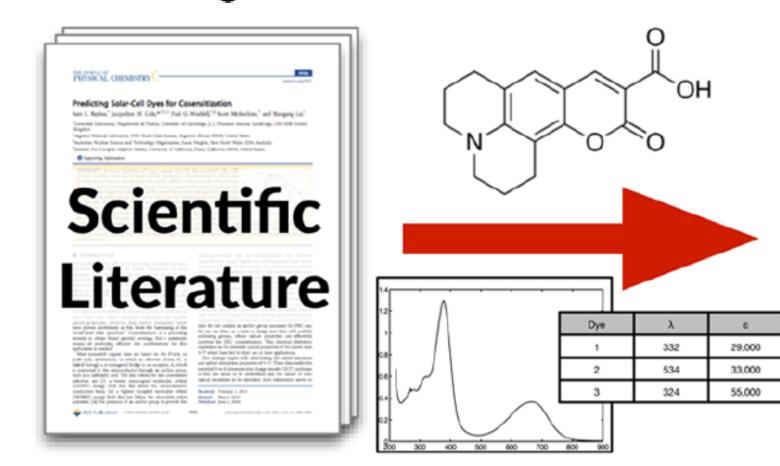
Dye coverage

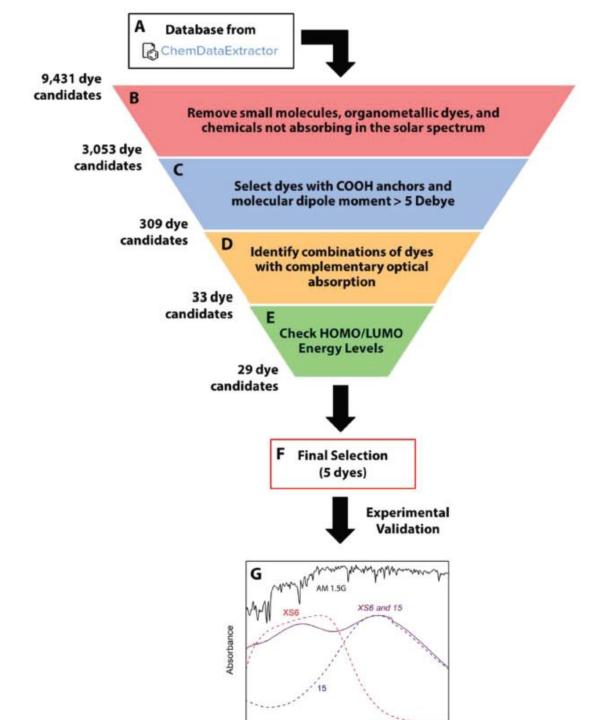
Inter-dye spacing

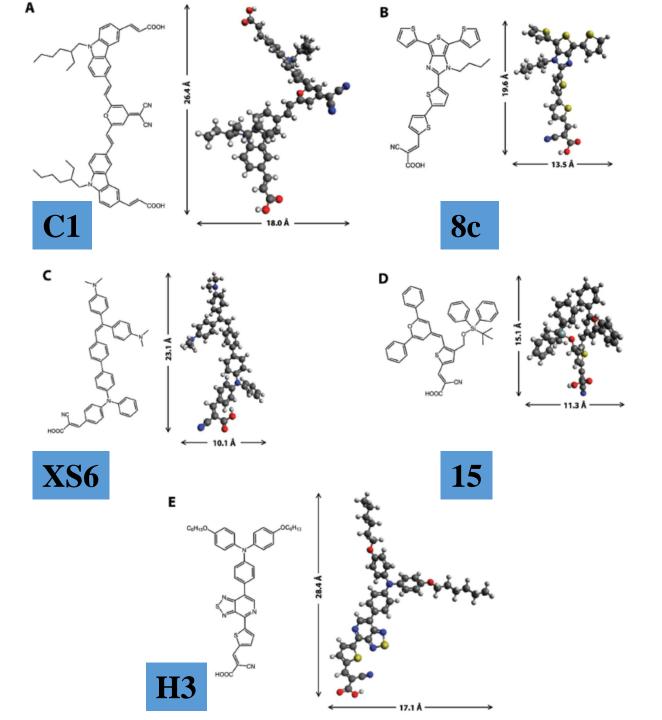


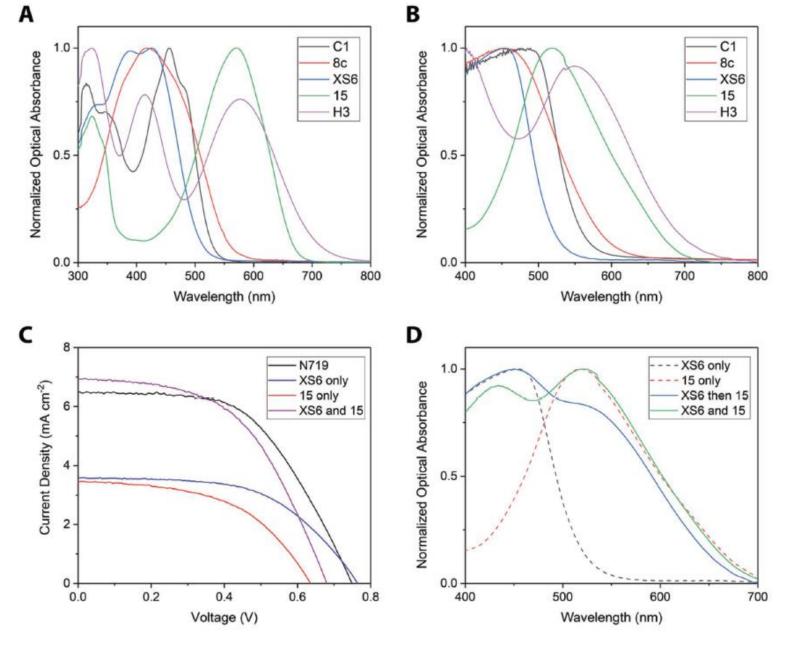

Dye...**TiO**₂ binding

Dynamic Processes

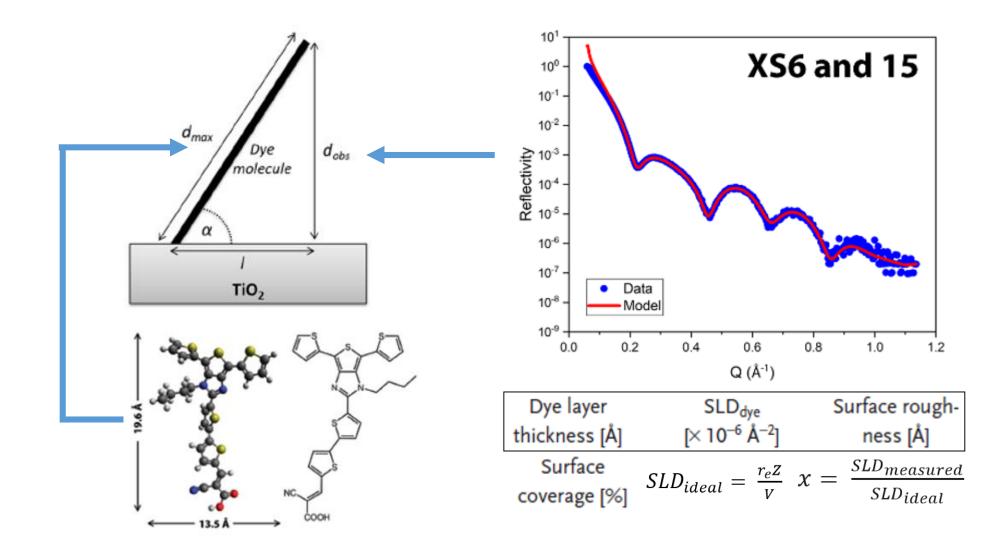

Co-sensitization

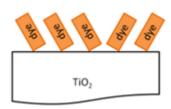



ChemDataExtractor



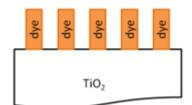
M. C. Swain, J. M. Cole J. Chem. Inf. Model. 56 (2016) 1894-1904

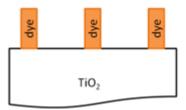


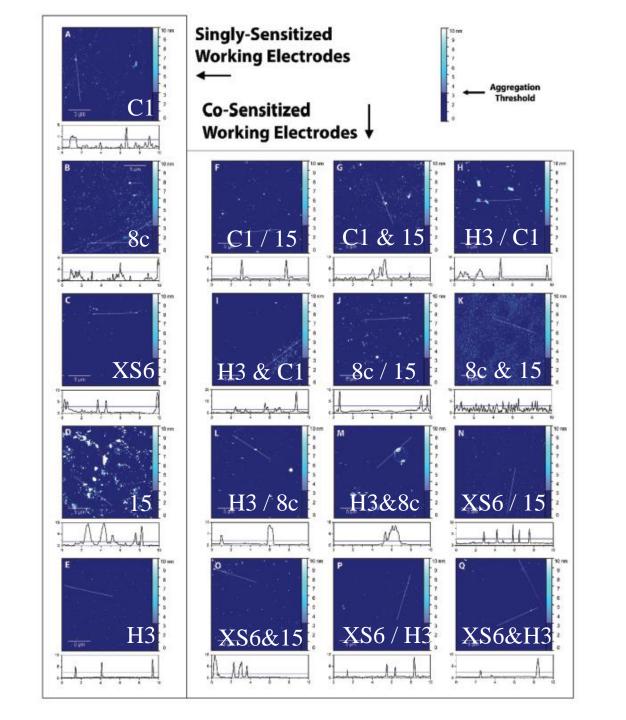


PV device output: XS6 67%; 15 51%; XS6/15 82%; XS6&15 92% of industry standard (N719)

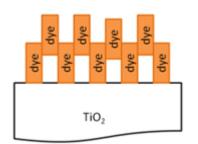
Advanced Materials Characterization


X-ray reflectometry




Dye orientation

	XRR parameters				
Sample name	Dye layer thickness [Å]	SLD _{dye} [× 10 ⁻⁶ Å ⁻²]	Surface rough- ness [Å]	Surface coverage [%]	
Singly sensitized					
C1 only	43.5 ± 0.9	6.6 ± 0.5	5.6 ± 0.7	55 ± 4	
8c only	26.6 ± 0.9	5.1 ± 0.9	3.3 ± 0.8	39 ± 7	
XS6 only	23.6 ± 0.5	8.7 ± 0.4	3.7 ± 0.5	73 ± 3	
H3 only	27 ± 1	6.7 ± 0.5	3.7 ± 0.5	55 ± 4	
15 only	24.3 ± 0.3	7.8 ± 0.4	2.7 ± 0.3	62 ± 3	
Co-sensitized					
C1 then 15	33.7 ± 0.5	$\textbf{5.9} \pm \textbf{0.7}$	3.1 ± 0.6	49 ± 6	
C1 and 15	21.5 ± 0.8	6.3 ± 0.9	3.8 ± 0.7	52 ± 7	
H3 then C1	42 ± 1	6.0 ± 0.6	$\textbf{5.2} \pm \textbf{0.7}$	49 ± 5	
C1 and H3	25.4 ± 0.4	8.5 ± 0.4	3.0 ± 0.5	69 ± 3	
8c then 15	$\textbf{30.9} \pm \textbf{0.4}$	6.9 ± 0.4	$\boldsymbol{3.9 \pm 0.6}$	54 ± 3	
8c and 15	31 ± 2	5.7 ± 0.5	7 ± 2	45 ± 4	
H3 then 8c	$\textbf{37.2} \pm \textbf{0.2}$	9.0 ± 0.7	2.9 ± 0.4	70 ± 5	
8c and H3	27.5 ± 0.4	8.0 ± 0.4	3.3 ± 0.6	63 ± 3	
XS6 then 15	18.8 ± 0.3	8.7 ± 0.5	3.6 ± 0.4	72 ± 4	
XS6 and 15	18.6 ± 0.3	8.8 ± 0.5	3.4 ± 0.4	73 ± 4	
XS6 then H3	21.0 ± 0.3	9.6 ± 0.5	4.1 ± 0.4	79 ± 4	
XS6 and H3	21.6 ± 0.6	8.7 ± 0.6	4.0 ± 0.5	71 ± 5	





Dye coverage

	AFM parameters				
Sample name	Mean height [nm]	Max height [nm]	Aggregate coverage [%]	Number of aggregates [μm ⁻²]	
Singly sensitized	working electrodes				
C1 only	5 ± 1	7 ± 2	3 ± 6	2 ± 3	
8c only	5 ± 1	6 ± 2	3 ± 2	3 ± 2	
XS6 only	4.9 ± 0.4	6.0 ± 0.7	1.0 ± 0.1	0.3 ± 0.2	
H3 only	9 ± 1	15 ± 3	0.3 ± 0.1	0.18 ± 0.05	
15 only	8 ± 2	15 ± 3	7 ± 2	1.1 ± 0.4	
Co-sensitized wor	king electrodes				
C1 then 15	6 ± 2	10 ± 3	1.3 ± 0.5	0.7 ± 0.2	
C1 and 15	7 ± 2	12 ± 4	2.0 ± 0.5	0.9 ± 0.6	
H3 then C1	8 ± 2	16 ± 4	3 ± 3	0.4 ± 0.2	
C1 and H3	5 ± 1	8 ± 3	2 ± 1	2 ± 2	
8c then 15	6 ± 1	9 ± 2	1.1 ± 0.2	0.7 ± 0.6	
8c and 15	4.6 ± 0.3	5.8 ± 0.4	12 ± 9	16 ± 5	
H3 then 8c	5.5 ± 0.7	8 ± 1	3 ± 2	1 ± 1	
8c and H3	5.2 ± 0.7	7 ± 2	2 ± 2	1 ± 1	
XS6 then 15	6±1	8 ± 2	0.7 ± 0.3	0.8 ± 0.3	
XS6 and 15	7.8 ± 0.7	11 ± 1	0.3 ± 0.1	0.24 ± 0.09	
XS6 then H3	5.5 ± 0.7	7.6 ± 0.8	0.3 ± 0.1	0.25 ± 0.04	
XS6 and H3	5.3 ± 0.8	7 ± 1	0.3 ± 0.1	0.2 ± 0.1	

Dye aggregation

Conclusions

Design-to-Device approach to materials discovery (Data Science, computation, experiments)

Database auto-generation developments (ChemDataExtractor) successful for data science

One pair of lead dye candidates yields PV output ~ industry standard

Advanced Materials Characterisation at STFC RAL rationalises PV output

Development of Sample Environment for World Unique Instrumentation and Experiments

Great team work – 18 authors on AEM paper!

National and International Facilities (big data sources as well as experimental resources)