5th International Symposium on Occupant Behaviour

Organised by the **Energy and Climate Change Division** www.energy.soton.ac.uk

www.iea-annex.org

Southampton

Introduction

Headlines from the Chairs

The <u>Energy and Climate Change Division (ECCD) and the Sustainable Energy Research Group</u> (<u>SERG</u>) within the School of Engineering at the University of Southampton, UK, hosted the International Energy Agency's (IEA) Energy in Buildings and Communities (EBC) Programme Symposium and Task Group meetings addressing Occupant-Centric Building Design and Operation ('Annex 79') from 20-23 April 2020.

In light of the COVID-19 pandemic, the 4-day event took place virtually using a video and web conferencing platform. This was the first time the event was held online. The ease of attending virtually, facilitated by the Management Team, resulted in a record attendance of over 230 delegates from 25 countries and 82 institutions (Fig 1).

Map of IEA Annex 79 attendees 231 participants from 25 countries Prof AbuBakr S. Bahaj ICEC 2020 Chair Head, Energy & Climate Change Division, UoS

ICEC 2020 Co-chair Lecturer in Energy and Buildings, UoS

Dr Stephanie Gauthier

Leading academics, practitioners, policy-makers, manufacturers and students from the fields of engineering, architecture, psychology, sociology and marketing came together to exchange ideas and good practice. Creating and strengthening partnerships to integrate and implement occupancy and occupant behaviour into the design process of buildings and their operation, enhancing both energy performance and occupant comfort.

Торіс	Attendees	Concurrent views
Symposium Session 1	155	125
Symposium Session 2	150	131
Symposium Session 3	144	121
Symposium Session 4	131	111
Symposium Session 5	136	118
Symposium Session 6	123	115
Expert Meeting Day 1	136	126
Expert Meeting Day 2	122	115

IEA Annex 79 attendance figures

Summary

The first two days of virtual meetings (20-21 April) comprised the 5th International Symposium, and a full programme of the six sessions, chaired jointly by Stephanie Gauthier and AbuBakr Bahaj of ECCD (Fig 2). With the various presentations and question and answer sessions covering cutting-edge research from around the world, including topics as diverse as building simulation, teleworking, 'big data' modelling, nudges and behaviour change, introducing a range of case studies and academic approaches to the attendees.

The final two days (22-23 April) was dedicated to the 4th IEA EBC Annex 79 Expert Meeting (Fig 3). These experts meetings discussed, planning and pursuing research activities and initiatives for the five year Annex 79 across the four sub-tasks:

Subtask 1: Multi-aspect environmental exposure, building interfaces, and human behaviour.

Subtask 2: Data-driven occupant modelling strategies and digital tools.

Subtask 3: Applying occupant behaviour models in performance-based design process.

Subtask 4: Development and demonstrations of occupant-centric building controls.

IEA Annex 79 Symposium presenters

IEA Annex Expert Meeting group photo

These Subtask Meetings included an overview of activities within each subtask (plenary) and then three breakout sessions held as Breakout Rooms within the digital platform. The Rooms provided flexibility to

allow participants to join appropriate sessions and move between the subtasks. The discussion that ensued in the various sessions covered how to implement innovations and the transfer of knowledge between researchers and practitioners in the best practice for occupant-centric building design and operation. With participants sharing, a post-meeting drink together in various time zones honouring Annex tradition.

The follow-up event will be held at the University of Southern Demark lead by Professor Mikkel Baun Kjærgaard see <u>annex79.iea-ebc.org</u> for further details.

More information about ECCD and SERG can be found in the ECCD research portfolio booklet.

Day 1 – programme

Monday, 20 April 2020

11:30	Registration and log-in
11:45	Welcome to Southampton — AbuBakr Bahaj & Stephanie Gautheir, <i>Chairs</i>
11:50	Introducing Annex 79 — Liam O'Brien & Andreas Wagner, <i>Operating Agents of Annex</i> 79
	Personalised Comfort and Building Controls (Chair: AbuBakr Bahaj)
12:00	Exploring Thermal Comfort in Immersive Virtual Environment — Yimin Zhu, Louisiana State University, USA
12:10	Extending the Fanger PMV Model to Include the Effect of Non-Thermal IEQ Conditions on Occupant's Thermal Comfort — Sarah Crosby, <i>University of British Columbia, Canada</i>
12:20	Are Comfortable Temperature Ranges Healthy? — Simona D'Oca, Huygen Engineers and Consultants, Netherlands
12:30	Energy Flexibility of Buildings: Understanding how Thermal Acceptability can Enable Demand-Response Strategies — Matteo Favero, Norwegian University of Science and Technology, Norway
12:34	Occupant-Centric Control with Personalized and Contextual Thermal Comfort Behav- iour Dynamics Prediction — Michael Kane, <i>Northeastern University, USA</i>
12:38	On Multidimensional Comfort: Multi-Parametric Experimental Experiment Within a BIM Designed Virtual Environment — Fillipo Vittori, University of Perugia, Italy
12:42	Open Discussion
13:10	Refreshment Break
	Occupant-Centric Building Controls (Chair: Ben Anderson)
13:25	Implementation of Occupancy-Based Predictive Controls for Outdoor Air Intake Dampers: Lessons Learned — Brodie Hobson, <i>Carleton University, Canada</i>
13:35	What do Occupants Want? Let's Ask Them Using Smart Watches and Cozie — Clayton Miller, National University of Singapore, Singapore
13:45	A Human-Centered Approach to Residential Buildings — Philip Agee, Virginia Tech, USA

15:32	Occupant Behaviour and SAP: Integration of Stochastic Occupancy Modelling into
15:28	Demand Response Events in Residential Buildings: Not Noticeable at All? — Marika Vellei, La Rochelle Université, France
15:24	— Tianzhen Hong, Lawrence Berkeley National Laboratory, USA
45.04	— Clarice Bleil de Souza, Welsh School of Architecture, Wales
15:20	Inserting Occupant Behaviour Models Within the Workflow of Practitioners: A Practice -Based Perspective
	— Ardeshir Mahdavi, <i>Tu Wien, Austria</i>
15:10	Agent-Based Modelling of Building Occupants: Promise and Challenges
10.00	Zero Energy Ready Code — Mohamed Ouf, Concordia University, Canada
15:00	Analysing Smart Thermostat Data and Unregulated Loads to Support the Canadian Net
14:50	Occupant Behaviour Profile Development based on Smart Meter Data — Miklós Horváth, Budapest University of Technology and Economics, Hungary
	Modelling and Simulation, Session 1 (Chair: Victoria Aragon)
14:35	Refreshment Break
14:10	Open Discussion
	— Michael Kane, Northeastern University, USA
14:07	Preliminary Insights into Interviews with Building Energy Mangers Regarding Occu- pant Centric Control
	— Shen Wei, University College London, UK
14:03	Monitoring Occupant Window Opening Behaviour in Buildings and Relevant Influential Parameters: A Critical Review
	— June Young Park, University of Texas, USA
13:59	A Reinforcement Learning for Occupant Centric Thermostat Control
	— Ghadeer Derbas, Wuppertal University, Germany

Southampton

Southampton

Day 2 – programme

Tuesday, 21 April 2020

11:30	Registration and log-in
11:50	Welcome — AbuBakr Bahaj & Stephanie Gauthier, <i>Chairs</i>
	Modelling and Simulation, Session 2 (Chair: Patrick James)
40.00	
12:00	ing Automation
	— Clara-Larissa Lorenz, RWTH Aachen University, Germany
12:10	What Does a Zero Energy and Zero Carbon Tenant Look Like?
	— Julia Day, Washington State University, USA
12:20	Effectiveness of Feedforward Information System on Occupant's Behaviour
	— Isabel Mino-Rodriguez, Karlsruhe Institute of Technology, Germany
12:30	Quantifying the Impact of Occupant Presence on Building Energy Simulation with Real and Synthetic Data
	— Adrian Chong, National University of Singapore, Singapore
12:34	Prediction of Indoor Clothing Insulation Levels: A Comparison of Different Machine Learning Approaches
	— Anooshmita Das, University of Southern Denmark, Denmark
12:38	Analysis of Occupants Presence in Homes
	— Alasdair Mann, University of Southampton, UK
12:42	The Impact of Occupants' Distribution on Energy and Comfort in a Case study Office Building
	— Tareq Abuimara, Carleton University, Canada
12:45	Open Discussion
13:10	Refreshment Break
	Other Building Occupant-Related Research (Chair: Massimilianno Manfren)

13:25	Does Teleworking Save Energy? A Critical Review of Quantitative Studies and their Research Methods
	— Liam O'Brien, <i>Carleton University, Canada</i>
13:35	A Systematic Approach to Preserve Privacy in Smart Buildings
	— Alan Wang, University of Virginia, USA
13:45	Understanding New Technology and their Impacts on Occupants
	— Victoria Aragon, University of Southampton, UK

13:55	Towards Low-Energy Housing in the Canadian North from an Occupant-Centric Per- spective
	— Louis Gosselin, Université Laval, Canada
13:59	User Behaviour in Low-Environmental Impact Buildings in Tropical Climates
	— Maareva Payet, University of La Réunion, France
14:03	N-Gage: Sensing in-class Multidimensional Learning Engagement in the Wild
	— Nan Gao, Royal Melbourne Institute of Technology University, Australia
14:07	Open Discussion
14:35	Refreshment Break
	Case Studies of Occupant-Centric Modelling, Design and Operations (Chair: Stephanie Gauthier)
11.50	Introduction to PhD Thosis: Subjective Data Streams for Indeer Climate Assessment
14.50	in Buildings
	— Niels Lassen, Norwegian University of Science and Technology, Norway
15:00	Evaluating Acoustic Comfort in Multi-Unit Residential Buildings
	— Marianne Touchie, <i>University of Toronto, Canada</i>
15:10	Learning to Live in Low-Energy Dwellings: A Mixed-Methods Case Study
45.00	— Lucile Sarran, Technical University of Denmark, Denmark
15:20	App
	— Verena Barthelmes, Ecole Polytechnique Fédérale de Lausanne, Switzerland
15:24	Evaluating Varying Comfort
	— Gary Raw, <i>GRPS, UK</i>
15:28	Case Study: Reasons of Office Occupant's Dissatisfaction with an Automated Lighting Control System
	— Sarah Weiner, Fraunhofer Institute, Germany
15:32	Impact of Visual and Auditory Factors on Perceived Thermal Comfort: A Case Study
45.05	— Ardeshir Mahdavi, <i>Tu Wien, Austria</i>
15:35	Open Discussion
	Closing
16:00	Invitation to IEA Annex 79 Expert Meeting
	— Liam O'Brien & Andreas Wagner, Operating Agents of Annex 79
16:10	Closing Remarks
	— AbuBakr Bahaj & Stephanie Gauthier, Chairs

Southampton

End of day

Presentations

Session 1 - First presenter

Zhu, Yimin &

Hong, Tianzhen

Louisiana State University, USA and Lawrence Berkeley National Laboratory, USA

Session 1

Day 1, 12:00

Exploring Thermal Comfort in Immersive Virtual Environment *Y. Zhu, T.Hong*

Immersive virtual environment (IVE) has been increasingly applied to building design. Most applications utilize the strength of the technology to support visual and spatial modeling. However, such capability is not enough, because IVE alone cannot effectively provide thermal stimuli for thermal comfort-related studies. The project team examined the potential of augmented IVE, i.e., IVE plus a climate-controlled environment, to support thermal comfort-related studies. To this end, experiments were conducted comparing the thermal experience of participants (such as thermal sensation, thermal comfort, and thermal acceptability) between IVE and in-situ settings. Each experiment had a heating and a cooling sequence in both in-situ and IVE settings. The heating and cooling sequences were controlled at 65°F/18°C, 75°F/24°C, and 85°F/29°C with the relative humidity set at 55%. Thirty participants completed all experiment sessions. Thermal state votes, physiological responses (e.g., skin temperature and hear rate), and other demographic data were collected, cleaned, and processed for analysis. Statistical analysis was applied to testing the hypothesis that the thermal experience of participants was not significantly different between IVE and in-situ. The experience was measured using three parameters, the control temperature distribution over the thermal state scale, the thermal state vote distribution at a temperature step, and the physiological response. The sample-wide analysis suggests that participants' experience is not significantly different between IVE and in-situ settings, when experiment conditions are wellcontrolled.

Exploring Thermal Comfort in Immersive Virtual Environment

Yimin Zhu, Louisiana State University, Baton Rouge, LA Tianzheng Hong, Lawrence Berkeley National Laboratory, Berkeley, CA

Background and Research Question

- Challenge
 - Observing thermally-driven human-building interactions for buildings under design
- Opportunity
 - Immersive virtual environment providing contextual conditions and observing interactions
 - Climate chamber providing and controlling thermal stimuli
- Question
 - Is participants' experience significantly different between IVE and *in-situ* settings?
 - Thermal state (sensation, comfort and acceptability), perceived temperature, and physiological response

Experiment Equipment and Devices

- Climate chamber
- Heart rate sensor
- Skin temperature sensors
- Head mounted display (HMD)
- Survey instruments
 - ASHARE thermal sensation 7-point scale
 - Customized 6-point comfort and acceptability scales
 - iGroup Presence Questionnaire (IPQ) and Simulator Sickness Questionnaire (SSQ)

Experiment Procedure

- Thermal exposure
 - Cooling vs. heating
 - Three steps: 65°F/18.3°C, 75°F/23.8°C, and 85°F/29.4°C
- Experiment environment
 - Immersive virtual environment (IVE) vs. *in-situ*
- Contrasting outdoor temperatures
 - Warmer vs. cooler
- Data cleaning
 - Control temperature between IVE and in-situ: <u>+</u>3°F [1]

[1] Darian-Smith, I., and Johnson, K. O. (1977). "Thermal sensibility and thermoreceptors." *Journal of Investigative Dermatology*, 69(1).

Hypotheses

- $H_0: V_{temp} = V'_{temp}; H_1: V_{temp} \neq V'_{temp}$
 - V_{temp} and V': Sensation, comfort, and acceptability vote distribution in IVE and *in-situ* respectively; temp: temperature step 65°F/18°C, 75°F/24°C, and 85°F/29°C
 - Fisher's exact test, 0.05 significance level
- $H_0: T_{level} = T'_{level}; H_1: T_{level} \neq T'_{level}$
 - T_{level} and T[']_{level}: IVE and *in-situ* control temperature distribution respectively; level: sensation, comfort, or acceptability
 - Kolmogorov-Smirnov test, 0.05 significance level
- $H_0: PR_{temp} = PR'_{temp}; H_1: PR_{temp} \neq PR'_{temp}$
 - PR_{temp} and PR'_{temp}: the mean of T_{sk} at the eight sites at a certain temperature step in IVE and *in-situ* settings respectively; temp: temperature step - 65°F/18°C, 75°F/24°C, and 85°F/29°C
 - Two-tailed t-test (paired), 0.05 significance level

Participant Data

- Demographic data
 - 14 Female and 16 Male (n=30)
 - 30% (n=9) Caucasian
 - 26.66% (n=8) Middle Eastern
 - 26.66% (n=8) Asian
 - 16.66% from other race/ethnicities

- Overall virtual reality experience:
 - Presence: reported average 38.16; this study - 48.97 and over
 - Cybersickness: reported SSQ total mean scores, 5.30 - 27.25; this study 20.25 and 18.43

Age	Mean	Highest level of Education	Count
Mean	26.9	Postgraduate degree	9
Std Dev	6.15	College graduate	8
Std Err Mean	2.29	Some college	10
Upper 95% Mean	29.2	High school graduate	3
Lower 95% Mean	24.6	Total	30

Example: Thermal State Vote Distribution

- H₀: V_{temp} = V'_{temp};
 H₁: V_{temp} ≠ V'_{temp}
 - Thermal sensation vote count

Period 1, Colder

 Fisher's exact test, instead of Chi Square test.

General Thermal Sensation			In-Situ	IVE	
General	Thermal Sensation	Vote Level	Ν	Ν	p-value
		-3	3	4	
	65 ºF/18.3 ºC	-2	15	16	0.87
		-1	12	10	
b0		-2	4	5	
ling	75 ºF/23.8 ºC	-1	11	12	0.882
00		0	14	12	
0		0	3	4	
		1	10	13	0.000
	65 =r/29.4 =C	2	11	7	0.806
		3	1	1	
	65 ºF/18.3 ºC	-3	2	3	
		-2	12	12	4
		-1	11	11	T
		0	4	3	
50		-1	2	4	
ting		0	15	13	0 700
leat	/5 ºF/23.8 ºC	1	10	9	0.799
Т		2	1	2	
		0	2	2	
		1	8	13	0 5 2 0
	85 ºF/29.4 ºC	2	15	10	0.529
		3	2	2	

6

Analysis and Results

- None of the hypotheses were rejected.
- The thermal state vote distribution at a certain temperature step in the *in-situ* setting was not significantly different from that in the IVE setting.
- When participants voted for their thermal state in both *in-situ* and IVE settings, the thermal state vote distributions of the two settings were not significantly different regardless of the experiment period, the exposure type, and the temperature step.

Exmaple: Control Temperature Distribution

- $H_0: T_{level} = T'_{level}; H_1: T_{level} \neq T'_{level}$
 - General thermal sensation

			Con	trol Tempera	ature	Cont			
General Thermal			(in-situ)			K-S Test			
	Sensation Level		N	Mean	St. Dev	NI	Mean	St. Dev	(p-value)
			N	(ºC)	(ºC)	IN	(ºC)	(ºC)	
		-3	3	20.12	1.38	4	20.34	0.96	
		-2	19	20.82	1.91	21	21.16	1.81	
er	ы С	-1	23	22.27	1.97	22	22.53	2.02	
plo	ilo	0	17	25.11	1.86	16	25.38	2.15	1
Ŭ	ö	1	10	28.62	0.93	13	28.22	1.13	
d 1		2	11	28.31	1.55	7	29.11	0.44	
erio		3	1	30.13	-	1	29.32	-	
Å		-3	2	17.48	0.45	3	17.96	0.99	
		-2	12	18.27	0.8	12	18.26	0.51	
	8 L	-1	13	19.31	1.69	15	19.52	1.8	
	eati	0	21	21.63	2.31	18	21.77	2.12	0.937
	μ	1	18	24.89	2.98	22	25.01	2.32	
		2	16	26.54	1.7	12	26.79	2.34	
		3	2	24.58	1.61	2	27.66	0.6	

-3

-2

■ In-sitt
■ IVE

Analysis and Results

- None of the hypotheses were rejected.
- The control temperature distribution over the thermal state scale in the *in-situ* setting was not significantly different from that in the IVE setting.
- When participants voted for their thermal state in both *in-situ* and IVE settings, the corresponding control temperature distributions in both settings were not significantly different, regardless of the exposure type (heating vs. cooling) and the experiment period (warmer vs. colder).

Exmaple: Physiological Responses

• $H_0: PR_{temp} =$ $PR'_{temp}; H_1:$ $PR_{temp} \neq PR'_{temp}$

> Eight body sites at each temperature step, and HR

Period 1, Colder

 Only significant results

	Condition		Response	In-Situ		IVE			DE			
			Variable	Ν	Mean	St. Dev.	Ν	Mean	St. Dev.	DF	τ	p-value
2	ling	65 ºF/18.3 ºC	Forehead Skin Temperature (ºC)	30	34.32	0.85	30	35.75	1.18	29	-5.43	7.49E-06
	Coo	75 ºF/23.8 ºC	Forehead Skin Temperature (ºC)	29	34.96	0.53	29	35.76	0.63	28	-6.1	1.39E-06
		65 ºF/18.3 ºC	Forehead Skin Temperature (ºC)	29	33.67	0.95	29	34.49	0.63	28	-5.14	1.85E-05
	ating	75 ºF/23.8 ºC	Forehead Skin Temperature (ºC)	28	34.16	0.92	28	35.17	0.69	27	-6.18	1.30E-06
	Не	85 ºF/29.4 ºC	Forehead Skin Temperature (ºC)	27	35.1	0.77	27	35.94	0.51	26	-6.23	1.33E-06
		85 ºF/29.4 ºC	Neck Skin Temperature (ºC)	27	33.94	1.21	27	33.32	1.88	26	2.42	0.022

Analysis and Results

Period 2, Warmer

• $H_0: PR_{temp} =$ $PR'_{temp}; H_1:$ $PR_{temp} \neq PR'_{temp}$

 Eight body sites at each temperature step, and HR

 Only significant results

	~	Condition Response		In-Situ		IVE			DE			
	Ľ	ondition	Variable	Ν	Mean	St. Dev.	Ν	Mean	St. Dev.	DF	τ	p-value
		65 ºF/18.3 ºC	Forehead Skin Temperature (ºC)	28	34.39	0.64	28	35.94	1.05	27	-6.95	1.79E-07
	Cooling	75 ºF/23.8 ºC	Forehead Skin Temperature (ºC)	27	34.87	0.64	27	36.07	0.52	26	-8.05	1.56E-08
		85 ºF/29.4 ºC	Forehead Skin Temperature (ºC)	29	35.16	0.89	29	35.94	0.5	28	-4.04	0.0003
	ting	75 ºF/23.8 ºC	Upperback Skin Temperature (ºC)	27	33.26	0.99	27	33.63	1.03	26	-2.33	0.02
	Неа	85 ºF/29.4 ºC	Forehead Skin Temperature (ºC)	29	35.22	0.52	29	35.83	1.48	28	-2.41	0.02

Analysis and Results

- Significantly different responses the skin temperature:
 - Forehead (both cooling and heating sequences at different temperature steps)
 - Neck at 85 °F/29.4 °C, heating
 - Upper-back at 75 °F/23.8 °C, heating
- Forehead: most likely caused by the use of the HMD
- Neck and upper-back: No obvious explanation

Summary and Future Studies

- When experiment conditions are well-controlled, the sample-wide analysis suggests that participants' experience is not significantly different between IVE and *in-situ* settings.
 - Significantly similar patterns between IVE and *in-situ (the control temperature distribution over the thermal state scale, and the thermal state vote distribution at a temperature step)*
 - Limited differences in the skin temperature responses between IVE and *in-situ (mostly* at forehead due to the use of HMD)
- Future studies should include:
 - Comparisons at each level of the thermal state scales,
 - Impact of contrasting seasons,
 - Investigation of behavioral factors,
 - Individual level analysis, and
 - Collaborative experiment and data sharing.

Acknowledgment

- This research was partially supported by the National Science Foundation (Grant No.: CBET-1805914). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
- Project Team
 - Dr. Yimin Zhu (LSU), Dr. Tracey Rizzuto (LSU), Dr. Neil Johannsen (LSU), Dr. Tianzhen Hong (LBNL), and Dr. Jared Langevin (LBNL)
- Research Assistants
 - Dr. Sanaz Saeidi (Microsoft Corporation, former Ph.D. student), Ms. Samantha Chacon (LSU, MSc. student), Mr. Girish Rentala (LSU, Ph.D. student)

Questions

Presentations

Session 1 - Second presenter

Crosby, Sarah

British Columbia.

Canada

Session 1

University of

Extending the Fanger PMV Model to Include the Effect of Non-Thermal IEQ **Conditions on Occupant's Thermal Comfort** S. Crosby

The judgment of thermal comfort is a cognitive process influenced by occupant's wellbeing and overall satisfaction. The potential implications of occupants' thermal dissatisfaction and its effect on overall satisfaction with the indoor environment have been the focus of many recent studies in the literature. Taking advantage of the emerging awareness of the interdependencies between perceived thermal comfort and overall IEQ, we have developed a novel methodology that considers the effect of nonthermal building environmental design conditions, such as indoor air guality and noise levels, on perceived thermal comfort. The methodology involves the use of Bayesian inference to relate occupant's thermal satisfaction not only to thermal conditions (i.e., Day 1, 12:10 parameters of the original Fanger model) but also to measurable non-thermal, "wellbeing"-type, metrics. In the first phase of this study, field data are drawn from a prior field study of about 800 offices throughout Canada and the US conducted by the National Research Council of Canada in early 2000s. The Bayesian inference analysis reveals that there exist statistically significant independent correlations between some non-thermal metrics of IEQ and thermal comfort, as perceived by occupants of openplan offices. The most significant finding is that a modest increase in measured indoor CO2 concentrations, from 500ppm to 900ppm, is found to be correlated with a decrease in perceived thermal satisfaction by 30%. Such observable correlations have revealed the need for developing an updated version of the data collected. A large IEQ field study of 150 offices carried out at the University of British Columbia across 2019/2020 is presented. This study seeks to update the recent findings while addressing the most prevailing research gap vis-à-vis thermal comfort models by proposing an extension to the Fanger model which consists of a more holistic evaluation method.

Extending the Fanger PMV model to include the effect of non-thermal IEQ conditions on occupant's thermal comfort

Sarah Crosby, Adam Rysanek

University of British Columbia, Canada

OB-20 Symposium

Southampton, UK

April 20, 2020

Holistic Approach to Thermal Comfort

- ASHRAE defines thermal comfort as :"the condition of the mind in which satisfaction is expressed with the thermal environment".
- The judgment of thermal comfort is a **cognitive process** influenced by occupant's well-being.
- Considering only <u>thermal</u> environmental design conditions as a proxy for occupants' thermal comfort might not be the right approach.

Thermal Comfort is Sensed by Your Body and Perceived by Your Brain

A Novel Thermal Comfort Evaluation Technique

 Current models have not always accurately predicted true thermal comfort observations in real-world setup and only consider thermal factors despite the increasing awareness of the interdependencies between IEQ and perceived thermal comfort.

• This research fills a **prevailing research gap** with respect to standard models of thermal comfort: **: the effect of well-being IEQ parameters**, such as air quality, visual comfort, acoustic performance, and biophilia accessibility, **on perceived thermal comfort.**

Hypothesis: Can we infer the likelihood of non-thermal parameters affecting perceived thermal comfort using Bayesian networks?

Two main research questions:

1- Do non-thermal parameters of IEQ have an effect on occupants' thermal satisfaction?

2- Does considering non-thermal parameters of IEQ improve predictions of thermal comfort?

1st Phase of Research

Field Data Sources: COPE Database (National Research Council – Canada)

The Cart + Chair System used to generate the COPE database (NRC)

<u>1st set of Bayesian Logistic</u> <u>Models:</u>

I- The effect of non-thermal parameters of IEQ on occupant's thermal satisfaction and thermal dissatisfaction

Implications of results to standard thermal comfort models II- WELL-adjusted relationship between PMV and thermal dissatisfaction p(D)

April 20, 2020

Model Selection Results

Bayesian Model	WAIC Score	WAIC standard error	Bayes Factor
P(S C)	1002.13	4.06	3.33
p(S T,M,C)	999.65	4.26	3.13
P(S C,S,N,L)	1002.82	5.29	1.57
p(S T,M,L)	1002.14	3.35	1.34
P(S T,M,R,V,C)	1000.27	4.79	1.27
P(S T,M,N)	1002.25	3.66	1.09
P(S T,M)	1004.38	3.05	1.00
P(S T,M,R,C)	1002.15	4.285	0.61
P(S T,M,R,V,L)	1002.43	3.89	0.45
P(S T,M,R,V,S)	1003.38	4.42	0.41
P(S T,M,R,V)	1003.14	3.57	0.4
P(S T,M,R,V,C,S,N,L)	1003.03	5.35	0.32
P(S T,M,R)	1004.07	3.12	0.29
P(S T,M,R,V,N)	1004.32	4.04	0.2

WAIC Scores and Bayes Factors for the p(S) models, with Null hypothesis shown in red

2nd Phase of Research

Field IEQ Study Across UBC Offices

Meet ESTEBAN !

The "<u>E</u>xceptional <u>Sensing</u> <u>Testbed for Environment,</u> <u>Biophilia, Air-quality, and</u> <u>Nippiness"</u>

Field IEQ Study across UBC's Offices

Measured IEQ parameters

CO RH NO CO2MRT Temp VOCs Air Velocity Noise levels Light Intensity **Partition Height** %Greenery / Biophilia

UBC + COPE Datasets

Bayesian Model	WAIC Score	WAIC standard error	Bayes Factor
P(S C,N,L,CO,P)	1182.0	10.12	13608.89
P(S T,M,R,V,C,N,L,CO,P)	1184.46	10.6	1024.67
P(S P)	1192.55	7.82	328.81
p(S CO)	1199.2	5.67	13.76
P(S C)	1201.97	4.92	4.55
P(S T,M,C)	1200.65	5.38	3.8
P(S C,N,L)	1202.69	5.46	2.77
P(S T,M,R,V,C)	1201.25	6.21	1.15
P(S T,M,R,V,C,N,L)	1200.93	6.79	1.08
P(S T,M,R,C)	1201.63	5.65	1.01
P(S T,M)	1204.48	4.19	1.00
P(S T,M,N)	1204.51	4.64	0.89
P(S T,M,L)	1205.69	4.26	0.51
P(S T,M,R)	1205.11	4.76	0.35
P(S T,M,R,V)	1205.37	5.02	0.31

WAIC Scores and Bayes Factors generated for the p(S) models for the COPE + UBC datasets. The Null hypothesis shown in red

Sarah Crosby

UBC

April 20, 2020

Conclusions

- This research advances a novel technique for improving thermal comfort models while filling a prevailing research gap.
- Having repeatable results from the recent field IEQ data indicates that the previous findings are robust and significant.
- This is the first known work to provide evidence that measured CO₂ concentrations might improve thermal satisfaction predictions in a significant manner, at least in open-plan offices.
- These findings suggest that, in the future, it might very well be possible to directly affect thermal satisfaction in indoor spaces through the improvement of non-thermal environmental conditions.

THANKS !

Presentations

Session 1 - Third presenter

D'Oca, Simon

S

Are Comfortable Temperature Ranges Healthy? S. D'Oca

Huygen Engineers and Consultants, Netherlands

Session 1

Day 1, 12:20

Building occupants have often limited knowledge about the quality of the indoor climate they are working or living in. There is an overall lack of awareness of the influence of adaptive behaviors and indoor climate on overall building's performance, and even less on personal health. Experimental studies showed regular exposure to mild cold environment can increase energy expenditure in terms of human energy metabolism, resilience to thermal discomfort due to acclimation, and resistance to cardiovascular disease and insulin sensitivity. In the MOBISTYLE project, we are aiming to prove gradually cooler environment in winter and warmer in summer can lead to higher acceptance of comfort ranges in office settings. Dynamic temperature training can furthermore have a great effect on the productivity and well-being of the occupants, therefore optimizing operating (labor) costs of the building. Not only, significant reduction of final energy consumption (up to 16%) can be prompted by dynamic thermal environment, as well as reduction of CO2 emissions. Dynamic open-office settings have been deployed in the Huygen offices (Netherlands) combining dynamic temperature profiles for improving health, comfort and saving energy, with dynamic lighting for increasing alertness and improving sleep-wake rhythm. Under these living-lab dynamic settings, the Office App is coupling the office BMS data, with data from wearables gathering information on workers well-being and physical health, as well feedback on perceived comfort and productivity.

Are comfortable temperature ranges healthy?

Dr. Simona D'Oca, PhD.

Occupant Behaviour 2020 (OB-20) 5th International Symposium

IEA EBC Annex 79 "Occupant behavior-centric building design and operation". 20th April 2020, Southampton, UK

Health is todays' wealth

H2020 MOBISTYLE Project

Motivating end-users behavioral change by combined ICT based tools and modular information services on energy use, indoor environment, health and lifestyle

Southampton

This project has received funding from the European Union's H2020 framework programme for research and innovation under grant agreement no 723032.

H2020 MOBISTYLE Project

Motivating end-users behavioral change by combined ICT based tools and modular information services on energy use, indoor environment, health and lifestyle

Southampton

This project has received funding from the European Union's H2020 framework programme for research and innovation under grant agreement no 723032.

MOBISTYLE Office App

Desktop application Aimed for employees & company managers. Used primarily to encourage dynamic indoor conditions.

MOBISTYLE

Are comfortable temperatures healthy?

Van Marken Lichtenbelt, W.D., Kingma, B., Lans, A., Schellen, L. (2014). Cold exposure – an approach to increasing energy expenditure in humans. Van Marken Lichtenbelt, W. D.; Hanssen, M.; Pallubinsky, H.; Kingma, B.; Schellen, L. Healthy excursions outside the thermal comfort zone, Building Research & Information, 2017. Van der Lans, A. A.; Hoeks, J.; Brans, B.; Vijgen, G. H.; Visser, M. G.; Vosselman, M. J.; Hansen, J.; Jorgensen, J.A.; Wu, J.; Mottaghy, F. M.; Schrauwen, P.; van Marken Lichtenbelt, W. D.. Cold acclimation recruits human brown fat and increases non-shivering thermogenesis, The Journal of clinical investigation, 2013, 123, 3395-3403.

ΜΟΒΙSTΥLΕ

INGENIEURS & ADVISEURS

00C 03.04

MOBISTYLE

MOBISTYLE

Thanks for your attention

s.doca@huygen.net a.tisov@huygen.net

Occupant Behaviour 2020 (OB-20) 5th International Symposium

IEA EBC Annex 79 "Occupant behavior-centric building design and operation". 20th April 2020, Southampton, UK

Presentations

mechanisms or actions are undertaken.

Session 1 - Fourth presenter

Favero, Matteo &

Energy Flexibility of Buildings: Understanding how Thermal Acceptability can Enable Demand-Response Strategies *M. Favero, S. Carlucci*

Carlucci, Salvatore

Norwegian University of Science and Technology, Norway

Session 1

Day 1, 12:30

Current research in building science aims at implementing strategies to exploit the energy flexibility of buildings. This consists in shifting energy use for given energy services in order to adapt the hour-by-hour energy consumption to what is optimal for the energy system. Energy uses for space heating and cooling are important terms of a building's energy balance and can be displaced by some hours, utilising building's thermal mass, without significantly affecting the thermal comfort of the occupants. However, this is an assumption that needs to be verified. Thus, to what extent it is possible to exploit building's energy flexibility without compromising thermal comfort experienced by their occupants remains an open research question. A dedicated experiment, executed in the ZEB Test Cell Lab in the NTNU premises, aims at understanding occupant's thermal acceptability in dynamic indoor conditions and how it compares with the ASHRAE 55-2017 limits on temperature cycles, ramps, and drifts. In this study, participants were asked to spend full or half days in the facility, furnished like a typical cellular office, and to evaluate the indoor environment through questionnaires while carrying out their everyday work activity. During the experiment, the air temperature was modified according to predefined thermal ramps (Fig. 1) while other environmental parameters, such as air velocity, relative humidity, CO2 concentration,

and illuminance on the work surface were also recorded. Furthermore, the participants were asked to press a button as soon as they felt uncomfortable, where uncomfortable

was defined as "take an action to restore a comfort condition" (e.g., if too warm environment, then regulate the thermostat or open the window). In this way, it will be possible, after the analysis of collected data, to understand the limits of the human thermal acceptability under different temperature variations, before voluntary adaptation

52

D NTNU | Norwegian University of Science and Technology

Energy flexibility of buildings: understanding how thermal acceptability can enable demand-response strategies

Matteo Favero, PhD candidate, NTNU Salvatore Carlucci, Professor, The Cyprus Institute & NTNU

Definition

• ISO 7730 (2005)*

3.2 drift temperature. Passive monotonic, steady, non-cyclic change in the operative temperature of an enclosed space.

3.3 ramp temperature. Actively controlled monotonic, steady, non-cyclic change in the operative temperature of an enclosed space.

8.3 Temperature drifts or ramps. If the rate of temperature change for drifts or ramps is lower than 2.0 K/h, the methods for steady-state variation apply.

• ASHRAE 55 (2017)**

5.3.5.3 Drifts or Ramps. Monotonic, noncyclic changes in operative temperature t_0 and cyclic variations with a period greater than 15 minutes shall not exceed the most restrictive requirements from Table 5.3.5.3.

**ANSI/ASHRAE Standard 55. (2017). Thermal environmental conditions for human occupancy. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

^{*}ISO 7730. (2005). Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva, Switzerland: International Organization for Standardization.

Definition

Table 5.3.5.3 Limits on Temperature Drifts and Ramps*								
Time period, h	0.25	0.5	1	2	4			
Maximum Operative Temperature to Change Allowed, °C (°F)	1.1 (2.0)	1.7 (3.0)	2.2 (4.0)	2.8 (5.0)	3.3 (6.0)			

Translated to

Informative note: For example, the operative temperature shall not change more than 2.2°C (4.0°F) during a 1.0 h period and more than 1.1 °C (2.0°F) during any 0.25 h period within that 1.0 h period.

Limits on Temperature Increme						
Thermal ramp, °C/h (°F/h)	4.4 (8.0)	3.4 (6.0)	2.2 (4.0)	1.4 (2.5)	0.825 (1.5)	
						Focus of the experiment
						(for both heating and cooling)

*ANSI/ASHRAE Standard 55. (2017). Thermal environmental conditions for human occupancy. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

Definition

Activity		Operative te	mperature °C	Maximum mean	_	
W/m ²	Category	Summer (cooling season)	Winter (heating season)	Summer (cooling season)	Winter (heating season)	_
	А	24.5 ± 1.0	22.0 ± 1.0	0.12	0.10	
70	В	24.5 ± 1.5	22.0 ± 2.0	0.19	0.16	↓
	С	24.5 ± 2.5	22.0 ± 3.0	0.24	0.21 ^b	_

Tab. A.5 - Example design criteria for spaces in various types of building*

^a The maximum net air velocity is based on a turbulence intensity of 40% and air temperature equal to the operative temperature according to 6.2 and Figure A.2 of the ISO 7730-2005. A relative humidity of 60% and 40% is used for summer and winter, respectively. For both summer and winter a lower temperature in the range is used to determine the maximum mean air velocity.

^b Below 20°C limit (see Figure A.2 of ISO 7730-2005).

Focus of the experiment (for both heating and cooling)

*ISO 7730. (2005). Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva, Switzerland: International Organization for Standardization.

ZEB Test Cell Laboratory

View of south facade

Plan of the building

Experiment description

- **Period:** from 3rd September 2019 to 9th January 2020, about 4 months
- Participants:

		Age (yr)	Weight	: (kg)	Height (cm)		
	number Mean (SD) Range		Mean (SD)	Range	Mean (SD)	Range		
Male	10	29.2 (4.5)	23 - 37	79.3 (16.2)	63 - 114	176.2 (6.6)	167 - 185	
Female	30	27.9 (7.1)	20-49	62.2 (8.4)	48 - 80	168.8 (6.4)	157 - 185	

• Participation:

- four full days/eight half-day (4 mornings + 4 afternoons) or,
- two full days/four half-day (2 mornings + 2 afternoons)

Kunnskap for ei betre verd

• Experiment schedule:

Questionnaire overview

• Questionnaire 1 – Entry questionnaire

Gender, age, height, weight, time living in Norway, rank the three most important physical features that make workplace a pleasant one, clo-value, satisfaction with workplace (Likert scale).

• Questionnaire 2 – Subjective judgement scale

Perception, evaluation, preference, personal acceptability (graphic categorical scale).

• Questionnaire 3 – Subjective judgement scale + discomfort event

- Perception, evaluation, preference, personal acceptability (graphic categorical scale),
- Source of discomfort, strategies to maintain/restore comfort.

• Questionnaire 4 – Exit questionnaire

Satisfaction with workplace (Likert scale).

Thermal Ramps

With "thermal discomfort event": 117

Kunnskap for ei betre verd

Total number of ramps: 181 With "thermal discomfort event": 136

Experimental condition

Thermal discomfort event

Cell A and B $% \left(A_{n}^{2}\right) =\left(A_{n}^{2}\right) \left(A_{n}^{2}\right) \left($

	Experimental condition	Total Ramps	With "thermal discomfort event"
•	4.4°C/h < ramp ≤ 6.0°C/h	6	3
•	3.4°C/h < ramp ≤ 4.4°C/h	46	30
•	2.2°C/h < ramp ≤ 3.4°C/h	60	45
0	1.4°C/h < ramp ≤ 2.2°C/h	52	38
0	0.0°C/h < ramp ≤ 1.4°C/h	21	14
0	0.0°C/h > ramp ≥ -1.4°C/h	72	62
igodot	-1.4°C/h > ramp ≥ -2.2°C/h	63	44
ightarrow	-2.2°C/h > ramp ≥ -3.4°C/h	33	17
ightarrow	-3.4°C/h > ramp ≥ -4.4°C/h	0	0
•	-4.4°C/h > ramp ≥ -6.0°C/h)	0	0
		353	253

□ ASHARE comfort limit

Statistics Analysis (ongoing)

- Multilevel linear modelling
 - Participants' thermal sensation
- Multilevel logistic modelling
 - Participants' thermal acceptability
- Survival Analysis
 - -Discomfort event (stop button)

Kane.

Michael

Northeastern

University, USA

Session 1

Day 1, 12:34

Presentations

Session 1 - Fifth presenter

Occupant-Centric Control with Personalized and Contextual Thermal Comfort Behaviour Dynamics Prediction *M. Kane*

Demand response (DR) as a gear in the energy sector, works to curtail peak electricity demand to maintain high grid reliability and reduce costly transmission capacity. Conventional DR programs use emails, texts, and phone calls, with the latest automatic DR using direct load control. These methods lack fidelity to provide accurate load curtailment. Even with the advent of adoption smart devices, the same settings are implemented for all participants, irrespective of each person's thermal comfort zone, leading to reduced quality of service. Eventually, frustration tends to mount up and the result is an increase in occupant overrides, over 30% of 8-hour DR events in one study. The consumers as a result of this frustration lose trust, which further impacts demand response programs and utilities in the form of millions of dollars in penalties nationwide. This motivates the need to personalize thermal comfort and architect DR controls that consider contextual and personal factors. The goal the work to be presented is to develop personalized predictive models of manual thermostat overrides. Machine learning methods like decision trees and artificial neural network applied to the ecobee Donate Your Data dataset with ~1259 users and ~285 events per user. Based on these methods, the resulting personalized models are compared in terms of their accuracy, computational complexity, and outlier management. Interactions with ecobee thermostats were also analyzed to predict the impact of such personalized DR on overrides, energy curtailment magnitude, and reliability.

Occupant-Centric Control with Personalized and Contextual Prediction Thermal Comfort Behavior Dynamics

... Let's Make Automation Serve the People, not the Algorithms

Michael B Kane, PhD; Kunind Sharma Assistant Prof., Civil and Environmental Engineering, Northeastern University

Motivation

Occupant Satisfaction

Electric Load Flexibility

Thermal Comfort Behavior and Personalized OCC Slide 2 / 45 - Annex 79 - April 20, 2020 Northeastern University College of Engineering Overview

Contextual & Personal Predictions of

Occupant Thermal Comfort Behavior

and its impact on

Load Flexibility Capacity and Reliability

Overview

Contextual & Personal Predictions of

Occupant Thermal Comfort Behavior

and its impact on Load Flexibility Capacity and Reliability

Contextual

Relative Humidity Previous setpoint Outdoor Temp Indoor Temp. Occupied? Setpoint Season Event

Personal

Day of week overrides (Avg.) Time of day of override (Avg.) % stp. ↑/↓ in a season (Avg.) % stp ↑/↓ in a season (%) Instance response (Avg.) Override delay (Avg.) Override mag. (Avg.)

Will an Override Occur? Neural Net vs Decision Tree

True Value

Row Summary

		No Override					Override					
	e	50.4%		45.9%		15.5%		13.9%	*	76.5% 23 5%	76.7% 23 3%	
d G	erric	103,538		94,368	(<u>3</u>)	31,753		28,598		135,291	122,966	රුවුර
/alı	0 0	46.7%		46.3%		29.5%		29.0%		61.3%	61.5%	
	Z	96,036		95,198	රයුව	60,658		59,678	ර්දුර	38.7 % 156,694	38.3% 154,876	ර්යුදු
cte		2.3%		6.8%		31.8%		33.4%		93.2%	83.1%	\$
edi	ride	4,774		13,944	රයුර	65,399		68,554	ර්දුර	6.8% 70,173	16.9% 82,498	රියි
Pre	Over	6.0%		6.4%		17.8%	A C	18.2%		74.8%	74.1%	
		12,276		13,114	රයුර	36,494		37,474	ද්දුර	48,770	50,588	(යු)
	Ńε	95.6%		99.8%		67.3%		70.6%				
	лт	4.4%		0.2%	ද්ව	32.7%		29.4%	යි			
	Sun	108,312		108,312		97,152		97,152				
	nn.	88.7%		88.0%		37.6%		38.6%				
	Info	11.3%		12.0%	ද්ධ	62.4%		61.4%	යිා			
	ъ С	108,312		108,312		97,152		97,152				

Thermal Comfort Behavior and Personalized OCC

Slide 5 / 45 - Annex 79 - April 20, 2020

If so, When will the User Override?

Slide 6 / 45 - Annex 79 - April 20, 2020

Contextual & Personal Predictions of

Occupant Thermal Comfort Behavior

and its impact on

Load Flexibility Capacity and Reliability

Overrides & Load Shedding Error

Curtailment vs Baseline without Overrides

Curtailment Error with Overrides

0

0

100 150 200 250

300 350 400-

80

60

13 data pts.

28 data pts.

120 data pts.

207 data pts.

216 data pts.

450

120

100

50

Curtail Error with Personalized **Setback Duration**

Thank You

Thermal Comfort Behavior and Personalized OCC Slide 9 / 45 - Annex 79 - April 20, 2020 Northeastern University College of Engineering
Presentations

Session 1 - Sixth presenter

On Multidimensional Comfort: Multi-Parametric Experimental Experiment Within a Pisello, **BIM Designed Virtual Environment** Anna, A. Pisello, F. Vittori, I. Pigliautile Vittorj, Architecture, Engineering, and Construction industry professionals, together with building Filippo & physics scientists, agree about the key role played by building occupants in determining final energy needs imputable to their energy-related behaviors. Occupant behavior **Pigliautile**, represents indeed a major variable affecting buildings' energy performance, but its Ilaria impact is difficult to predict since the early design stage. That is the reason why this study proposes a new analysis framework and field test method aimed at better comprehending and monitoring people feelings and attitudes, while stimulated by means University of of virtual design stage variables and building energy efficiency parameters, assumed to Perugia, produce non-negligible effect on people perception and related actions. Nevertheless, Italy the same selection and construction of a proper test bench represents a key issue within this research framework, together with the selection of the affecting variables, for better Session 1 predicting occupants' perception versus the indoor environmental quality. This work proposes to face this challenge by means of Virtual Reality (VR) strategies included in a Day 1, 12:38 workflow where immersive environments are modeled in a parametric platform, able to change the geometry and every necessary peculiarity of the future spaces, after verifying the immersive quality of the virtual context. The investigated methodology integrates Building Information Model (BIM) and VR in order to simulate the human factor in the built environment. A preliminary validation test is submitted to 50 people, with a result of 76% of tested subjects declaring a satisfactory sense of presence inside the virtual environment, showing promising possible development in the field of multidimensional comfort studies.

Annex 79-EBC by IEA 5th International Symposium on Occupant Behaviour

> Filippo Vittori Ilaria Pigliautile, Anna Laura Pisello Southampton 20/23/2020

Università degli studi di Perugia

On Multidimensional Comfort: Multi-Parametric Experiment Within a BIM

VR simulation, field survey, and multi-physics monitoring through BIM VR + BIM method

Propose a methodology able to provide low-cost tools for the simulation of conditions influencing perceptions of indoor and outdoor comfort

Procedure

VR

- Immersivity
- Physical presence
- Simulation
- Inexpensiveness
- Easy to use

VR

- Immersivity
- Physical presence
- Simulation
- Inexpensiveness
- Easy to use

validation 50 people

sense of presence(1/5)

Sample

Results

Visual comfort (VR)

Visual comfort (360 picture)

■ No complaint ■ Slight complaint ■ Intense complaint

360 Photo VS VR

⊒360 ∎VR

Results

experiment 100 people comfort (-2/+2)

3 parameters 4 blocks 12 scenes

window aspect ratio

window coating

color temperature of lighting fixtures

Sample

Results

Window aspect ratio

Average value of men's judgements.Average value of women's judgements.

Window coating

Average value of men's judgementsAverage value of women's judgements

Color temperature

Average value of men's judgementsAverage value of women's judgements

Results

Window aspect ratio

Average value of men's judgements.Average value of women's judgements.

Window coating

Average value of men's judgementsAverage value of women's judgements

Color temperature

Average value of men's judgementsAverage value of women's judgements

■-2 **■**-1 **□**0 **■**1 **■**2

27

28

further developments

Thank you for the attention

Carleton

University. Canada

Session 2

Presentations

Session 2 - First presenter

Implementation of Occupancy-Based Predictive Controls for Outdoor Air Intake Hobson. **Dampers: Lessons Learned Brodie** B. Hobson

As modern workplaces begin to transition towards flexible work hours, commercial and institutional buildings are hosting a fraction of their maximum occupancy on typical workdays. Despite this, most HVAC systems operate on static pre-set schedules that assume the building is almost fully occupied during working hours, resulting in chronic overventilation. As conditioning outdoor air requires significant energy in heating dominated climates, there is a growing oppourtunity to reduce energy use and greenhouse gas emissions by providing HVAC services at an appropriate level for the actual occupancy of the building, without significantly impacting occupant comfort. Day 1, 13:25 However, reactive controls based on occupant-count estimates alone are insufficient for optimal operation of system-level equipment, such as air handling units. This is due to the transient nature of buildings' thermal and air quality conditions. Instead, forecasting occupancy levels can facilitate proactive and informed decisions about air handler operations. An occupancy-based predictive control program was implemented in a building automation system to control the outdoor air intake dampers of two air handling units. Clustering and motif identification were used to create a rules-based approach for occupancy forecasting by leveraging readily available electrical load data and historic Wi -Fi device count data. Three-parameter univariate changepoint models show that the program reduced building cooling and heating energy use by 10.3% and 38.4%, respectively, during a 24-week implementation period. The program had a negligible impact on indoor CO2 concentrations and caused a 5.8% reduction in hours spent within ± 1°C of temperature setpoints. Challenges and relevant anecdotes from the implementation are also examined and discussed. This study highlights how occupancy data can improve building operational efficiency without the need for additional sensing or controls infrastructure.

Implementation of Occupancy-Based Predictive Controls for Modulation of Outdoor Air Dampers: Lessons Learned

Brodie W. Hobson, EIT

Supervised by: Prof. H. Burak Gunay, PhD, PEng
Case Study Building

- Academic office building in Ottawa, Canada.
- Mix of private/semi-private offices, labs, classrooms.
- Served by two AHUs that provided 10,000 L/s (1000 persons) combined outdoor air at 30% and 40% minimum position.

West façade of building [1]

Outdoor Air Temperature (°C)

Operating State (OS)	Heating Valve (%)	Cooling Value (%)	OA Damper (%)
#1 Heating	0 < x < 100	0	40
#2 Free cooling	0	0	40 < x < 100
#3 Economizing + cooling	0	0 < x < 50	100
#4 Mechanical cooling	0	50 < x < 100	40

Adapted from ASHRAE Guideline 36 [2]

Overview

- Objective: Predict occupancy-levels in a case study building to make proactive decisions about reducing AHU outdoor air damper positions to meet the needs of the building occupants.
- Considerations:
 - Implementation must be made with commercially available and already installed sensors and software.
 - 2. Maintain acceptable indoor air quality.
 - 3. Generate HVAC energy savings.

 Peak occupancy in the building estimated at approx. 500 persons with average weekday occupancy of approx. 250 persons (recall 1000 persons used for operation).

- Typical time-series forecasting techniques are either computationally expensive or require data isolated from the BAS.
- Instead, a rules-based forecast can be trained offline and implemented in the BAS without additional infrastructure.
- Three main components:
 - 1. Clustering
 - 2. Motif/discord identification
 - 3. Classification tree

1. Clustering: Find a handful of representative daily profiles.

1. Clustering: Find a handful of representative daily profiles.

2. Motif identification: Find frequently repeated sequences of days (i.e., letters).

IL<mark>hhhhhlL</mark>hhhhh<mark>lLhhhhhlLlmmmlLhhhhhlL</mark>hhhhll<mark>hhhhhlL</mark>hhhh hmLhhhhlLL<mark>hhhhhlL</mark>mhhmmlllmlmllllmllLLlllllLLLmmmlL LL**mmmlL**mmmllLmmmlLLmmmllLmmllLLlllllLLLLLLmlLLmllll

- Classification tree: Determine what the character for the next day will be based on motif/discords.
- Prediction accuracy: 70.4%, but highly conservative.

• Forecast accuracy: 58%, 97% classified correctly or overclassified.

Wi-Fi measured

Before (2018-19)

After (2019-20)

Load	Before* (MWh _{eq})	After (MWh _{eq})	Est. Savings (%)
Heating	297	183	38.4
Cooling	85	76	10.3
Fan energy	71	70	2.8

*using baseline changepoint model on 2019-20 weather

Lessons Learned

- Rules-based OCC can be implemented using available technology to generate HVAC energy savings.
- Faults in BAS should be identified and corrected before undertaking any OCC implementation.
- Airflow characteristics of dampers at low positions should be studied to determine OAF accurately in these low-flow regimes.
- Tweaks to zone-level equipment (i.e., VAVs) may help further eliminate any IAQ concerns.

Thank You

Questions?

brodie.hobson@carleton.ca

References

- [1] R. Pilon, *Canal Building Carleton University*. Photograph, 2014.
- [2] ASHRAE. 2016. "ANSI/ASHRAE Standard 62.1-2016: Ventilation for Acceptable Indoor Air Quality." Atlanta, GA.

Presentations

Session 2 - Second presenter

Miller, Clayton

What do Occupants Want? Let's Ask Them Using Smart Watches and Cozie *C. Miller*

A large amount of focus is placed on the passive detection and characterization of occupancy using sensors and machine learning. These techniques have made significant progress in certain aspects of performance improvement, namely in energy conservation (turning things off when no one is there). However, when it comes to the thermal, aural, or visual preferences of the occupants, sometimes observation is not enough - we need to ask them what they like. This presentation will a set of experiments using wearables devices and an open-source platform called Cozie. The methodology showcased is Ecological Momentary Assessment (EMA), an ad-hoc method of collecting information from experimental participants in the field in a longitudinally-intensive way. We show the initial deployment of Cozie in several scenarios in Singapore and request collaboration for deployment in other research projects around the world. Issues are covered related to survey fatigue, sampling rate, and subtle integration into tools designed for uses other than feedback.

National University of Singapore, Singapore

Session 2

Day 1, 13:35

What do occupants want? Let's ask them using smart watches and Cozie

Clayton Miller, Ph.D. National University of Singapore clayton@nus.edu.sg The Age Old Question in the Built Environment

What do occupants want?

How do we understand what influences preference in the indoor environment?

There are numerous factors that influence comfort and preference in the built environment

Do we need to measure all of these environmental, physiological, psychological, and behavioral attributes?

Or can we train models by collecting data from the best sensor of all (humans)? (Jayathissa et. al, 2020 Preprint)

Facebook, Google, Amazon, etc. collect human preference very successfully

Several large digital companies dominate the advertising and retail industries.

A large portion of this success is due to innovation in the way they collect information:

They create digital platforms that provide value to users

And harvest specific preference feedback in that context How do we get in-context preference data collection that is specific to objectives related to satisfaction with spaces?

The built environment has its own complexity due to the relevance of **temporal and spatial** dimensions

Cozie - Dynamically Spatial and Temporal Subjective Feedback

Introducing Cozie – a customizable, real-time occupant satisfaction preference data collection for buildings. Open source and free to use (Jayathissa et. al, 2019)

https://cozie.app/

Pioneered in medicine, psychology, and marketing, and advertising (Shiffman et. al, 2008, Intille et. al 2016): Ecological

- Real-world environment and experience
- Ecological validity

Momentary

- Real-time assessment and focus
 Assessment
- Self-reported
- Repeated, intensive and longitudinal
- Allow analysis of process over time

Cozie Data Integration Infrastructure for Experiments at NUS

- Three tiers of data collection for different practical constraints and methodological objectives (Jayathissa et. al, 2020 Preprint)
- Subjective, Physiological, Environmental and Spatial data convergence

Cozie Experiment Subjective Feedback Questions

- Five times per day the subjects were requested to give feedback (Jayathissa et. al, 2020 Preprint)
- Questions asked three-point preference-based questions for Thermal, Visual, and Aural Feedback

Scalable Field-based Data Collection Experiments

- Field-based deployment in the SDE4 Net Zero Energy Building at NUS
- Thirty participants were asked to give at least 100 feedback points in two weeks
- 4,378 total feedback data points were given for all three IEQ questions

Environmental, Heart Rate, and Near-body Temperature IoT

- Environmental,
 physiological
 and near-body
 variables
 (Jayathissa et.
 al, 2020
 Preprint)
- There are indications of sensors can be meaningful, but are not capturing everything

Prototype Preference Modelling using Peer and Space Groups

Time-Series

Env. Sensors

Wearable Temp

Heart Rate

Room (Spatial Context)

Preference History

Initial Modeling Results

- The model accuracy was highest with Time, Nearbody, HR, Room, and Preference History (Jayathissa et. al, 2020 Preprint)
- Most accurate models didn't include environmental sensors
- Grouped models consistently outperform individual models

In-Progress: Expansion of Survey Question Library

Current questions include:

- Thermal preference
- Light preference
- Noise preference
- Location
- Mood
- Clothing and activity
- Perceived air movement

Future question development for privacy, productivity, and even health/symptoms in progress

Get involved!

You can be a part of the Cozie project or use it on your methodology!

- You can install on your own Fitbit today
- Add to the question library
- Branch or fork the code and make something new
- <u>Urgent help needed: Cozie-Covid symptoms version</u> <u>testers and developers</u>

Cozie website: https://cozie.app/

Documentation: <u>https://www.budslab.org/website-</u> <u>dev/docs/home</u>

Open-sourced codebase: <u>https://github.com/buds-lab/cozie</u>

Questions/comments: clayton@nus.edu.sg

Thanks to the Cozie team: Prageeth Jayathissa, Federico Tartarini, Matias Quintana, Mahmoud Abdelrahman, Yi Ting Teo, Yuan Xuan Chua

References

Intille, Stephen, Caitlin Haynes, Dharam Maniar, Aditya Ponnada, and Justin Manjourides. 2016. "µEMA: Microinteraction-Based Ecological Momentary Assessment (EMA) Using a Smartwatch." *Proceedings of the... ACM International Conference on Ubiquitous Computing. UbiComp* (Conference) 2016 (September): 1124–28.

Jayathissa, Prageeth, Matias Quintana, Mahmoud AbdelRahman, and Clayton Miller. n.d. "Indoor Comfort Personalities: Scalable Occupant Preference Capture Using Micro Ecological Momentary Assessments."

Jayathissa, Prageeth, Matias Quintana, Tapeesh Sood, Negin Nazarian, and Clayton Miller. 2019. "Is Your Clock-Face Cozie? A Smartwatch Methodology for the in-Situ Collection of Occupant Comfort Data." *Journal of Physics. Conference Series* 1343 (1): 012145.

Shiffman, Saul, Arthur A. Stone, and Michael R. Hufford. 2008. "Ecological Momentary Assessment." *Annual Review of Clinical Psychology* 4: 1–32.

Presentations

Session 2 - Third presenter

A Human-Centered Approach to Residential Buildings P. Agee

Agee, Philip

USA

Session 2

Traditionally, the Architecture, Engineering, and Construction (AEC) industry has employed a linear design and delivery approach. As residential buildings race to zero energy performance, the AEC industry must adapt. To maximize human well-being and Virginia Tech, the operational performance of zero energy buildings, an iterative, human-centered approach must be employed. The omission of human factors in the design and delivery of residential building systems risks misalignment between occupant-user needs and the AEC industry's perception of occupant-user needs. This research proposes a humancentered approach to housing. The study employed a multiphased, mixed-methods Day 1, 13:45 research design. Data were collected from 309 high performance housing units in the United States. Longitudinal energy use data (simulated and measured), occupant surveys, and semi-structured interviews are the primary data inputs. Affinity diagramming was leveraged to categorize the qualitative data. The output of the affinity diagramming analysis led to the development of data-driven Personas that communicate user needs. While this data was gathered in the United States, researchers, practitioners, and policy makers can leverage the human-centered approach beyond residential buildings toward the design of a human-centered built environment.

PHILIP AGEE, PH.D. Virginia Center for Housing Research Virginia Tech pragee@vt.edu

A Human-centered Approach to Residential Buildings

WHY HUMAN-CENTERED RESIDENTIAL BUILDINGS?

- 2
- 1. Housing is where commercial occupants behave before and after work;
- 2. Housing center = focus, data convivence;
- 3. <u>Energy End-uses</u>: shift from enclosure to human-centered end-uses.

NOT ONLY ABOUT TECHNOLOGY, ITS ABOUT

HUMAN-BUILDING INTERACTION

Research Overview

- 3
- SAMPLE: 20 high performance multifamily developments in Virginia, USA;
- DATA: Energy use (simulated + measured), user-surveys, interviews;
 - METHODS: focus on mixed-methods

2015	Comparative Analysis (simulated-measured energy use)
2016	Interaction Effects
2017	(energy use, behavior survey, technologies)
2018	(video modules, EFDs, interviews)
2019	(work system design, design methods)
2020	Human-centered Design (affinity diagramming, data-driven personas)

SAMPLE: SENIOR, NON-SENIOR, NEW, AND RENOVATION

CURRENT DESIGN METHODS (n=38)

DESIGN FOR PEOPLE | Data-driven Personas

STEP 1

Energy Analysis (n = 239)

DESCRIPTIVE STATISTICS

- Energy Use Intensity (EUI)

STEP 2

Behavioral Survey (n = 239)

BEHAVIORS

- Thermostat set points
- Adaptive comfort behaviors
- Dishwasher use
- Shower length

STEP 3

ATTITUDES, BELIEFS, NEEDS

- Energy efficiency
- Technology
- Comfort
- Physical, psychological needs

STEP 4

Affinity Diagrams + Personas (n = 2)

MIXING OF STEPS 1, 2, 3

- Senior Persona
- Non-senior Persona

INTRODUCTION METHODOLOGY RESULTS FUTURE WORK

[ABBREVIATED] RESULTS | Data-driven Personas

INEZ SANDERSON Senior Persona

Physical Needs: safety, accessible spaces and interfaces, flat floor surfaces to avoid tripping hazards;

Physiological Needs: feeling comfortable is critical, sets thermostat to 72-75°F (22-24°C), sensitive to drafts/air movement;

Psychological Needs: safety, connection with community and family, keeping an active mind with crossword puzzles, continued learning;

Attitude: is not wasteful, uses only what she needs, prefers older methods of communication (e.g., talking face to face, writing letters), conserves energy to save money, feels overwhelmed by new technology;

Behavior: turns off lights and TV when not in the room, washes dishes by hand, keeps windows shades drawn to feel safe, takes short to medium length showers, will use space heater to adapt indoor environment.

- Anchors design in user-needs;
- Data can be leveraged from multiple sources (e.g., benchmarking, interviews, surveys, contextual inquiry);
- As the built environment integrates interactive systems, AEC industry should look to lessons learned from Humancomputer Interaction (HCI) literature and practice

CHARACTERISTICS	CS1			
# of apartments	8			
PV-system	30.2 m², south-facing, 3.78 kWp			
Living area	966 ft² (90 m²)			
Building volume	7728 cf (218.8 m³)			
Heating system	Air-source heat pump 9 kBTUh, 10 HSPF			
Cooling system	Air-source heat pump 9 kBTUh, 18 SEER			
Distribution	Ducted air system			
Water heating	Air-water heat pump heater (2.75 EF)			
Ventilation	Exhaust-only system			
Windows U-value	0.25 BTUh/ft ² /°F (0.78/W/m ² K)			
SHGC (g-value)	0.27			
Wall U-value	0.04 BTUh/ft ² /°F (0.13/W/m ² K)			
Roof/Attic U-value	0.02 BTUh/ft ² /°F (0.05/W/m ² K)			
Air tightness	2.0 ACH 50			

ZERO ENERGY DUPLEXES BLACKSBURG, VA, USA

SIMULATION ANALYSIS

HUMAN-BUILDING INTERACTION

HUMAN FACTORS:

- ✓ Human Information Processing
 - Coding & affordances
 - Visual acuity

HUMAN-CENTERED METHODS:

- ✓ Usability Testing
 - Task Analysis
 - Think-aloud Protocol
 - Eye-tracking

"All truth passes through three stages: First, it is ridiculed. Second, it is violently opposed. Third, it is accepted as selfevident." **- Arthur Schopenhauer**

1231 N 28th S

PHILIP AGEE, PH.D. Virginia Center for Housing Research Virginia Tech | Blacksburg, VA, USA pragee@vt.edu (contact if interested in collaboration)

Presentations

Session 2 - Fourth presenter

Derbas, Ghadeer

Wuppertal

University, Germany

Session 2

Day 1, 13:55

Optimization of Solar Shading Control Strategies in Terms of User Behaviour, Energy Performance, Visual and Thermal Comfort *G. Debras*

Automated shading systems represent a promising solution for improving the indoor environment and saving energy, particularly in highly glazed office buildings. Recent research reported that these systems are either deactivated or overrode by the occupants. For instance, some studies found conflicts between the commonly used metrics of automated shading and what occupants accepted. Moreover, the current study proposed that the accuracy of the shading control sensors could affect the user acceptance of the established metrics. Further research was needed to investigate the sensors' accuracy and user-shade interactions to find the optimal metrics of shade control with limited overrule actions. In this contribution, the current study presented an experimental field study on human interactions with automated shading systems in a fullscale test laboratory. The experiment was designed to (a) examine the accuracy of shade control sensors by testing two commercial devices and (b) investigate user interactions under three shade control strategies, then evaluate their satisfaction concerning thermal and visual comfort. Two simple strategies were used solar irradiance as triggering threshold, and an optimized control strategy was developed based on a combination of three control criteria: incident irradiance, indoor temperature and vertical illuminance. Shade deployments, indoor and outdoor physical parameters were recorded as well as a self-reported questionnaire. The current study found that the measurements of shading control sensors were statistically approved to be inaccurate with a high degree of error. Mean shade occlusion under the different control strategies was slightly different, whereas the optimized control strategy showed a significant impact on decreasing user shade lowering actions. Furthermore, glare and brightness were found to have more influence on shade adjustment than indoor thermal conditions. The current study was further expanded to simulate space design impact on shade control optimization in terms of energy performance, occupant behaviour and comfort.

The Fifth International Symposium on Occupant Behavior and Fourth Expert Meeting of IEA EBC Annex 79

> University of Southampton, UK 20th to 23rd April, 2020

Optimization of Solar Shading Control Strategies in terms of User Behavior, Visual and Thermal Comfort

Doctoral researcher: Ghadeer Derbas, Forchungszentrum Juelich and Wuppertal University, Germany Main supervisor: Prof. Dr.-Ing Karsten Voss, Wuppertal University, Germany

RESEARCH MOTIVATION AND METHODS

MOTIVATION

RESEARCH MOTIVATION AND METHODS

METHODS

- Test facility: Btga-box full-scale test laboratory, Wuppertal University, Germany.
- Participants: thirty-one test subjects, 15 males and 16 females, 68% German and 32% other, age range of 22-47 years.
- Monitored variables: Shading deployment, indoor environmental parameters and external weather conditions.
- Subjective web-based questionnaire (four times).

Btga-box test laboratory, Wuppertal University, Germany: (left) exterior view and (right) interior view.

EXPERIMENT RESEARCH DESIGN

EXPERIMENT SESSIONS

- **S01:** Fully automated without user interface.
- S02: conventional algorithm (shade) lowering when brightness threshold exceeded 35 Klux).
- SO3: conventional algorithm (shade) lowering when brightness threshold exceeded 50 Klux).
- **S04:** proposed algorithm based on three criteria.

(a) Fully automated (Low set points) Bench mark.

* According to lower and upper thresholds of the case studies. ** According to DIN EN ISO 13790:2008-09. *** according to DIN EN 15251:2006. **** According to Karlsen et al, 2015. Ir: solar radiation. Tindoor : indoor air temperature. Ev : Vertical illuminance at the eve level.

(b) Conventional algorithm with manual overridden (Low

[Klux]*. [Klux]*. [2] T_{indoor} < 21. [2] T_{indoor} > 25.

(c) Conventional algorithm with manual overridden (high ant maintal

set points)	
[1] Ir < 30	[1] Ir

[Klux]*

> 50 [Klux]*. [2] T_{indoor} < 21. [2] T_{indoor} > 25.

(d) Proposed algorithm with manual overridden.

[1] Ir <11 Klux (100 W/m2)**. [2] T_{indoor} < 21***. [3] Ev < 1700 lux****. [1] Ir > 33 Klux (300 W/m2). [2] T_{indoor} > 25. [3] Ev> 1700 lux.

S04: proposed solar shading control strategy.

Brightness threshold of shade lowering

Forschungszentrum

Survey results in 19

Mitglied der Helmholtz-Gemeinschaft

PERFORMANCE OF SOLAR SHADING CONTROL DEVICES

- Limitations are due to economic constraints and sensors' inclinations.
- Limited accuracy and quality of commercial devices should be considered when developing optimal set points of shading control

strategies. Mitglied der Helmholtz-Gemeinschaft

900 1000

PERFORMANCE OF FOUR SOLAR SHADING CONTROL STRATEGIES

All sessions except S01 \rightarrow within the thermal comfort criteria (-6 1,+1).

Forschungszentrum

occlt

Mean shade

sensation vote (GSV)

Glare :

Mitglied der Helmholtz-Gemeinschaft

RESEARCH OUTLOOK

- The non-significant differences between the conventional and proposed shade control strategies might be explained due to the limited accuracy and quality of commercial shading control devices.
- The experiment will be conducted once more this summer considering all limitations.
- Any suggestion or feedback will be very helpful to the research progress.

Presentations

Session 2 - Fifth presenter

A Reinforcement Learning for Occupant Centric Thermostat Control J. Park

Building systems need to control the indoor environment with the comfort range. With the rapid development of information and communication technology, building controllers have been developed with the goal of overall energy savings. However, conventional building control strategies typically use fixed threshold values and set-points for operation without considering the preference of the occupants. Therefore, we need an automatic adaptation to occupant comfort. In this paper, we propose a reinforcement learning (RL) based occupant centric controller (OCC) for learning the optimal thermostat set-points. The RL-OCC agent acquires data on the physical, indoor environment, which is interpreted as states for RL controller. Besides, data on the interaction between the occupant and the building systems, which is indicative of the comfort or, more often, the discomfort of the occupant, is also collected as rewards for RL controller. With this data, the agent can adapt to unique occupant behaviors and indoor environments over time and calculate the optimal control actions. We demonstrate our controller on an existing BAS system with facility managers in the loop. The case study is an academic office space and located on the campus of The University of Texas at Austin. Currently, this building is equipped with an active chilled beam system for heating and cooling, and the occupants have individual thermostats. We develop a low-cost hardware device (HVACLearn), which monitors indoor environmental quality as well as the feedback of the occupants. HVACLearn then calculates the optimal & personalized control actions, e.g., thermostat set-points, to balance between occupant comfort and energy efficiency. The optimized control action is updated with the facility manger's confirmation to avoid malfunctions of the current system. We present system hardware, control algorithm, and the experimental results of 19 office spaces.

University of Texas, USA

Park.

June

- Session 2
- Day 1, 13:59

HVACLearn: A Reinforcement learning based controller for occupant centric thermostat control

June Young Park

S. Bastami, K. Nweye, Z. Nagy

Occupant centric control for building systems

INTELLIGENT ENVIRONMENTS LABORATORY

1. State reading

- 1. State reading
- 2. Action selection

- 1. State reading
- 2. Action selection
- 3. Reward calculation

+ 1

+ 1

Q3

Q6

HVACLern operation

1.	State	reading
----	-------	---------

- 2. Action selection
- 3. Reward calculation
- 4. Update Q-value

 $\begin{aligned} & old \, value \\ Q(s_t, a_t) \leftarrow (1 - lr) \cdot Q(s_t, a_t) \\ & + lr \cdot (reward + df \cdot max \, Q(s_{t+1}, a \,)) \\ & \\ & learned \, value \end{aligned}$

Action

State

Cooling

setpoint

Heating

setpoint

Cold

Neutral

Hot

- 1

- 1

Q1

Q4

Q7

0

0

Q2

Q5

Q8

- 1. State reading
- 2. Action selection
- 3. Reward calculation
- 4. Update Q-value
- 5. Iterate #1-4 daily

Action	Cooling - 1 setpoint - 1 Heating - 1 setpoint - 1		0 0	+ 1 + 1	
State	Cold	Q1	Q2	Q3	
	Neutral	Q4	Q5	Q6	
	Hot	Q7	Q8	Q9	

Simulating HVACLearn operation

HVACLearn Algorithm

- Occupancy: Wang et al. 2015
- Thermal vote: Ouf et al. 2020

	EnergyManagementSystem:Program,
	OccupantBehavior,
	that button press
	<pre>!IF (IATT > 27) && (pre == 1), !- deterministic ob</pre>
	<pre>!SET num_hot = num_hot + IATT, !- deterministic ob</pre>
	<pre>!SET den_hot = den_hot + 1, !- deterministic ob</pre>
	!ENDIF,
	SET handle1=A1_SP+B1_SP*IATT, !- logit ob
	SET handle1=@Exp handle1, !- logit ob
	SET handle1=1/(handle1+1), !- logit ob
	SET R1=@RandomUniform 0 1, !- logit ob
	IF (handle1>R1) && (pre==1), !- logit ob
	SET num_hot = num_hot + IATT, !- logit ob
	SET den_hot = den_hot + 1, !- logit ob
	ENDIF, !- logit ob
	Icold button press
	!IF (IATT < 18) && (pre == 1), !- det ob
	<pre>!SET num_cold = num_cold + IATT,!- det ob</pre>
	<pre>!SET den_cold = den_cold + 1, !- det ob</pre>
	!ENDIF,
	SET handle2=A2_SP+B2_SP+IATT, !- logit ob
	SET handle2=@Exp handle2, !- logit ob
	SET handle2=1/(handle2+1), !- logit ob
	SET R2=@RandomUniform 0 1, !- logit ob
	IF (handle2>R2) && (pre==1), !- logit ob
	SET num_cold = num_cold + IATT, !- logit ob
46	SET den_cold = den_cold + 1, !- logit ob
47	ENDIF;
48	
49 = -	EnergyManagementSystem:Program,
	DataCollection,
	SET I_cola = hum_cola / aen_cola,
	SET I_not = num_not / den_not,
	1P (1A(1 < 1_co(a) & (pre == 1))
54	SEI PC = PC + 1,
	ENUIF,
-7	IF (IAII > I_not) as (pre == 1),
27	SCI pri – pri + 1,
50	IE (IAIT $>=$ T cold) SE (IAIT $=$ T bot) SE (ore $=$ 1)

Energy Management System

Overall **30%** less button presses with **10%** more energy consumption

Tune **RL parameters** to balance between comfort and energy saving

Run multiple simulations with

various locations & occupant behavior types to generalize RL-OCC performance

Presentations

Session 2 - Sixth presenter

Wei. Shen

University

Session 2

College London,

UK

Monitoring Occupant Window Opening Behaviour in Buildings and Relevant **Influential Parameters: a Critical Review** S. Wei

This paper introduces existing methods that have been used to measure/monitor occupant window opening behaviour in buildings, due to its significant impact on the building energy consumption. The review has identified five existing methods that have been used to monitor window usage (i.e. self-recording, electronic recording, observing by surveyors, self-estimating and camera images), and each method has its advantages and disadvantages in terms of feasible sample size, monitoring interval and duration, recognition of window states/opening angle, and the relative dynamic nature of behaviour. The aim has been to provide researchers with systematic criteria for selecting a suitable monitoring method for their specific research objectives. Additionally, the Day 1, 14:03 paper also demonstrates the need for a standard method for monitoring relevant influential factors, as these varied considerably between existing studies with respect to the accuracy, interval and location. Such variation clearly has the potential to influence the ability to perform cross-study comparisons.

5th International Symposium on Occupant Behaviour

Southampton 20 - 23 April 2020

Monitoring Occupant Window Opening Behaviour in Buildings and Relevant Influential Parameters: A Critical Review

Dr Shen Wei (Lecturer in Building Services Engineering) The Bartlett School of Construction and Project Management University College London (UCL), UK

shen.wei@ucl.ac.uk

20.04.2020

Methodology

- A Thorough Review on Studies in terms of Occupant Window Behaviour
 - Collected over 50 research articles
 - SCI impact journals (75%): Energy and Buildings, Building and Environment etc.
 - Key conferences (20%): ACEEE Summer Study Conference, Windsor Conference etc.
 - Academic technical reports or PhD thesis (5%)
 - Keywords: 'occupant behaviour', 'adaptive behaviour', 'window behaviour', 'window control' etc.

Capturing Occupant Behaviour

Method 1: Self-recording by building occupants;

Method 2: Recording by electronic measuring devices;

- Method 3: Observing by surveyors;
- Method 4: Self-estimating by building occupants;
- Method 5: Camera-based estimation

• Capturing Occupant Behaviour

Method 1: Self-recording by building occupants

(Nakaya et al. 2008)

Capturing Occupant Behaviour

Method 2: Recording by electronic measuring devices

• Capturing Occupant Behaviour

Method 3: Observing by surveyors

Visit	Time	Number of open windows per wall	Number of open doors (omit garage)	Floor location of openings (circle one)	Status of car door of attached garage	Likelihood of AC operation (circle one)	Likelihood of occupancy (circle one)	Evidence supporting occupancy rating	Precip. During last hour	Special conditions (write in)
A	am pm	39 Front 40 Right 41 Left 42 Back 43 Total	44 Front 45 Right 46 Left 47 Back 48 Total	49 None 50 Ground 51 Upper 52 Both	53 Closed 54 Open w/vehicle 55 Open w/o vehicle	56 100% 57 >50% 58 <50% 59 0% 60 Uncertain	61 100% 62 >50% 63 <50% 64 0% 65 Uncertain	Write in:	66 Yes 67 No 68 Uncertain	
В	am pm	69 Front 70 Right 71 Left 72 Back 73 Total	74 Front 75 Right 76 Left 77 Back 78 Total	79 None 80 Ground 81 Upper 82 Both	83 Closed 84 Open w/vehicle 85 Open w/o vehicle	86 100% 87 >50% 88 <50% 89 0% 90 Uncertain	91 100% 92 >50% 93 <50% 94 0% 95 Uncertain	Write in:	66 Yes 67 No 68 Uncertain	

(Johnson and Long, 2005)

Capturing Occupant Behaviour

Method 4: Self-estimating by building occupants

Table 1

Survey information of opening windows.

Category	Questions	Answers		
Part I: Window opening habit	1. What's the frequency in the heating days?	A. scarcely B. not often C. often D. nearly every day		
	2. What's the frequency in a day?	A. 1 B. 2 C. 3 D, more		
	3. What's the continuous time each time?	A. 0-5 min B. 6-10 min C. 11-20 min D. more		
	4. What's the opening size?	A. small B. moderate C. big D. fully open		
	5. Single side ventilation or cross ventilation?	A. Single side ventilation B. cross ventilation		
Part II: Potential related factors of opening	1. What's the indoor thermal sensation?	A, cold B, a little cold C, moderate D, a little hot E, hot		
window	2. What's the house area?	A. 20-60 m ² B. 61-100 m ² C. 101-140 m ² D.> 140 m ²		
	3. What's the storey number?	A. ≤8 B. 9–16 C. more		
	4. What's the total time at home in a day?	A. 8-11 h B. 12-16 h C. 17-19 h D. 20-24 h		
	5. What's the household number?	A. 1 B. 2–3 C. 4–6 D. more than 6		
	6. What's the feeling of IAQ?	A. good B. no feeling C. 3 bad		
	7. How much do you care about personal health?	A. care a lot B. care a little C. don't care		

(Huang et al. 2014)

• Capturing Occupant Behaviour

Method 5: Camera-based estimation

(Bourikas et al. 2018)

• Method Comparison

	Advantages	Disadvantages
Method 1	 Easy to use Large sample size 	 Survey-fatigue Accuracy
Method 2	 Accurate Continuous measurements No human factor 	 Limited sample size (cost) Malfunction of devices
Method 3	 Easy to use Large sample size Accurate 	 Time involvement Limited visit per object
Method 4	 Easy to use Large sample size 	 No real-time data Do people do what they said?
Method 5	 Large sample size Accurate 	 Susceptible to certain limitations, e.g. daylight, glare and raindrops

• Factors Affecting Occupant Window Behaviour

Outdoor Environmental Factors	Outdoor temperature, Wind speed, Solar radiation, Rain and Outdoor air pollution		
Indoor Environmental Factors	Indoor temperature and CO ₂ concentration		
Building- and System- related Factors	Dwelling type, Room type, Room orientation, Ventilation type, Heating system, Window type, Floor level and Shared offices		
Occupant-related Factors	Occupant age, Occupant gender, Ownership of the property and Smoking behaviour		
Time-dependent Factors	Time of day and Season		
Other Factors	Previous window state and room occupancy		

- Outdoor Environmental Parameter Measurement
 - Located on the roof of the building under investigation
 - Nearby weather station (distance from 280m to 23miles)
 - Remote weather station handheld by the experimenters

- Indoor Environmental Parameter Measurement
 - Near participants' workstation (Haldi and Robinson, 2008; Zhang and Barret, 2012; Yun et al. 2012)
 - Mounted on internal walls (Andersen et al. 2013; Herkel et al. 2008)
 - At the center of the zones (Nakaya et al. 2008; Iwashita and Akasaka, 1997)
 - Under participants' desks at the abdomen level (Wei et al. 2013)
 - Measured at four different heights or two different heights (Hellwig et al. 2008)
 - Averaging two values measured at different locations, i.e. one on the workstation and another on the book shelves (Yun and Steemers, 2008; 2010)

- Diversity in Data Collection Methodology
 - Different methods have been used to collect *behavioural data* from actual buildings, as discussed above. This brings diversity in sample size, resolution and accuracy.
 - Different methods have been used to collect *outdoor environmental parameters* (outdoor temperature, wind speed/direction and rainfall), from local weather stations located on the roof of the building, to remote measurement handheld by experimenters, or to public weather stations up to 23 miles away from the building under investigation.
 - Different methods have been used to collect *indoor environmental parameters* (indoor temperature, relative humidity and CO₂ concentrations), from under the participants' desks to shelves or walls, from a single measurement to average of two or more measurements.

5th International Symposium on Occupant Behaviour

How data can be **COMPARABLE** if they were collected using different methods???

Shen Wei (PhD, MSc, MEng, MASHRAE, FHEA)

The Bartlett School of Construction and Project Management

University College London (UCL), UK

shen.wei@ucl.ac.uk

20.04.2020

Kane.

USA

Session 2

Michael

Presentations

Session 2 - Seventh presenter

Preliminary Insights into Interviews with Building Energy Mangers Regarding **Occupant Centric Control** M. Kane

The presentation will provide an overview and preliminary results of the activity in Annex 79 – Subtask 4 on an "International survey on occupant sensing technologies and their Northeastern usage". The goal of the project is to identify common occupant sensing technologies for University, energy management, determine how these technologies are used and supplemented with operator expertise, and define white-space for future R&D. The planned approach includes interviewing facility managers, energy managers, and building operators from across the world in multiple languages. This presentation covers preliminary insights into

Day 1, 14:07 the initial surveys conducted in North America.

Preliminary Insights into Interviews with Building Energy Mangers regarding Occupant Centric Control

Activity of Annex 79 – Subtask 4.1

Burak Gunay, PhD Asst. Prof., Carleton University

GOAL:

Identify common occupant sensing technologies for energy management,

determine how these technologies are **used**

and supplemented with operator expertise, and

define **white-space** for future R&D.

A 22-question semi-structured interview, taking less than 30-min., of

facility managers, energy managers, and building operators

Research Questions

- 1. How common are various occupant **sensors and interfaces**, and how effective are they for operators?
- 2. In what ways do **operators' skills** affect occupant (dis)comfort and energy use?
- 3. In what ways do **operators' opinions** affect occupant (dis)comfort and energy use?
- 4. Do **operators trust** occupants to make adjustments without causing problems?
- 5. How do **occupants' needs and inputs** affect operator behavior?
- 6. What building **data and systems** are available, but operators don't know how to use?
- 7. In what ways can buildings be **improved** to adapt to occupants' needs?

Initial Results

How well do you feel that you understand the needs of building occupants?

How comfortable do the building occupants seem to be?

What are the top 2 goals that drive your operational decisions?

What two sources of information help you most in achieving these goals?

OCC Operator Survey Slide 4 / 45 - Annex 79 - April 20, 2020

Northeastern University College of Engineering

Thank You

Current

- Michael Kane Northeastern University (USA)
 - * DOE Better Buildings Program
- Burak Gunay, William O'Brien, Zakia Afroz, and Brodie Hobson Carlton University (Canada)
- Giorgia Spigliantini Politecnico di Torino (Italy)

Volunteers for Future Interviews

- Jakob Hahn Munich University of Applied Sciences (Germany)
- Clayton Miller National University of Singapore (Singapore/USA)
- Yuzhen Peng & Arno Schlueter ETH Zurich (Switzerland)
- Zoltan Nagy UT Austin (USA)
- Bing Dong Syracuse University (USA)

- Conducting interviews internationally (Asia) and translating
- Expertise in qualitative analysis of interview transcripts
- Email: mi.kane@northeastern.edu

Thank You

OCC Operator Survey Slide 6 / 45 - Annex 79 - April 20, 2020 Northeastern University College of Engineering

Presentations

Session 3 - First presenter

Occupant Behaviour Profile Development based on Smart Meter Data *M. Horváth, L. Czetany, V. Vámos*

This presentation will cover the objectives and first results of the research project entitled "Large Scale Smart Meter Data Assessment for Energy Benchmarking and Occupant Behaviour Profile Development of Building Clusters," conducted based on data from Hungary. The project seeks to utilize a new and unique opportunity for accessing and processing an enormous dataset collected by smart meters. Recently in Hungary, nearly 10 000 buildings have been equipped with smart meters within the "Central Smart Grid Pilot Project". By means of advanced data analysis techniques, consumption trends and motivations of building users are being investigated. The aims are to help building designers and engineers design more energy efficient buildings at lower investment costs by avoiding system oversizing and to obtain better knowledge about hourly, daily and monthly energy consumption trends. Furthermore, standard net demand values for normative energy calculations are being updated and specified more precisely since consumption habits change with time and depend on the region. In the first phase of the project, questionnaire surveys were conducted in public buildings both equipped and not equipped with smart meters. Attitude, knowledge and behavioural patterns of occupants were measured and then compared to smart meter datasets. Currently, the energy consumption profiles are being developed using different kind of clustering techniques. First, the classic K-Means and Fuzzy K-Means clustering methods are used but the research is going to be extended to the Hierarchical clustering method as well and the results will be compared. It was also investigated whether the commonly used data analysis techniques in electricity-based datasets can also be used for heat and natural gas consumption datasets of buildings.

Miklós Czetany,

Horváth,

Laszio &

Vámos, Viktória

Budapest University of Technology and Economics, Hungary

Session 3

Day 1, 14:50

OCCUPANT BEHAVIOUR PROFILE DEVELOPMENT BASED ON SMART METER DATA

<u>MIKLÓS HORVÁTH¹</u>, ZSÓFIA DEME BÉLAFI¹, VIKTÓRIA VÁMOS¹, LÁSZLÓ CZÉTÁNY¹, ZSUZSA SZALAY², TAMÁS CSOKNYAI¹

¹BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS, FACULTY OF MECHANICAL ENGINEERING, MUEGYETEM RKP. 3-9., 1111 BUDAPEST, HUNGARY

² BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS, FACULTY OF CIVIL ENGINEERING, MUEGYETEM RKP. 3-9., 1111 BUDAPEST, HUNGARY

Smart meters in Hungary

- Central Smart Grid Pilot Project (KOM):
 - To assess the possibilities of a national smart monitoring system
 - 139 901 smart meters installed in 2016-2017
 - Residential, public, commercial and industrial buildings
 - Sampling time: 5 min one week
- Large Scale Smart Meter Data Assessment for Energy Benchmarking and Occupant Behavior Profile Development of Building Clusters (2018-2021)
 - New research project to analyse the data
 - More precise picture on the energy consumption of the building stock
 - Comparative analysis of measured and modelled data
 - Establish user profiles and patterns

Objectives

- Occupant energy profile development for typical buildings, households
- Enhance current national building typology system
- Identify clusters of occupants based on their consumption and socio-demographic parameters
- Support national policy-making
- Compare results to international projects

Methods – Smart meter datasets Residential

	Residential				
Consumption type	meters deployed	usable address	usable data	good meters with usable Google maps data	
Natural gas	7368	6059	934	29	
Heat	53432	53430	in progress	in progress	
Electricity	24917	9237	4454	1282	
Water	22231	22224	in progress	in progress	
Σ	107948	90950	5388	1311	

Distribution of residential buildings in Hungary (top) and the installed smart meters by settlement type (bottom)

ann

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE PROJECT

FINANCED FROM THE NRDI FUND

MOMENTUM OF INNOVATION

5

Annex 79

THE NRDI FUND MOMENTUM OF INNOVATION

AND INNOVATION OFFICE

Methods – Qualitative Information Assigned to Smart Meter Data Points

- Only address of the buildings is available
- Additional qualitative data is needed about the buildings
- Manual approach based on GIS mapping tool was chosen: compromise btw accuracy and time spent
- Parameters: building function, type, area, number of stories, condition of building, visible retrofit measures, type of roof, presence of solar panels/ collectors
- Subcategorization based on building archetypes
- Problems: streetview images not available in some villages, identification of building sometimes difficult, blocking by external obstacles

6

5th International Symposium on Occupant Behaviour

Methods – Time series analysis, clustering

- Analysis of natural gas consumption and electricity
- Data filtering to discard unusable and false datasets
 - Manual analysis of some series to identify typical errors
 - Development of algorithms to automatically categorise the time series
 - Manual investigation kept to a minimum
- Clustering methods:
 - K-Means
 - Fuzzy K-Means
 - Hierarchical

Methods – Calibrated simulations for individual buildings analysed in detail

- Examined buildings:
 - Hegyvidék Office Building
 - Táltos Kindergarten
- Different models were developed:
 - Simple/detailed internal mass
 - Simple/detailed occupancy profile
 - Simple/detailed HVAC
- Results:
 - Models had to be adjusted to the measured data
 - The features of the HVAC system influence the energy consumption of the buildings largely

8

Circuit diagram for the detailed HVAC model in Hegyvidék Office Building – Helga Kovács

DesignBuilder model of Táltos Kindergarten

5th International Symposium on Occupant Behaviour

Methods - Questionnaires and Interviews

- Socio-demographic data is collected
- Independent variables from four models commonly used to determine social-psychological determinants of energy efficient technology acceptance were selected for surveys
- Three rounds of data collection:
 - Public buildings without SM
 - Public smart buildings
 - Households with SM

Model	Variables		
Theory of Planned Behavior	Attitude towards the technology		
Technology Acceptance Model	Perceived usefulness Perceived ease of use		
Norm Activation Model	Personal norms (moral obligations)		
Sustainable Energy Technology Acceptance (SETA)	Trust in technology providers Knowledge Perceived risk to privacy Problem perception (awareness of consequences)		

+ dependent demographic variables (age, gender, occupation, education level, perceived material status and building characteristics and retrofit)

+ support for SM technology, etc.

Preliminary results – data quality check

- Data filtering to discard unusable and false datasets
 - Manual analysis of some series to identify typical errors based always on cummulative profiles created from the whole dataset available for the specific meter
 - Development of algorithms to to automatically categorise these cumulative profiles – a good cumulative natural gas consumption (C_{ng}) profile is shown below.

C00041386-K101200007743; SmartID: GF1

Preliminary results – Gas consumption profiles

Data filtering to discard find different usage patterns - for instance DHW consumption

11

5th International Symposium on Occupant Behaviour

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY PROJECT FINANCED FROM THE NRDI FUND MOMENTUM OF INNOVATION

Data filtering to discard find different usage patterns – for instance DHW consumption.

12

Seasonal profiles were clustered for the summer months to find schools with DHW consumption.

With the silhouette and elbow methods -> two clusters are adequate, but after checking the results -> four was chosen

5th International Symposium on Occupant Behaviour

With the silhouette and elbow methods -> two clusters are adequate, but after checking the results -> four was chosen

In 38 schools there is no DHW consumption basically.

Schools with no DHW consumption for the heating season With k-means 2 (or 6) clusters

 Sth International Symposium on Occupant Behaviour
 Image: Comparison of the second second

Schools with suspected DHW consumption for the heating season With k-means 2 clusters

Conclusions and future plans

- Representative results can be achieved for settlement categories and building types but not for geographical distribution
- GDPR makes it challenging to collect qualitative supplementary data for residential buildings
- Data quality issues
- Public buildings results analysed in more detail
- Residential building results
- Cluster analysis:
 - Examine other clustering methods
 - Determine the optimal number of clusters (Elbow method and Average silhouette method used before)
 - Determine the optimal fuzziness parameter for Fuzzy K-Means method

Thank you for your attention!

Acknowledgments

Results and the determined trends are being fine-tuned and extended for other building types with a geographic scope of Hungary in another research project entitled "Large Scale Smart Meter Data Assessment for Energy Benchmarking and Occupant Behavior Profile Development of Building Clusters". Furthermore, methods and approaches developed in the current work are being further developed for large scale data analysis. The project (no. K 128199) has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the K_18 funding scheme.

The monitoring data subject to analysis is being collected within the "Central Smart Grid Pilot Project" by KOM Smart Meter Ltd.

The research reported in this paper was also supported by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame of Artificial intelligence research area of Budapest University of Technology and Economics (BME FIKP-MI).

The authors wish to acknowledge a Fulbright Visiting Student Researcher Award from the Fulbright Commission for Educational Exchange which enabled scientific exchange between Budapest University of Technology and Economics and University of Tennessee.

Presentations

Session 3 - Second presenter

Ouf, Mohamed

Analysing Smart Thermostat Data and Unregulated Loads to Support the Canadian Net Zero Energy Ready Code *M. Ouf*

Concordia University, Canada

- Session 3
- Day 1, 15:00

Increasing efficiency requirements in energy codes typically focuses on adding more stringent provisions for HVAC and building envelope systems to decrease heating/ cooling loads and associated energy use. However, reducing heating/cooling loads can increase the contribution of occupants to overall building energy consumption. Although previous studies demonstrated this effect, occupant-related assumptions, which are represented by schedules used in building simulations, remain treated with standard simplistic assumptions that do not match data from existing buildings. Since simulations are a principal mechanism for developing new code provisions, inappropriate input assumptions may lead to provisions with sub-optimal performance in practice. To this end, we re-evaluate occupant-related assumptions in the Canadian energy code using data from existing buildings. The research scope focuses on code provisions for unregulated loads (i.e., plug loads) and thermostat setpoint settings. To address unregulated load assumptions, published data on plug loads' usage in residential, commercial office and school buildings was analyzed. Two different approaches, namely scenario-based analysis and Monte-Carlo simulations were used to derive schedule inputs for building simulations and quantify the effect of plug load assumptions on energy use in 5 building archetypes across 5 Canadian climate zones. Results also compared the impact of unregulated load assumptions across 3 different versions of the Canadian energy code to demonstrate their relative effect. To address thermostat setpoint assumptions, anonymized, voluntarily shared smart thermostat data from 14,000 households across Canada were analyzed. This analysis identified unique setpoint profiles and investigated the effect of several factors such as house/household characteristics, seasonal variations and outdoor temperature. Using this dataset, novel approaches were also explored to characterize buildings' thermal properties using indoor and outdoor temperature measurements to identify the effect of changes in energy code requirements on the thermal behaviour of different homes.

GINA CODY SCHOOL OF ENGINEERING AND COMPUTER SCIENCE

Analyzing smart thermostat and unregulated loads data for the Canadian Net Zero Energy Ready Code

Mohamed Ouf, PhD, P.Eng Assistant Professor

Department of Building, Civil and Environmental Engineering Concordia University, Montreal, Canada

Overview

NRC Net Zero Energy Ready Project

Problem statement

• More efficient HVAC and building envelopes can increase the contribution of occupants to buildings' energy use

Goal

- I.Evaluate occupant-related assumptions in the Canadian Energy Code against data from existing buildings
- 2. Evaluate the effect of previous code changes on buildings' thermal performance

Approach

The analysis relied on TWO main sources

- 1. Ecobee smart thermostat data (~14,000 houses in Canada)
- 2. Previous literature data on plug loads' use in existing buildings
- Objectives
 - Investigate thermostat setpoint preferences across Canada
 - Identify heating/cooling setpoint profiles
 - Investigate the impact of plug loads assumptions on simulations

[1] Abushakra, Sreshthaputra, Haberl, David, and Claridge, "Compilation of diversity factors and schedules for energy and cooling load calculations ASHRAE Research Project 1093-RP Final Report,", 2001

Inter-quartile analysis of plug loads in ASHRAE RP-1093 [1]
Analysis of thermostat setpoint preferences

- A high-level analysis of average thermostat set-points
 - Dataset includes several types of events and schedules
 - Focused only on 'heating', 'cooling', schedules 'home', 'sleep'
- Average 24-hr heating and cooling setpoints calculated for each house
- Potential Limitations
 - Not randomly sampled
 - Users likely represent higher-income brackets / tech-savvy
- To address these limitations
 - Analysis focused only on provinces with at least 500 thermostats
 - Results were compared with the Canadian Survey of Household Energy Use (SHEU)

Heating Setpoints

Daytime Setpoint (Home, "when there and awake during the winter")

Nighttime Setpoint (Sleep, "when asleep during the winter")

Cooling Setpoints

Daytime Setpoint (Home, "when there and awake during the summer")

Nighttime Setpoint (Sleep, "when asleep during the summer")

Analysis of thermostat setpoint preferences

- K-shape clustering of average 24-hr heating / cooling profiles
- The highest Dunn index value was obtained with 4 clusters

Analysis of thermostat setpoint preferences

- Ecobee data shows some level of agreement with statistically sampled data reported in SHEU
 - Data-driven heating / cooling setpoint profiles do not match Code assumptions

- Based on the results of a Random Forest analysis model
 - Average setpoint preferences are strongly influenced by outdoor temperature and building age
 - which may represent thermal properties and envelope efficiency

Analyzing the impact of plug loads on EUI

Reviewed the literature for studies that analyzed plug loads in existing buildings

- Focus on studies in which raw data was provided or a detailed hourly analysis was performed
- Three Building Types

[1] Abushakra, Sreshthaputra, Haberl, David, and Claridge, "Compilation of diversity factors and schedules for energy and cooling load calculations ASHRAE Research Project 1093-RP Final Report,", 2001

oncordia

[2] R. S. Srinivasan, J. Lakshmanan, E. Santosa, and D. Srivastav, "Plug-load densities for energy analysis: K-12 schools," Energy Build., vol. 43, no. 11, pp. 3289–3294, 2011.

[3] D. Harris and C. Higgins, "Methodology for Reporting Commercial Office Plug Load Energy Use," no. March, 2013

[4] N. Saldanha and I. Beausoleil-Morrison, "Measured end-use electric load profiles for 12 Canadian houses at high temporal resolution," Energy Build., vol. 49, pp. 519–530, 2012.

Plug loads results

- Energy code assumptions (baseline) may be overestimating EUI
 - EUI is higher than plug loads assumptions of 25th and 50th percentiles
- The impact of plug-loads assumptions generally increases in newer Code versions
- Irrespective of Code version, a higher impact of plug loads assumptions is consistently observed in milder climates

Thanks to a great team of researchers!

Aya Doma MASc Student

Karthik Panchabikesan Post-doctoral Researcher

Erin Gaucher-Loksts MASc Student

CONCORDIA.CA

Berger,

Christiane

TU Wien.

Session 3

Day 1, 15:10

Austria

Presentations

Session 3 - Third presenter

Mahdavi,
Ardeshir &Agent-Based Modelling of Building Occupants: Promise and Challenges
A. Mahdavi, C. Berger

Building design, construction, and operation can benefit from utilization of digital technologies. In this context, Building Information Modeling (BIM) represents a wellknown class of digital media geared toward supporting the building delivery process. More recently, efforts are made to extend BIM beyond static representation of buildings' constituent components: Utilizing numeric simulation, BIM could provide high-resolution dynamic representations and thus support a wide range of performance assessment services. Thereby, it is increasingly recognized that digital models of building must include representations of occupants. This is not only because occupants are the main recipients of the services buildings provide, but also because they influence buildings' performance. In this context, agent-based modelling (ABM) has been viewed as a promising instrument toward computational representation of processes associated with occupants' patterns of presence and behavior in buildings. In this context, the present contribution provides a general assessment of the state of the art regarding ABM deployment in the context of buildings' energy and indoor-environmental performance (e.g., energy demand, adaptive thermal comfort, visual comfort, acoustic comfort, indoor air quality, HVAC system design and operation). The investigation entailed in the present contribution suggests that the ABM-based incorporation of occupant behavior in simulation applications can increase their effectiveness. However, the contribution also reveals a number of shortcomings concerning the state of the art in this area. Thereby, a central drawback is the paucity of comprehensive empirical information concerning processes related to occupants' perception, evaluation, and behavior. ABM developments and platforms, no matter how elaborate they may be technically, must be supplied with detailed and reliable domain knowledge on human perception and behavior. Otherwise, they would fall short of providing useful insights toward building design and operation support.

Agent-based Modeling of Building Occupants: Promise and Challenges

Christiane Berger Ardeshir Mahdavi

Department of Building Physics and Building Ecology TU Wien, Austria

OB 2020 – IEA EBC Annex 79

Occupant behavior

- Presence
- State of activity
- State of clothing
- Social environment
- Interactions with building systems
- ...

Agent-Based Modeling (ABM)

"ABM represents decision-making entities, called agents (i.e., building occupants) that individually assess their situation and make descision based on a set of rules"

(Bonabeau 2002)

Sources of domain knowledge in ABM applications

Systematic review effort

- Occupant-centric ABM for simulation of energy and indoor-environmental performance of buildings
- Publications between 2010 and 2018
- Multiple search engines and databases
- Different combinations of keywords
- 23 directly relevant publications

Systematic review effort

- Implementation purpose
- Representational approach (domain knowledge and relevant building type)
- Implementation tools (for both people's behavior and their environment)

Overview of selected publications

PUBLICATION	MODEL PURPOSE	PEOPLE		ENVIRONMENT	
		Domain knowledge	Implementation tools	Case study/ Domain knowledge	Implementation tools
Alfakara and Croxford [48]	To assess the impact of occupant behavior and occupants' interactions with building systems in response to overheating	agents' interaction with windows and the mechanical cooling system; two scenarios including a base-case behavioral scenario and an improved behavior scenario (occupants are assumed to be trained in view of energy conscious behavior) are simulated	Repast Symphony	case study in a residential setting, virtual model of a high-rise building	TAS
Andrews et al. [49]	To study the impact of occupant behavior and interactions with building systems (lighting) on building performance and occupant satisfaction	two decision-making theories, namely the Theory of Planned Behavior (TPB) and the Beilef-Desire-Intention (BDI) framework are adopted to model decision-making processes; a survey in an office building was conducted to collect information about occupants	NetLogo	case study using a simplified five- zone single story commercial building layout with focus on different lighting systems and occupants' satisfaction of different lighting designs	Radiance
Azar and Menassa [50]	To assess the impact of different energy use habits of occupants on	three types of occupants (High Energy Consumers, Medium Energy Consumers, and Low Energy	AnyLogic	case study in a student office in Madison-Wisconsin, US including 10	eQuest
Azar and Menassa [51]	energy consumption	of blinds, lighting, equipment, and hot water) are considered; "word of mouth" effect included		students	
Barakat and Khoury [53]	To study the impact of occupants' implications of provided comfort levels (thermal, visual, and acoustical comfort) on buildings' energy consumption	three different occupant types (green, neutral, and non- green); operation of doors, windows, shades, and lights assumed; thermal, visual, and acoustic comfort considered	AnyLogic	n.a.	n.a.
Chen et al. [54]	To assess the impact of occupancy	occupancy patterns are based on the OB XML schema	Occupancy Simulator	case study in an office building in Miami, US;	EnergyPlus
Chen et al. [55]	behavior patterns on builling's	that builts upon the OB DNAS theoretical framework			
Luo et al. [56]	tenergy consumption			occupancy data from an office building at Carnegie Mellon University was collected over a period of three months	
Jia et al. [57]	To study the impact of occupant	occupants can operate windows, doors, and blinds;	PMFserv	case study in an office building in Florida, US; indoor environmental data (including temperature, humidity, and illumination) was collected	EnergyPlus
Jia et al. [58] Jia and Bharathy [59]	behavior (considering thermal, visual, and air quality) and occupant interactions with building systems on building's energy consumption	occupants react to uncomfortable ambient indoor environmental conditions (thermal, visual, and air quality comfort conditions); agents' decisions are based on values (as per GSP) and contexts (perceptions triggered by the index a unicompatible conditions).			M.P.
1 1 1 100		by the indoor environmental conditions)			
Langevin et al. [61] Langevin et al. [61]	behavior of office building occupants	agents are set up according to the Perceptual Control Theory (PCT); Five adaptive behaviors with regard to thermal comfort are considered (clothing adjustment, personal use of a heater or a fan, thermostat use, window opening/closing)	MATLAB	case study simulations for an onice building in five different climate regions in the US; indoor- environmental data (i.e., temperature, humidity, air velocity) was measured over a period of one vear	EnergyPlus
Lee [62]	To study the impact of occupants' behavior on buildings' energy use and occupants' thermal comfort	beliefs (including behavioral, control, and normative beliefs) associated with agents' behavior are adopted from the Reasoned Action Model; survey was conducted	MATLAB	case study in an office building; model simulated also in different climate regions; different occupants'	EnergyPlus
Lee and Maikawi [63]		to obtain information of occupants		operations (e.g., windows, doors, blinds, fans, and heaters)	
Linkola et al. [69]	To simulate occupants' water usage behavior in residential buildings	two decision-making theories: Theory of Planned Behavior (TPB) and the Belief-Desire-Intention (BDI) framework are adopted	NetLogo	case study in two residential settings in the US and the Netherlands; simulation model considers three different household scenarios (single, couple, family)	n.a.
Papadopoulos and Azar [64]	To assess the impact of occupants' behavior and interaction with building systems on buildings' energy consumption	three occupancy characteristics, namely preferences for cooling and heating thermostat set points, lighting energy use patterns, and plug loads energy use patterns are assumed	AnyLogic	case study in an office building in Abu Dhabi, UAE; both occupants and facility managers are considered	EnergyPlus
Azar and Papdopoulos [52]		six occupancy characteristics (lighting, equipment use patterns, and cooling and heating set points) are assumed	MATLAB	case study in a commercial prototype building including occupants and facility managers	

C. Berger and A. Mahdavi – Department of Building Physics and Building Ecology, TU-Wien, Austria

Common implementation tools

Implementation tools	Implementation tools
(Occupancy behavior)	(Environment)
NetLogo, AnyLogic, Repast Simphony, Unity 3D, Matlab, Occupancy Simulator	EnergyPlus, eQuest, Radiance, TAS

Main sources of domain knowledge

C. Berger and A. Mahdavi – Department of Building Physics and Building Ecology, TU-Wien, Austria

Promise

- Dynamic and detailed representation of occupants
- Enrichment of the analysis repertoire of simulation tools

Challenges

- Lack of comprehensive empirical information regarding occupants' perception, evaluation, and behavior
- Almost total absence of systematic model validation efforts

Future research

- Further technical enhancement of ABM tools and platforms
- Collaborative multi-disciplinary collection of observational data

Thank you for your attention!

Agent-based Modeling of Building Occupants: Promise and Challenges

Christiane Berger Ardeshir Mahdavi

Department of Building Physics and Building Ecology TU Wien, Austria

OB 2020 – IEA EBC Annex 79

Presentations

Session 3 - Fourth presenter

Bleil de Souza, Inserting Occupant Behaviour Models Within the Workflow of Practitioners: A **Practice-Based Perspective** Clarice &

C. Bleil de Souza, S. Tucker

Tucker, Simon

Welsh School of Architecture. UK & Liverpool School of Art and Design, Liverpool John Moores University, UK

Session 3

Day 1, 15:20

We invite the building performance simulation community to discuss how occupant behaviour models can be inserted or integrated within the workflow of practitioners. We propose a practice-based perspective, where the workflow of practitioners is rationalized from high level, considering how they make decisions, down to its lower level, when decisions are implemented in practice aided by simulation tools. This practice-based perspective was developed in previous work sponsored by EPSRC/UK, grounded on a mixed methods approach which included, Interaction Design, Participatory Action Research, a survey, interviews and discussions with practitioners. It explored the workflow of decision-making behind ill-defined problems, in which designers make decisions in a non-systematic way based on reflection in action as a result of 'what if' experiments. This is one of the most challenging types of decision making processes to be rationalised as building designers need information and ideas in order to understand better what is significant to the design challenge at hand and to inform design decisions based on evidence. Increasing the uptake of occupancy modelling by designers will require that inherently complex information is presented to practitioners in ways that support their design process. Therefore, this presentation is supposed to: 1. Briefly show the overarching framework of decision-making for ill-defined problems, providing an overview on how practitioners make decisions, including worked examples validated in practice. 2. Discuss how the framework can be translated into simulation workflows within the logic of object oriented programming, likewise commonly used in digital design tools. 3. Open a discussion on how catalogues of decisions, grounded on the identification of the different 'dimensions' of occupant modelling which are relevant to the design process, can be developed to insert and recall different types of occupant behaviour models within the decision-making workflow of practitioners.

Inserting occupant behavior models within the workflow of practitioners:

A practice-based perspective

Clarice Bleil de Souza Simon Tucker

The Framework: ill-defined problems

Designers need to make decisions with:

- Incomplete information &
- Multiple goals (e.g.)
 - Aesthetic
 - Technical
 - Environmental performance
 - Financial
 - Personal and professional
 - Legislation
 - Imposed by client

Besides:

Designers solve problems by 'reflecting in action' through 'a conversation with the materials of the situation' (Schon 1991)

Image:

Akin, O. 2001. "Variants in Design Cognition." In *Design Knowing and Learning: Cognition in Design Education*, edited by Eastman, C., M. McCracken, and W. Newstetter, 105–124. Atlanta: Elsevier.

Framework

- Recognises that designers *always ask questions* about the building, how it performs, how it can be made better, what options the designer has for developing it, etc. (i.e. performance queries or design advice)
- Deconstructs and formalises *potential* questions such that they can be encoded in a database and recalled by the simulation user.
- The database contains all of the questions that one can ask about the building performance, and contains all of the knowledge ('the answers') on strategies for analysing and improving performance.

The Framework: ill-defined problems

Image:

Bleil De Souza, C. and Tucker, S. 2015. Thermal simulation software outputs: a conceptual data model of information presentation for building design decision making. Journal of Building Performance Simulation 9(3), pp. 227-254.

Translation into simulation workflows

Image:

Modified from: Tucker, S. and Bleil De Souza, C. 2016. Thermal simulation outputs: exploring the concept of patterns in design decision-making. Journal of Building Performance Simulation 9(1), pp. 30-49.

Example – Iterative design of shading devices

List of 'standard' questions

Question assemblages

requested and delivered

Example – Iterative design of shading devices

List of 'standard' questions

Question assemblages

or area of shading

device?

What is the effect on performance if I change any combination of type, position, proportion, or area of shading device?

O1b *Optimize* type, position, proportion, or area of shading device for minimum heating and cooling demands?

E1 How does my building perform with these proposed shading devices? Usb How sensitive is the *building to* design parameters: Proportion and Area of shading device? E2 What is the effect on performance if I change either type, position, proportion, or area of shading device?

Translation into simulation workflows

Object-oriented structure:

- Useful sequences can be identified
- Recorded in databases

We refer to these as 'Patterns'

Table 2. Examples of patterns.

	Goal/question	Model settings	Simulation/analysis/ post-processing	Outputs (overview)	Interaction with outputs
t	Will the building meet BB101 overheating targets in 2020, 2050, 2080? What would the energy use be? ^R	 Base case: As per drawings/ specifications. Settings follow recommendations.^b Free-running With heat/cool system. 	Descriptive analysis. Weather files: ^c 2020/H/90/DSY 2020/H/50/DSY 2050/H/90/DSY 2050/H/50/DSY 2080/H/90/DSY 2080/H/50/DSY	Text: BB101 PASS or FAIL. Table of BB101 figures. Bar chart: Annual heat and cool energy. ^d	Zoom: Location and time (produces Bar chart: Heat and cool energy). ^e Bar chart: Heat and cool energy.
2	Will the fixed shading as designed be sufficient until 2050, or should it be made adjustable or extendable? ^f	 Base case. No shading. 100% efficient shading.^g Each model simulated with; * ventilation values (1, 3, 5 ac/hr). * internal gains values (low & standard). 	Comparative analysis Weather files; 2050/H/90/DSY 2050/H/50/DSY	Text: BB101 PASS or FAIL, Table of BB101 figures. Bar chart: Annual heat and cool energy.	Zoom: Location and time (produces Bar chart: Heat and cool energy) Bar chart: Heat and cool energy. ^e

Image:

Tucker, S. and Bleil De Souza, C. 2016. Thermal simulation outputs: exploring the concept of patterns in design decision-making. Journal of Building Performance Simulation 9(1), pp. 30-49.

Types of pattern: high level planning, building related, detailed modelling

Level	Type/purpose	Modelling details/notes
High-level, planning related	Site analysis, guidance on climatic strategies, passive and low-energy strategies and renewable energy systems potential	Simple models (from a library) could be used to test concepts (e.g. heavy – lightweight, insulation levels, glazing for solar gains) and explore site and overarching design strategy
Mid-level, building related	Exploring building form, glazing ratios, insulation of building elements, preliminary calculations on renewable energy systems integration and site specific 'rules-of-thumb'	Models (user generated) tend to have many defaults ascribed
Low-level, detailed modelling	Effect on performance of building parameters, plant efficiencies and effect of occupants	User-detailed model is constructed to carry out detailed building performance experiments

Table 3. Proposed hierarchy of patterns.

Patterns could be based on (Including *dimensions* taken from Annex 66 final report pp.57):

- Phase in the delivery process (from early design to policy making)
- Climate / Culture
- Building type (School, House, Office, etc.)
- Environmental ambition (Zero Carbon, naturally ventilated, etc.)
- Modelling domain (e.g. layout, lighting, thermal, acoustic, safety design, HVAC, structure, etc.)
- Type of occupant interaction (e.g. intelligent systems, manual controls)

The construction of well focussed patterns can also help to identify where further research is needed.

A catalogue of patterns?

We could start from your case studies

This work is based on an EPSRC research project with the following outputs:

Bleil De Souza, C. and Tucker, S. 2016. Placing user needs at the center of building performance simulation (BPS) tool development: using 'designer personas' to assess existing BPS tools. Presented at: Building Simulation and Optimization, Newcastle, UK, 12-14 September 2016.

Tucker, S. and Bleil De Souza, C. 2016. Placing user needs at the centre of building performance simulation: transfering knowledge from human computer interaction. Presented at: Building Simulation and Optimization, Newcastle, UK, 12-14 September 2016.

Tucker, S. and Bleil De Souza, C. 2016. Thermal simulation outputs: exploring the concept of patterns in design decision-making. Journal of Building Performance Simulation 9(1), pp. 30-49. (<u>10.1080/19401493.2014.991755</u>)

Bleil De Souza, C. and Tucker, S. 2015. Thermal simulation software outputs: a conceptual data model of information presentation for building design decision making. Journal of Building Performance Simulation 9(3), pp. 227-254. (10.1080/19401493.2015.1030450)

Bleil De Souza, C. and Tucker, S. 2014. Thermal simulation software outputs: a framework to produce meaningful information for design decision-making. Journal of Building Performance Simulation (<u>10.1080/19401493.2013.872191</u>)

Bleil De Souza, C. and Tucker, S. 2013. Thermal simulation software outputs: what do building designers propose?. Presented at: Building Simulation 2013 (BS2013): Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28. International Building Performance Simulation Association pp. 468-475.

Tucker, S. and Bleil De Souza, C. 2013. Thermal simulation software outputs: patterns for decision making. Presented at: Building Simulation 2013 (BS2013): *Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28*. International Building Performance Simulation Association pp. 394-401.

Presentations

Session 3 - Fifth presenter

Hong, Tianzhen

Is a Zero-Net-Energy (ZNE) Home Really ZNE? T. Hong

California, as a U.S. state, requires new residential buildings to be zero-net energy (ZNE) starting 2020 by its building energy efficiency standards, aka Title 24. The zeronet energy metric is on an annual basis, i.e., a residential building (either single or multifamily) produces enough energy on-site to meet its energy demand during a whole-year period. ZNE homes are designed with a package of technologies based on the optimized cost balancing energy efficiency measures and on-site renewable energy generation (e.g., from PV). However, the actual operating performance of ZNE homes would vary significantly due to actual weather conditions and more importantly, the energy use behaviours of the occupants in those ZNE homes. In the energy modelling and analysis that derives the ZNE home design, typical meteorological year (TMY) weather data in 16 Californian climate zones and static and homogeneous occupant profiles are used. There lacks quantification of the variability of performance of ZNE homes. This presentation introduces research and energy modelling conducted to characterize and quantify the influence of weather and occupant behaviour on the performance of ZNE homes, which helps address the question - when does a ZNE home become energy positive or negative, and by how much? The findings suggest scenarios of weather data and occupant behaviours should be developed and considered in the energy modelling process that supports the Title 24 development so that variations of ZNE home performance are quantified and ZNE home technologies can be optimized to ensure robust ZNE target.

Lawrence Berkeley National Laboratory, USA

Session 3

Day 1, 15:24

OB-20 International Symposium Is a ZNE Home Really ZNE?

Tianzhen Hong, Theo Picard Building Technology and Urban Systems Division

ENERGY TECHNOLOGIES AREA
Background

A zero-net energy building (ZNE) is an energy-efficient building where, on the basis of **annual source energy**, the delivered energy is less than or equal to the on-site generated renewable energy.

The California Energy Efficiency Strategic Plan:

- ◆ All new residential construction is required to ZNE starting Jan 2020.
- ◆ All new commercial construction will be ZNE by 2030

The problem:

- Will a ZNE designed home achieve ZNE performance in reality?
- Buildings are designed using static weather data. What is the impact of weather variability and climate change on the performance of ZNE homes?
- Static average occupant behaviors are used in building design. What is the impact of OB on the performance of ZNE homes?

Occupant behavior is a key factor influencing building performance

Buildings

Main Components

Energy Conservation measures

ENERGY TECHNOLOGIES AREA

Approach

 Use ZNE home energy models to simulate the impacts on weather and OB on performance of ZNE homes in 3 typical Californian climates.

- CZ3 San Francisco
- CZ10 Fresno
- CZ13 Riverside

Single Family Home, 2100sf (195 m²)

Approach

BERKELEY LAB

Technology		ZNE Efficiency Measures
	Wood Stud	R-21 Fiberglass Batt, Grade-1
Walls	Wall Sheathing	R-5 Expanded Polystyrene Insulation
	Exterior Finish	Stucco, Medium/Dark
Coilings/Doofs	Unfinished Attic	Ceiling R-38 + Roof R-19 Grade-1, Vented
Cellings/Roots	Roof Material	2019 Title-24 Steep Slope Cool Roof
Windows & Doors	Windows	U value 0.30, SHGC 0.23
windows & Doors	Doors	Fiberglass
	Natural Ventilation	Available for Ventilation and Cooling Load Reduction
Airflow	Air Leakage	5 ACH under 50Pa
	Mechanical Ventilation	Exhaust Fan Meeting 2016 ASHRAE 62.2
	Air Conditioner	SEER 16 EER 13.5 2-speed
Space Conditioning	Furnace	Gas Furnace, 92.5% Annual Efficiency
	Ducts	In Finished Space
Space Conditioning	Heating Setpoint	CBECC RES Heating Thermostat Setpoint
Schedules	Cooling Setpoint	CBECC RES Cooling Thermostat Setpoint
Water Heating	Water Heater	Gas Tankless Water Heater
water neating	Distribution	R-5, Trunk Branch, PEX, Demand
Lighting	Lighting Power	CEC Prototype using LED Lights, 676 kWh/year
	Refrigerator	Bottom freezer, Energy Factor 15.9
	Cooking Range	Optimized Burner Gas Cooktop / Gas Self-Cleaning Oven Forced Convection
Appliances &	Dishwasher	DOE Standard Efficiency Dishwasher
Fixtures	Clothes Washer	Standard Top-loading Baseline 2018 DOE Standard
	Clothes Dryer	Vented Gas with DOE Efficiency Level 2
	Plug Loads	Advanced Power Strips with Infrared and Occupancy Sensor
	PV System	3.4 kW
Power Generation	PV Azimuth	South
	PV Tilt	Roof Pitch Tilt

Table 1 Key Characteristics of the ZNE Single Family Home in California Climate Zone 13 (Fresno)

Note that U value is in Btu/h·ft2·F and R value is in h·ft2·F/Btu

	Baseline	Energy Austerity	Energy Wasteful
Cooling thermostat setpoint (°C)	24.4 always	26	23
Heating thermostat setpoint (°C)	21.1	18	23
HVAC operation	Scheduled	On only if occupied	Always on
Appliances	Scheduled	On if use, off if not use	Always on
Lighting	Scheduled	On if occupied and if illuminance in the room < 300 lux	Always on
Hot water use / bath	Scheduled	Water use is reduced by half	Water use is doubled
Ceiling fan	Switch on if Tin > 25.5°C	Switch on if Tin > 25.5°C	Switch on if Tin > 25.5°C
Windows	Closed	Closed	Closed

Table 1 – Summary of key assumptions of three occupant behavior scenarios

BERKELEY LAB

Impact of OB on ZNE Performance

ENERGY TECHNOLOGIES AREA

Impact of AMY on ZNE Performance

ENERGY TECHNOLOGIES AREA

Impact of Future Climate

BERKELEY LAB

Findings

Simulation results of the ZNE homes in annual source energy show:

- A decrease of 23-38% for occupants with energy austerity behavior and an increase of 120-130% for occupants with energy wasteful behavior, compared with the baseline assumption of normal occupants;
- (2) A variation range of –15% to +14% for the results using 30-year AMY weather data compared with the baseline TMY3 results;
- (3) An increase of 10-13% with future weather in Fresno and Riverside and a decrease of 15% in San Francisco.
- (4) Recommend to consider various OB scenarios and AMY and future climate in evaluation and design of ZNE homes.

A ZNE home may not be ZNE in reality!

Presentations

Session 3 - Sixth presenter

Demand Response Events in Residential Buildings: Not Noticeable at All? *M. Vellei*

Demand Response (DR)-activated smart thermostats can be used to exploit the flexibility of residential electric heating and/or cooling systems. Their acceptance depends on how occupants' thermal comfort is affected by the dynamic thermal conditions induced during DR events. In residential settings, occupants can engage in activities other than sedentary ones and, thus, their thermal conditions can be dynamic due to the timevarying metabolic rates. If the dynamic thermal comfort conditions induced by changes in metabolic rates are comparable with the dynamic conditions induced during DR events, these events could remain unnoticed to the occupants, who are already accustomed to behaviourally adjust, e.g. by adapting their clothing, to such transient thermal conditions. To evaluate the impact of DR events, we therefore compare differently induced dynamic conditions by simulating both occupants' stochastic activity levels and DR events in two case study buildings, which represent typical archetypes of old and new single-family houses in France. The dynamic thermal simulations are carried out within the simulation platform DIMOSIM (District MOdeller and SIMulator), which use a R7C4 mono-zone building model. Occupants' activity levels and, thus, the time-varying metabolic rates are simulated with a stochastic activity model, while for evaluating the transient thermal conditions we adopt a novel dynamic thermal comfort model. This comprises a thermophysiological model able to predict the body core and mean skin temperatures and a dynamic thermal perception model, which uses the simulated temperatures to predict thermal sensation and thermal comfort. The used thermo-physiological model is an updated version of the classical Gagge's two-node model, while the dynamic thermal perception model is elaborated from Fiala's Dynamic Thermal Sensation (DTS) model and Fanger's Predicted Percentage of Dissatisfied (PPD) indices.

La Rochelle Université, France

Vellei,

Marika

Session 3

Day 1, 15:28

ANR (2018-2021)

DEMAND RESPONSE EVENTS IN RESIDENTIAL BUILDINGS: NOT NOTICEABLE AT ALL?

MARIKA VELLEI

POST-DOC, LA ROCHELLE UNIVERSITÉ

OB-20 Symposium 20th April 2020

CONTEXT

Demand Response (DR) is "a concept describing an incentivizing of customers by costs, ecological information or others in order to initiate a change in their consumption or feed-in pattern"

Smart thermostats are likely to become the first residential appliance to offer significant DR capacity worldwide

In France, ≈75% of all the electric thermal systems (space heating) are expected to be flexible by 2050

PROBLEM

The acceptance of DR-activated smart thermostats depends on how occupants' thermal comfort is affected by the **transient thermal conditions** induced during DR events

Understanding and modelling occupants' **dynamic thermal comfort response** and **thermostat adjustment behaviour** is, thus, crucial for the design, assessment and control of DR strategies

A NOVEL DYNAMIC THERMAL COMFORT MODEL

References:

Marika Vellei & Jérôme Le Dréau, On the prediction of dynamic thermal comfort under uniform environments, Proceedings of the 2020 Windsor Conference: Resilient Comfort, Windsor, UK.

PART OF A NOVEL MODELLING FRAMEWORK

References:

P. Riederer, V. Partenay, N. Perez, C. Nocito, R. Trigance, T. Guiot, Development of a Simulation Platform for the Evaluation of District Energy System Performances, in: BS2015 14th Conf. Int. Build. Perform. Simul. Assoc., Hyderabad (IN), 2015.

M. Vellei, J. Le Dréau, S.Y. Abdelouadoud, Predicting the demand flexibility of wet appliances at national level: The case of France, Energy Build. 214 (2020) 109900. doi:10.1016/j.enbuild.2020.109900.

TODAY'S RESEARCH QUESTION

Are the dynamic thermal comfort conditions induced by changes in **MET** of lower magnitude than the dynamic conditions produced by changes in **Ta** during **DR** events?

- If this is true, we can assume that DR events remain relatively unnoticed to the occupants, who are already accustomed to behaviourally adjust, e.g. by adapting their clothing, to such transient thermal conditions-

SOME RESULTS ON THE THERMAL COMFORT EFFECT OF MET VARIATIONS

at constant Ta=21°C!

SOME RESULTS ON THE THERMAL COMFORT EFFECT OF TEMPERATURE VARIATIONS

at constant MET=1.2met!

MERCI DE VOTRE ATTENTION !

Contacts : Marika VELLEI (<u>marika.vellei@univ-lr.fr</u>) Jérôme LE DRÉAU (<u>jledreau@univ-lr.fr</u>)

Web sites : <u>http://lasie.univ-larochelle.fr/2018-2021-CLEF-ANR</u>

<u>https://www.researchgate.net/project/ANR-CLEF-Control-strategies-for-Large-scale-aggregation-of-Energy-Flexible-buildings</u>

https://gitlab.univ-lr.fr/jledreau

The novel thermal comfort models coded in Python are available to download at :

https://gitlab.univ-lr.fr/jledreau/dynamic-thermal-comfort

Presentations

Session 3 - Seventh presenter

Occupant Behaviour and SAP: Integration of Stochastic Occupancy Modelling into Compliance Tools *B. Halls*

Halls.

Benjamin

Loughborough University, UK

Session 3

Day 1, 15:32

This study will address the topic of 'Integrate occupant modelling into building design process'. Occupant behaviour has a significant impact on the energy demand of buildings. However, representation of occupant behaviour within building simulation tools and building regulations is often simplified, leading to discrepancies between predicted and actual energy demand of buildings. The UK standard assessment procedure (SAP) is used to measure the energy performance of buildings for compliance and regulation. SAP is used to produce Energy performance certificates (EPCs), rating buildings on their

energy efficiency. However, SAP uses standard assumptions for occupant behaviour, resulting in large variances between predicted and actual energy demand of buildings. A better representation of occupant behaviour in SAP and compliance tools will aid in low energy building design.

This study aims to integrate occupant behaviour into compliance such as SAP, to investigate the potential benefit, applications and impact of including stochastic occupant behaviour within energy demand predictions for domestic buildings. The integration of occupant behaviour will provide a better representation of how and when occupants use energy in UK dwellings, by including the variation in energy demand across households within the SAP calculations. Integration of heating, lighting, appliance use, and occupancy presence distributions will be examined in SAP.

A literature review which outlines the research gap and highlights the potential for improvement has been developed along with an initial Markov model. Further work will consider alternative modelling techniques such as agent-based modelling and logistic regression to test the performance of more detailed modelling approaches in SAP for domestic buildings. Time use survey datasets such as Energy follow up survey, household electricity survey and UK time use survey will be used for the development of the models.

Occupant Behaviour and SAP: Integration of Stochastic Occupancy Modelling into Compliance Tools Ben Halls

- 1st year PhD student at Loughborough University
- Supervised by Dr Steven Firth and Prof Kevin Lomas

Introduction

- Student of LoLo CDT Energy demand in the built environment
- MRes title 'Occupant Behaviour: A Data Driven Markov Model for Occupancy Presence in Residential Buildings'

Aims & Objectives

Aim:

• Explore the integration of occupant behaviour modelling in SAP and evaluate the benefit and applications of including stochastic occupant representation in compliance tools

Objectives:

- Evaluate how sensitive SAP is to occupant behaviour
- Identify and develop stochastic modelling techniques suitable for SAP
- Evaluate the potential applications of stochastic representation of occupant behaviour in SAP

PhD Introduction-SAP

- Standard Assessment Procedure (SAP) is the UK compliance testing tool for building regulations
- Produces Energy Performance Certificates (EPCs) and assesses building energy efficiency
- SAP model has large variance between estimated and actual energy demand
- Reasons for variation can include poor workmanship, changes between design and construction and occupant behaviour

Ben Halls – Loughborough University

Occupant Behaviour and SAP: Integration of Stochastic Occupancy Modelling into Compliance Tools

Kelly et al, (2012). Building performance evaluation and certification in the UK: Is SAP fit for purpose? DOI: https://doi.org/10.1016/j.rser.2012.07.018

PhD Introduction-SAP Model

- Developed in Python and available on GitHub
- Open-sourced model, available to use at a later date
- SAP Model includes all calculations required to estimate annual energy demand of a dwelling

Occupant Behaviour and SAP: Integration of Stochastic Occupancy Modelling into Compliance Tools

Branch: master - sap2012 / sap2012 / calcs /	Create new file	Upload files	Find file	History	
BHalls sap2012 working model			Latest commi	t c70a964 y	esterday
CO2_emissions.py	sap2012 working model			У€	esterday
SAP_rating.py	sap2012 working model	yesterday			
Water_Heating_Requirement.py	sap2012 working model	yesterday			
initpy	updates	2 months ago			
E calcs.py	sap2012 working model	yesterday			
energy_requirements.py	sap2012 working model	yesterday			
☐ fuel_costs.py	sap2012 working model			ye	esterday
heat_losses_and_heat_loss_parameter.py	sap2012 working model			ye	esterday
internal_gains.py	updates			.7 d	lays ago
mean_internal_temperature.py	updates			7 d	lays ago
overall_dwelling_dimensions.py	updates	updates 2 mon		nths ago	
solar_gains.py	updates	7 days ago		lays ago	
space_heating_requirement.py	sap2012 working model	yesterday			
ventilation_rates.py	sap2012 working model	yesterday			

https://github.com/building-energy/sap2012

Occupant Behaviour and SAP: Integration of Stochastic Occupancy Modelling into Compliance Tools

PhD Introduction-Methodology

Ben Halls – Loughborough University

Conclusion

- SAP is a compliance tool used within UK building regulations
- SAP predictions can vary significantly from actual energy demand
- Greater representation of occupant behaviour will be achieved with stochastic modelling techniques
- Introducing uncertainty levels will represent the variation in energy demand as a result of occupant behaviour

Presentations

Session 4 - First presenter

Lorenz, Clara-Larissa &	Generic vs. Occupant Specific Behaviour Modelling in Building Simulation and Building Automation C. Lorenz, M. Syndicus		
Syndicus , Marc	Machine Learning and Deep Learning are promising methods to model occupant behaviour (OB). OB models are particularly meaningful for 1) building simulation, to accurately simulate building energy consumption, and 2) building automation, where		
RWTH Aachen University, Germany	control strategies can be optimised based on predicted occupant interactions with the building. The requirements to OB models may however differ between use-cases. In the case of window-opening models, reliable results have so far only been obtained for use in building simulation. For example, Markovic et al. (2018) reliably predicted current window states via a generic model. As the model generalizes accuracy types, the		
Session 4	method points to difficulty when trying to predict and adjust to a specific occupants'		
Day 2, 12:00	tuture benaviour in building automation. It is further unknown now interfering in the current state changes the trajectory of a future prediction (e.g. when reducing output power for heating and ventilation based on a predicted upcoming window-opening event, the event may be delayed or not occur anymore). Hence, prognosis-based system adjustments in building automation require counterfactual reasoning and analysis, i.e. if change had been imposed (in system control), would OB patterns have remained the same and could energy savings have been achieved? We critically discuss these and other topics arising from implementations of Machine-and Deep Learning-based OB models. Specifically, we structure the discussion such, that we address the question as to what underlies the high accuracy of OB models for building simulation. We further inquire about the requirements that need to be met so that this success can similarly be acquired in building automation. With this work, we hope to provide clarity on the topic and help realise the innate potential of Machine- and Deep Learning methods in building automation.		

Generic vs. Occupant Specific Behaviour Modeling in Simulation and Building Automation

Lorenz, Clara-Larissa Ph.D. Candidate Syndicus, Marc Ph.D.

5th International Symposium on Occupant Behaviour Institute of Sustainability and Sustainable Building | April 21st, 2020

Deep learning-based occupant generic and occupant specific behaviour modeling

Deep learning-based OB models in Building Simulation and Building Automation

- Recurrent Neural Networks with Short-Long-Term Memory architecture may find predictor in the past
 - Events such as occupant arrivals may trigger occupant interactions with the building (Yun & Steemers 2008)
 - Interactions may be more likely at certain day times

2

- Outdoor climate and outside noise levels may determine the opening duration (Hoffmann et al. 2018)
- Changes in indoor climate and overall thermal comfort adaptive triggers (Stazi et al. 2017)
- Representation of OB patterns based on big data with generic model applicability in building simulation
 - Clustering of occupant behavior types followed by the selection of data from representative types to develop a generic model (Markovic et al. 2018)
- Model generalisation may point to difficulty when trying to predict and adjust to a specific occupant' future behaviour in building automation
 - E.g. in occupant-centric control strategies, heating, ventilation or temperature set-points may need to be regulated officewise. In that case, one prediction may not be applicable for all occupants.

Yun, G. Y. & Steemers, K. (2008). Time-dependent occupant behavior models of window control in summer. Building and Environment, 43-9, 1471-1482. Hoffmann, C. et al. (2018) Fensterlüfter in Wohngebäuden (Sanierung und Neubau) – Die Sichtweise der Nutzer. 20. Status-Seminar 'Forschen für den Bau im Kontext von Energie und Umwelt', 6-7.9.2018. ETH Zürich. Switzerland. Stazi, F. et al. (2017). A literature review on driving factors and contextual events influencing occupants' behaviours in buildings. Building and Environment. 118, 40-66. Markovic et al. (2018). Window opening model using deep learning methods. Building and Environment. 145, 319-329.

Deep learning-based occupant generic and occupant specific behaviour modeling

Generalization in building simulation and building automation

Deep learning-based occupant generic and occupant specific behaviour modeling

Deep learning-based OB models in Building Simulation and Building Automation

- Recurrent Neural Networks with Short-Long-Term Memory architecture may find predictor in the past
 - Events such as occupant arrivals may trigger occupant interactions with the building (Yun & Steemers 2008)
 - Interactions may be more likely at certain day times
 - Outdoor climate and outside noise levels may determine the opening duration (Hoffmann et al. 2018)
 - Changes in indoor climate and overall thermal comfort adaptive triggers (Stazi et al. 2017)
- Representation of OB patterns based on big data with generic model applicability in building simulation
 - Clustering of occupant behavior types followed by the selection of data from representative types to develop a generic model (Markovic et al. 2018)
- Model generalisation may point to difficulty when trying to predict and adjust to a specific occupant' future behaviour in building automation
 - E.g. in occupant-centric control strategies, heating, ventilation or temperature set-points may need to be regulated officewise. In that case, one prediction may not be applicable for all occupants.
 - Requirements to OB modelling may therefore differ between use-cases

Yun, G. Y. & Steemers, K. (2008). Time-dependent occupant behavior models of window control in summer. Building and Environment, 43-9, 1471-1482. Hoffmann, C. et al. (2018) Fensterlüfter in Wohngebäuden (Sanierung und Neubau) – Die Sichtweise der Nutzer. 20. Status-Seminar 'Forschen für den Bau im Kontext von Energie und Umwelt', 6-7.9.2018. ETH Zürich. Switzerland. Stazi, F. et al. (2017). A literature review on driving factors and contextual events influencing occupants' behaviours in buildings. Building and Environment. 118, 40-66. Markovic et al. (2018). Window opening model using deep learning methods. Building and Environment. 145, 319-329.

Applications of occupant behaviour models in building simulation

Estimated vs. measured energy savings

- In order to achieve ambitious national energy saving targets, OB plays a crucial role
- Estimates for energy saving potential range from 5%–30% for commercial buildings and 10%–25% for noncommercial buildings (Zhang et al., 2018)
- Due to human peculiarities, the simulated or estimated saving potentials are seldom exploited. Aspects that prevent the full realization saving potentials are, among others,
 - Technical problems and faulty equipment
 - reactance, fears towards monitoring technology
 - General peculiarities of human behaviour, such as moods

Model Predictive Control (MPC)

5

- By applying a receding horizon control scheme, MPC conducts simulations runs to find an optimal control solution by taking conflicting goals (energy saving vs. user comfort) as well as disturbances (occupancy or solar radiation) into account (Killina & Kozek, 2016)
- Although MPC has been utilized for Building energy management Systems, the incorporation of OB is still a challenge (white box vs. black box modelling)

Killian, M., & Kozek, M. (2016). Ten questions concerning model predictive control for energy efficient buildings. Building and Environment, 105, 403-412. Zhang, Y., Bai, X., Mills, F. P., & Pezzey, J. C. (2018). Rethinking the role of occupant behavior in building energy performance: A review. Energy and Buildings, 172, 279-294.

Challenges to deep-learning-based OB modeling

Difficulty in predicting future interactions of occupants with the building

- Limitations are placed by the data used to develop the OB model
 - Recorded data/ predictor variables are incomplete, but may be measurable (distance to a control interface, outside noise levels as in Schweiker et al. 2020)
 - Predictor Variables may be difficult to measure (clothing, personal schedule, gender, weight etc.); possible violation of data protection acts
 - Predictor Variables may not be measurable (mood, fatigue, psychological factors, coincidental circumstances as in Kent et al. 2015, Fabi et al. 2012)
- Occupant behavior types User profiles

6

- Differences in number of interactions and interaction durations
- More passive or active in nature (Bourgeois et al. 2006, Moghadam et al. 2015)
- Classification of occupant behavior (Liiesberg et al. 2016)

Schweiker, M. et al. (2020). Review of multi-domain approaches to indoor environmental perception and behavior. Building and Environment. 176. Kent, M.G. et al. (2015). Temporal Variables and Personal Factors in Glare Sensation. Lighting Research and Technology. Fabi, V. et al. (2012). Occupants' window opening behaviour: A literature review of factors influencing occupant behaviour and models. Building and Environment. 58, 188-198. Bourgeois, D. et al. (2006). Adding advanced behavioural models in whole building energy simulation A study on the total energy impact of manual and automated lighting control. Energy and Buildings. 38-7, 814-823. Moghadam, S. T. (2015). Simulating Window Behaviour of Passive and Active Users. 78, 621-626. Liisberg, J. et al. (2016). Hidden Markov Models for indirect classification of occupant behaviour. Sustainable Cities and Society. 27, 83-98.

Occupant profiles in generic OB models

Time sequence	Occupant behaviour profile	Network Training	Network Prediction	
Time sequence A	Occupant profile A opens window			
Time sequence A	Occupant profile B does not opens window	Weight adaptation to best fits all given output (occupant	Window closed	
Time sequence A	Occupant profile C opens window in ten minutes	actions		

Not all predictions can be correct

7

Challenges to deep-learning-based OB modeling

Difficulty in predicting future interactions of occupants with the building

- Limitations are placed by the data used to develop the OB model
 - Recorded data/ predictor variables are incomplete, but may be measurable (distance to a control interface, outside noise levels as in Schweiker et al. 2020)
 - Predictor Variables may be difficult to measure (clothing, personal schedule, gender, weight etc.); possible violation of data protection acts
 - Predictor Variables may not be measurable (mood, fatigue, psychological factors, coincidental circumstances as in Kent et al. 2015, Fabi et al. 2012)
- Occupant behavior types User profiles
 - Differences in number of interactions and interaction durations
 - More passive or active in nature (Bourgeois et al. 2006, Moghadam et al. 2015)
 - Classification of occupant behavior (Liiesberg et al. 2016)
- Different choices of one and the same occupant for same or similar indoor climate sequences
- Trade-off between TPR and TNR

Schweiker, M. et al. (2020). Review of multi-domain approaches to indoor environmental perception and behavior. Building and Environment. 176.

Kent, M.G. et al. (2015). Temporal Variables and Personal Factors in Glare Sensation. Lighting Research and Technology.

Fabi, V. et al. (2012). Occupants' window opening behaviour: A literature review of factors influencing occupant behaviour and models. Building and Environment. 58, 188-198.

Bourgeois, D. et al. (2006). Adding advanced behavioural models in whole building energy simulation A study on the total energy impact of manual and automated lighting control. Energy and Buildings. 38-7, 814-823.

Moghadam, S. T. (2015). Simulating Window Behaviour of Passive and Active Users. 78, 621-626.

Liisberg, J. et al. (2016). Hidden Markov Models for indirect classification of occupant behaviour. Sustainable Cities and Society. 27, 83-98.

Challenges to deep-learning-based OB modeling

Difficulty in predicting future interactions of occupants with the building

• Trade-off between True Negative Rate and True Positive Ratio

TNR plotted over TPR for investigated cases of input sequence (Markovic et al. 2019)

Markovic, R. et al. (2019). Learning short-term past as predictor of window opening-related human behavior in commercial buildings. Energy & Buildings. 185, 1-11.

9

Model result will vary depending on data imbalance, or adjustment to data imbalance via oversampling or applied unequal misclassification costs

Challenges to deep-learning-based OB modeling

Difficulty in predicting future interactions of occupants with the building

- Limitations are placed by the data used to develop the OB model
 - Recorded data/ predictor variables are incomplete, but may be measurable (distance to a control interface, outside noise levels as in Schweiker et al. 2020)
 - Predictor Variables may be difficult to measure (clothing, personal schedule, gender, weight etc.); possible violation of data protection acts
 - Predictor Variables may not be measurable (mood, fatigue, psychological factors, coincidental circumstances as in Kent et al. 2015, Fabi et al. 2012)
- Occupant behavior types User profiles
 - Differences in number of interactions and interaction durations
 - More passive or active in nature (Bourgeois et al. 2006, Moghadam et al. 2015)
 - Classification of occupant behavior (Liiesberg et al. 2016)
- Different choices of one and the same occupant for same or similar indoor climate sequences
- Trade-off between TPR and TNR

Schweiker, M. et al. (2020). Review of multi-domain approaches to indoor environmental perception and behavior. Building and Environment. 176.

Kent, M.G. et al. (2015). Temporal Variables and Personal Factors in Glare Sensation. Lighting Research and Technology.

Fabi, V. et al. (2012). Occupants' window opening behaviour: A literature review of factors influencing occupant behaviour and models. Building and Environment. 58, 188-198.

Bourgeois, D. et al. (2006). Adding advanced behavioural models in whole building energy simulation A study on the total energy impact of manual and automated lighting control. Energy and Buildings. 38-7, 814-823.

Moghadam, S. T. (2015). Simulating Window Behaviour of Passive and Active Users. 78, 621-626.

Liisberg, J. et al. (2016). Hidden Markov Models for indirect classification of occupant behaviour. Sustainable Cities and Society. 27, 83-98.

Counterfactuality

How does interfering in a current state change the tragectory of a future prediction?

- Philosophical concept which breaks down to "What if"- questions, e.g.:
 - If the building control did not raise the temperature according to its prediction, would the occupant still have changed it / used the thermostat?

Counterfactuals: Goodman, N. (1947). The problem of counterfactual conditions. The Journal of Philosophy, 44, 113-128.

Counterfactuality

Challenges for building management prognosis systems in building automation

Counterfactuality

13

How does interfering in a current state change the tragectory of a future prediction?

- Philosophical concept which breaks down to "What if"- questions, e.g.: If the building control did not raise the temperature according to its prediction, would the occupant still have changed it / used the thermostat?
- Appears to be relevant when continuously learning ML models are used, with these implications
 - Since human behaviour is inherently difficult (impossible) to predict deterministically, a continuous learning and adaption process appears more appropriate and "natural"
 - Human behaviour may be altered in presence of an algorithmic building control, e.g. in order to trick the system or to avoid certain actions of the system
 - As a consequence, the situation becomes interdependent and the learning algorithm potentially adapts to the altered behaviour of the occupant
- Potential solutions could involve experimental design approaches, e.g.
 - Comparison with Control groups that exert their behaviour without algorithm-based building control
 - Interrupted time series designs, where learning algorithms pause
 - Feedforward-backward-based approaches with occupants embedded in the ML training adaptation process

Counterfactuals: Goodman, N. (1947). The problem of counterfactual conditions. The Journal of Philosophy, 44, 113-128.

Presentations

Session 4 - Second presenter

Day, Julia,

What Does a Zero Energy and Zero Carbon Tenant Look Like? *J. Day, A. Schwabe, S. Ruiz*

Schwabe, Alison &

Ruiz, Shelby,

Washington State University & McKinstry PowerEd, USA Session 4

Day 2, 12:10

Occupancy patterns are necessary to estimate energy demand and evaluate thermal comfort in households. Because of this, many European countries are developing representative domestic schedules to replace outdated criteria. This paper evaluates the state of knowledge of UK domestic occupancy patterns and develops new domestic occupancy profiles for England. The presented research (1) characterizes methods for collecting occupancy data and inferring patterns; (2) identifies and assesses the quality of categories of occupancy patterns used in building simulation; and (3) develops updated occupancy profiles. A systematic scoping review identified social and monitoring surveys as the most deployed data-collection methods. A systematic literature review also established that the occupancy categories most frequently used in UK building simulation are (a) a family with dependent children where the parents work full time; and (b) a retired elderly couple who spend most of their time indoors. The interview sample from the English Housing Survey 2014–15 was used to map household typologies. Results show that categories (a) and (b) combined amount to only 19% of England's households, which suggest models are over-reliant on these groups. Considering this result, the paper develops occupancy patterns for England derived from 2015 UK Time Use Survey diaries for each household typology previously identified.

Submitted Title: "What Does a Zero Energy and Zero Carbon Tenant Look Like?" New Title: "How does a Zero Energy and Zero Carbon Tenant Behave?"

5th International Symposium on Occupant Behavior (OB-20) – 21 April, 2020

Julia K. Day, Washington State University Alison Schwabe, McKinstry PowerEd Shelby Ruiz, Washington State University

The Catalyst Building is part of the first phase of a Spokane, WA, USA redevelopment project and city-wide sustainability initiative.

This pioneering project, expected to be completed in May 2020, will be the first net-zero energy and zero carbon building in Eastern Washington state.

ar.

The important role of the building occupant...

The owners realize that building occupants play a critical role in achieving aggressive energy goals...

Tenant Engagement

The authors have been tasked with the development of a tenant engagement and education program for the multi-tenanted Catalyst building to promote energy efficiency, health and community within the South Landing development.

In the first phase, the team compiled case studies and literature to inform the tenant engagement campaign. Highlights will be presented.

The literature review included the following topics:

- 1. Principles within WELL and other "sustainability programs" to embed in engagement program
- 2. Occupant engagement strategies in multi-tenant, green/high performance facilities
 - 2.1.Current social science behavioral theories
 - 2.2.Gamification
 - 2.3. Effective communications strategies
 - 2.4. Rewards and recognition
- 3. Technology to engage occupants apps, etc.
- 4. Occupant engagement strategies in multi-tenant, green/high performance facilities: Case studies
- 5. Green Leases

O Review of Sustainability Standards

Similar to the WELL Building Standard, we have taken a large view of the structure of many sustainability systems, and dissected each to discover relevant themes, and how they are implemented. This process helped to inform important tenant engagement strategies, goals, and focus points.

Review of Sustainability Standards

Common Themes Related to Occupant Engagement:

- Education and Training of operators and users on multiple levels / multiple times
- Feedback of behavior, usage, and overall building data (visibility)
- Purchasing materials and outfitting of tenant improvement spaces
- specifying products and cleaners without harmful chemicals, not inhibiting daylit design or thermal setpoints
- Real time displays and feedback in public spaces and personally through dashboards
- Multiple ways to benefit user health and well-being

Occupant Engagement Strategies

Environmental and energy use feedback combined with social interaction strategies create a gamified tenant engagement experience for the users of the Catalyst building. Original ID+CL Image.

shutterstock.com • 1073188928

③ Technology to Engage Occupants

Based on our review, the following concepts are recommended for inclusion in a tenant engagement application:

- 1. Feedback
- 2. Peak-Time Management
- 3. User-centered Experience
- 4. Onboarding
- 5. User Profiles
- 6. Translated Energy Use Metrics
- 7. Occupant Training / Education
- 8. Energy Forecasting
- 9. Daily/Weekly Surveys
- 10. User-Focused Building Maps

Occupant Engagement: Case studies

Lombardo Welcome Center, Millersville University, PA.

- Use of energy dashboard in person and online
- Host competitions to reduce energy usage through tenants
- Host educational energy-focused sustainability seminars

Brock Center, Chesapeake Bay

Foundation, Virginia Beach, VA. Online energy dashboard w/ kiosks Onboarding training Visitor tours of facility Sustainability education classes

Bullitt Center, Bullitt Foundation Seattle, WA.

- Living Building certified
- Central energy kiosk and information plaques to guide experience
- N-Zero water and energy
- "Irresistible" stair to encourage activity
- Onboarding training and visitor tours
- Visible building systems to show operation
- Bicycle parking and local markets

G Green Leases

"Tenant shall cooperate with Landlord's efforts to implement and shall comply with the requirements and guidelines of the tenant engagement and management program. Tenant acknowledges that the tenant engagement and management programs are living documents that will be maintained separately from this lease and will be transferred to all subleases."

- Built to compliment primary lease and encourage tenants to participate in outlined activities
- Outlines benefits, responsibilities, and expectations of all parties
- Includes: Plug and leased space energy budgets, limited hours of operation, participation in activities and advocate groups, ongoing reviews, environmental and waste standards, annual reporting, and access to data to meet all sustainability goals
- Execution plan to ensure each activity is successful will be developed in next phase of development

Next Steps

POE **Training and Education** Feedback Social Motivation ENGAGEMENT USER GROUPS Commercial office Full-time Half.time Administrative EXecutive **Litting** Visitors K-12 youth Adult visitors South Landing visitors Educational Current Student Faculty Admin Director/Dear iT. Research/teaching assistants Prospective/future students Misc on site Cale stall employees Building operators/engineers Janilorial/Custodial Landford Representative HUB Engineers KEY Recommended not recommended optional

rot applicable

The literature review process has guided the development of a robust tenant engagement program for the South Landing District to maximize net zero energy and zero carbon goals.

Stay tuned!!

QUESTIONS?

CONTACT: JULIA DAY: JULIA_DAY@WSU.EDU

Presentations

Session 4 - Third presenter

Mino-Rodriguez, Isabel

Karlsruhe Institute of Technology, Germany

Session 4

Day 2, 12:20

Effectiveness of Feedforward Information System on Occupant's Behaviour *I. Mino-Rodriguez*

Feedforward is the strategic flow of information that forecasts patterns in anticipation of changing environmental conditions, intended to activate and direct coping responses of occupants in reaction to their perceived conditions. The scope of a feedforward information system is transferring energy-related data which enable occupants to learn, understand, and engage in and with buildings to achieve their desired outcomes such as comfort and energy targets. The effectiveness of feedforward information relies on the quality of communication between system and occupant and the level of persuasion among other factors. Thus, an appropriate design of a feedforward interface as a tool to convey energy information to occupants aiming to direct or modify attitudes or behaviour is of utmost importance. This study aims on understanding the key components to be considered in the design of feedforward interfaces and the potential effect of a wellstructured feedback on modifying or redirecting occupant's behaviour. The study provides a review on four of the main basic components in feedforward processes that are (a) what is communicated, (b) when is the information revealed, (c) how is the information presented and, (d) where is the information shown. The study explores the feedback collected from 76 participants in a naturalistic office environment after interacting with a visual interface of an occupant assistance system. The analysis explores positive and negative feedback on two alternative interfaces that provide the predicted course of comfort levels on energy consumption of four cooling strategies (removing a piece of clothing, opening the window, switching on the ceiling fan, or switching on the air-conditioning). In addition, the analysis focuses on the relationship between (positive and negative) interface feedback and the effectivity of the feedforward interface in modifying occupant's behaviour. The study will draw conclusions on key elements to be considered for effective feedforward design.

Effectiveness of feedforward information system on occupant's behaviour

Isabel Mino-Rodriguez isabel.mino@kit.edu

Feedforward

The strategic flow of information that **forecast patterns** the change of environmental conditions intended to **activate and direction** coping **responses of occupants** as they react to the perceived conditions.

Theory of planned behaviour

Comfort energy balance

 Granularity Actual (controlled conditions) Content Comfort level Energy use Remove a piece of clothing Opening the window Switching on ceiling fan Switching on air-conditioning What is How is informed? presented? Information Where is When is Access displayed? revealed? Individual (n=76) Context Screen on PC

Assessment of interface

low

Assessment of interface

- 2. Did the graphics affect your decision?
- 3. Preference on info presentation...

Assessment of interface

4. Any positive, problem or missing information: Categorisation – Open questions

POSITIVE

knowledgeable affirmative Clear concise easy to understand

PROBLEMS

lack level of comfort lack of units unstructured misleading haccurate doubth misleading haccurate incomprehensible unclear incomplete reference

MISSING

unclear lack of details lack of units lack level of comfor Option 1

knowledgeable detailed clearscurate easy to understand

Ark how of corrier has how of corrier has normation lack level of comfort concept lack of units under records reference lack of details Option 2

Time

Feedback - Feedforward interface

Option 1

- Granularity
 Actual /
 long-term comfort
- Content
- Alternative strategies
- Concept (Comfort/energy consumption)
- References or source
- Trustworthy?
- Temperature over comfort info
- Units

Specific units in known concepts (time) but probable not for energy.

Option 2

• Careful using different shapes of colours Unclear/misleading

Thanks...

Questions or comments

Effectiveness of feedforward information system on occupant's behaviour

Isabel Mino-Rodriguez isabel.mino@kit.edu

Presentations

Session 4 - Fourth presenter

Chong, Adrian

National

Singapore,

Singapore

Session 4

Quantifying the Impact of Occupant Presence on Building Energy Simulation with **Real and Synthetic Data** A. Chong

Occupants have been recognized as a source of uncertainty with a significant impact on building energy simulation. To date, occupant behavior related inputs have typically been treated as an uncertain parameter to be calibrated. With advancements in occupant University of sensing, occupant information is becoming increasingly available and more easily accessible, providing an opportunity to model occupant information as an observed model input instead of a calibration parameter. This research aims to answer the question, "what is the lowest spatial resolution of occupant count needed for reducing the gap between simulated and measured energy use in buildings given an adequate calibration procedure." Thirteen case studies were defined to evaluate the impact of Day 2, 12:30 different levels of occupant presence on the calibration efficacy of building energy simulation. Different levels of spatial resolutions (building, level, and zone) were investigated. Of the thirteen, seven were derived from synthetic data using the DOE commercial large office reference building and an agent-based occupancy simulator. The remaining six case studies were derived from a real mixed-use building located at the National University of Singapore in Singapore, using WIFI data as a proxy for occupancy count. Synthetic data are useful because we know the true values of the calibration parameters that can be used for a quantitative evaluation of the effect of occupant presence. The real dataset is then used to verify the results and test the hypothesis using energy models of actual buildings, under real-life operating conditions.

Quantifying the impact of occupant presence on Building Energy Simulation

Adrian Chong Assistant Professor Department of Building | School of Design and Environment

Email: adrian.chong@nus.edu.sg
Background

- Occupant presence and behavior often modeled as uncertain (i.e., as a calibration parameter)
- Increasing data availability with advancements in occupant sensing and data acquisition

Research Question

What is the impact of occupant count information on reducing the gap between simulated and measured energy use in buildings given an adequate calibration procedure

• Bayesian approach to calibration to more robustly quantify its impact on bridging the model performance gap

- However, using occupant presence directly might result in erroneous modeling of peak and base loads
- Model base and peak loads as random variables

Case Studies - Synthetic Data

Wi-Fi as an Implicit Measure of Occupancy

 Wi-Fi data provides an implicit measure of occupancy and requires no modification to existing systems and have been shown to be suitable for use to create profiles to model hour to hour variations in internal loads

Performance Evaluation

4 evaluation metrics to evaluate different aspects of model performance

$$PICP = \frac{1}{n_{test}} \sum_{i=1}^{n_{test}} c_i$$
$$c_i = \begin{cases} 1, & t_i \in [L_i, U_i] \\ 0, & t_i \notin [L_i, U_i] \end{cases}$$

Number of measured values within prediction intervals

$$CVRMSE = \frac{\sqrt{\sum_{i=1}^{n_{test}} (y_i - \hat{y}_i) / (n_{test} - 1)}}{\bar{y}}$$

How well predictions matches measured values

$$PI(NRMSW) = \frac{1}{R} \sqrt{\frac{1}{n_{test}} \sum_{i=1}^{n_{test}} (U_i^{(\alpha)} - L_i^{(\alpha)})^2}$$

Range of prediction intervals

$$NMBE = 100 \times \frac{\sum_{i=1}^{n_{test}} (y_i - \hat{y}_i)}{(n_{test} - 1) \times \bar{y}}$$

Measure of over- or underestimation

Conclusion

- Occupant information improves calibration performance but there is no convincing improvement in calibration performance with increased spatial resolution of occupancy information when the calibration is carried out at a whole building level
- Reference schedules can provide reasonable accuracy when the peak and base loads are reflective of actual conditions

Next

- Evaluate the subsequent impact on a specific purpose (e.g. retrofit analysis).
- Do these improvements in accuracy affect decision making
- Test approach on more case study buildings

THANK YOU

Das,

Anooshmita

University of

Southern Denmark.

Denmark

Session 4

Day 2, 12:34

Presentations

Session 4 - Fifth presenter

Prediction of Indoor Clothing Insulation Levels: A Comparison of Different Machine Learning Approaches *A. Das*

Accurate prediction of clothing insulation levels is imperative for reducing building energy consumption. Clothing insulation is a critical parameter in the prediction of occupant thermal comfort. Lack of this information may result in miscalculations in the comfort conditions required, which may result in poorly sized heating, ventilation, and air conditioning (HVAC) systems. Predicting thermal comfort via clothing insulation levels of occupants in indoor settings using machine learning (ML) is a hot research topic. The advances in ML opens new opportunities for occupant thermal comfort prediction to mitigate the challenges encountered by existing models. Diverse algorithms and data preprocessing methods get applied to predict thermal comfort indices in heterogeneous contexts. But limited studies have systematically analyzed how different algorithms and data processing methods can have repercussions on the prediction accuracy. We experimentally study the perspectives of predicted comfort indices, algorithms implemented, different input features, data sources, sample-size, training and test set proportion, and predicting accuracy. For the data collection, a Microsoft Kinect camera is deployed and created a database with different clothing patterns, see Figure 1 (a). Ground-truth labels were collected with a second camera to validate the data annotations on clothing patterns for the classification task. We have applied four ML algorithms (K-Nearest Neighbor, Catboost, Gradient Boosting, XGBoost) for the Clovalue estimation. We also investigated the clothing patterns in natural and dark light settings. The relationship between clothing and gender was also meticulously analyzed and came up with interesting conclusions. The results in Figure 1 (b) highlight that the KNN has the best performance among the tested algorithms with an accuracy of 84.50% in dark light setting and 91.68% or the natural light setting.

Prediction of indoor clothing insulation levels: A comparison of different Machine Learning approaches

Anooshmita Das, University of Southern Denmark, SDU; Jakub Dziedzic, Norwegian University of Science and Technology,NTNU Mikkel Baun Kjærgaard, University of Southern Denmark, SDU;

GOAL: Prediction of indoor clothing insulation levels

Clothing insulation is a critical parameter in the prediction of occupant thermal comfort.

Typical values of clothing insulation can be found in ASHRAE Standard 55 and ASHRAE Fundamentals.

Lack of this information may result in ... ?

sdu.dk

Using Xbox Kinect in OB Research

	X [m]	Y [m]	Z [m]
<pre>SpineBase = 1;</pre>	0.1066	-0.2272	2.3211
SpineMid = 2;	0.0990	0.0792	2.3576
Neck = $3;$	0.0903	0.3762	2.3800
Head = $4;$	0.0832	0.5278	2.3588
ShoulderLeft = 5;	-0.0939	0.2785	2.3739
ElbowLeft = $6;$	-0.2182	0.0450	2.3635
WristLeft = 7;	-0.3324	-0.1487	2.3171
HandLeft = 8;	-0.3879	-0.1982	2.2953
ShoulderRight = 9;	0.2749	0.2756	2.3563
ElbowRight = 10;	0.4278	0.0628	2.3095
WristRight = 11;	0.5774	-0.0988	2.2356
<pre>HandRight = 12;</pre>	0.6207	-0.1409	2.2146
<pre>HipLeft = 13;</pre>	0.0210	-0.2271	2.2906
KneeLeft = $14;$	-0.0017	-0.5919	2.2254
AnkleLeft = 15;	-0.0485	-0.8850	2.1211
FootLeft = 16;	-0.0264	-0.7374	2.1179
HipRight = 17;	0.1888	-0.2196	2.2758
KneeRight = $18;$	0.2266	-0.5835	2.2297
AnkleRight = 19;	0.2552	-0.8882	2.1656
FootRight = 20;	0.2160	-0.7434	2.1606
SpineShoulder = 21;	0.0926	0.3032	2.3768
<pre>HandTipLeft = 22;</pre>	-0.4402	-0.2368	2.2771
ThumbLeft = $23;$	-0.3892	-0.1488	2.2181
HandTipRight = 24;	0.6720	-0.1895	2.1962
ThumbRight = 25;	0.6357	-0.0864	2.1534

Using Xbox Kinect for CLO classification

SDU 🍝

CLO Multi-class classification patterns

Microsoft Kinect camera is deployed and created a database with different clothing patterns.

Figure 1 - Classification Table for Different Clothing Patterns (Green indicates clothing behavior patterns in public and office buildings (socially accepted) and has 39 classes. However data on blue, yellow and red could not be collected due to privacy reasons).

sdu.dk

Approach

Predicting thermal comfort via clothing insulation levels of occupants in indoor settings using machine learning (ML) is a hot research topic.

The dataset is split into training (70 %), testing(20%) and validation sets(10%). We have applied four ML classifiers (**K-Nearest Neighbor, Cat boost, Gradient Boosting, XGBoost**) for the classification task.

We investigated the clothing patterns in **natural and dark light settings**.

Ground-truth labels were collected with a second camera to validate the data annotations on clothing patterns for the classification task.

SDU 🎓

Result

		Ta	ble 1: Full Data	u I		
ML Classifier / Evaluation Metrices	RGB			HSL		
	Accuracy	F1Score	Mis-classification Rate	Accuracy	F1Score	Mis-classification Rate
KNN	81.23 %	81.38 %	18.77~%	86.78 %	86.86 %	13.22 %
CatBoost	72.84 %	72.94 %	27.16~%	76.58~%	76.65 %	23.42 %
Gradient Boosting	62.73~%	62.84 %	37.27 %	64.91 %	64.98 %	35.02 %
XGBoost	56.58 %	56.70 %	43.42~%	58.17 %	58.20 %	41.83 %

:

Result

ML Classifier / RGB \mathbf{HSL} **Evaluation Metrices** Mis-classification Mis-classification Accuracy F1Score Accuracy F1Score Rate Rate KNN 80.59~%80.41~%19.59~%84.50~%84.70~%15.5~%CatBoost74.62~%74.60~%77.53~%22.49~%25.38~%77.51~%**Gradient Boosting** 66.79~%66.75~%33.25~%68.62~%31.38~%68.66~% $\mathbf{XGBoost}$ 61.44~%61.43~%38.56~%63.22~%63.21~%36.78~%

Table 2: Dark Light Settings

 Table 3: Natural Light Settings

ML Classifier / Evaluation Metrices	RGB			HSL		
	Accuracy	F1Score	Mis-classification	Accuracy	F1Score	Mis-classification
	liceuracy		\mathbf{Rate}			\mathbf{Rate}
KNN	86.05~%	86.01~%	13.95~%	91.68~%	91.69~%	8.32~%
CatBoost	83.68~%	83.68~%	16.32~%	87.79~%	87.80 %	12.21~%
Gradient Boosting	77.7~%	77.80~%	22.3~%	80.91~%	80.92~%	19.09~%
XGBoost	71.87~%	71.93~%	28.13~%	76.36~%	76.33~%	23.64~%

Presentations

Session 4 - Sixth presenter

Mann, Alasdair

UK

University of

Session 4

Day 2, 12:38

Southampton,

Analysis of Occupants Presence in Homes A. Mann, S. Gauthier

lair A.

Forecasting occupant behaviour will enable people in need of social care to intelligently manage their informal and formal care network, reducing the individual burden on carers. Creating these forecasts can be difficult since the occupant's schedule can change unexpectedly. Furthermore, the same methods might not be repeatable since occupants each have their own lifestyle. This means that models are prone to overfitting. This study explores how different amounts of features, lag times, and training instances affect the performance of traditional supervised machine learning regressors in forecasting occupants' presence (frequency and length of time within one hour). A key finding is that

there is a threshold of around 72 hours for the number of useful lag times and training instances. After this threshold, depending on the occupant, the model's performance would plateau or decrease. Minor exceptions can be observed in some occupants with a weekly schedule where a model will suddenly improve if fed a week of lag times. This means that feature selection should be done carefully for predicting occupant behaviour.

Analysis of Occupancy Data

Alasdair Mann

21 April 2020

Predicting Occupancy in Social Care

The Dataset and Predictors

Effect of Increasing Lag on Model Performance

Further Increasing the Amount of Lag

Results with Other Occupants

Results with Other Occupants

Results with Other Occupants

Summary

- Data was collected for a social care context
- Specific lag times improve performance
- Adding more data is only beneficial up to a point
- Analysis limited by R² metric

Alasdair Mann

am6u17@soton.ac.uk

21 April 2020

Tareq

Carleton

University. Canada

Session 4

Day 2, 12:42

Presentations

Session 4 - Seventh presenter

The Impact of Occupants' Distribution on Energy and Comfort in a Case study Abuimara, Office Building T. Abuimara

Observing the current occupant modelling approaches during simulation-aided building design reveals that energy modellers and designers assume that occupants are evenly distributed within areas of a given type (e.g. office space). Designers typically assume uniform occupant density (i.e. number of people/m2) to perform design tasks which is usually specified by building codes and standards. However, this assumption does not necessarily reflect reality, as occupants are often distributed heterogeneously in buildings due to several factors such as inter-tenant diversity in office buildings. To this

end, this study examines the impact of occupants' distribution on energy and comfort performance of an office building model located in Toronto, Canada. A 15-zone model was simulated using EnergyPlus simulation tool under 33 different randomly generated occupants' distribution scenarios. The energy performance was assessed based on the energy use intensity (EUI) while a metric called discomfort occupant hours (DOH) was developed to assess comfort levels. DOH is calculated by summing the multiplication of the discomfort hours (i.e. indoor temperature not within acceptable range) by the number of people present at that hour in the zone. In addition, the traditional ASHRAE Standard 90.1 unmet hours, where the building is considered to have an unmet hour when a single zone of the building has an unmet hour, were reported. The results of the study indicate that occupant distribution scenarios can have significant impact on occupants' comfort as overpopulated zones had a significantly higher DOH compared to the DOH of standard distribution used in typical design processes. On the other hand, the change in occupants' distribution had moderate impact on energy performance as the highest difference in EUI was observed to be 9 kWh/m2 given that model HVAC were hard sized for all simulations.

IEA EBC Annex 79

5th International Symposium on Occupant Behaviour

The Impact of Occupants' Distribution on Energy and Comfort in a Case study Office Building

Tareq Abuimara ; William O'Brien; Burak Gunay

Carleton University Ottawa, Canada

Objectives

• Evaluating the impact of intertenant diversity on energy and comfort.

Methods

- Create base model
- Generate occupants'

distributions scenarios

- Located in Toronto, Canada
- Office building typical floor
- 15 thermal zones

Occupants' distributions scenarios

Performance metrics

Energy - EUI

Comfort

- Unmet hours as per ASHRAE Standard 90.1
- ODH
Results

Energy performance

Thermal Comfort performance

Occupant discomfort hours (ODH)

Correlation between the unmet hours as per ASHRAE Standard 90.1 and the total ODH

Conclusions and recommendations

Conclusions

- Modest impact on energy
- Substantial impact on thermal comfort

Recommendations

- Consider spatial variation of occupancy in design
- Use different metrics to evaluate comfort

Energy in Buildings and Communities Programme

Thank You

Questions?

tareq.abuimara@Carleton.ca

Carleton

University, Canada

Session 5

Day 2, 13:25

Presentations

Session 5 - First presenter

O'Brien,
LiamDoes Teleworking Save Energy? A Critical Review of Quantitative Studies and
their Research Methods

L. O'Brien

Teleworking has been widely perceived as a more sustainable mode of working for office workers compared to the status quo because of its reduced dependency on transportation and centralized office space. However, the situation is far more complex than would appear on the surface, when the scope is expanded to include home office energy use, the Internet, long-term consumer choices, and other so-called rebound effects are considered. Though telecommuting has been researched for the past four decades, few studies have quantified home, office, transportation, and communications energy or GHG emissions implications of telecommuting simultaneously. Moreover, the lack of data about workers' behaviors and purchasing decisions has led to researchers making simplistic assumptions. To make progress in answering the question of whether telecommuting results in less energy use than conventional centralized office working, this paper reviews research methods and results of primarily quantitative studies of any and all four domains that consider operating energy and/or greenhouse gas emissions. The results ultimately show that this problem is much more complex than most of the literature would suggest and indicate that current datasets and methods are inadequate for fully answering the research question.

Does Teleworking Save Energy? A Critical Review of Quantitative Studies and their Research Methods

Liam O'Brien, PhD, P.Eng.

Associate Professor

Carleton University

Home

Transportation

Office

Information and Communication Technology

Does teleworking save energy?

24 studies have looked at one or more domains; none have captured all.

Temporal and spatial scopes

Transportation

BPRC Building Performance Research Centre Carleton University

- Probably the biggest energy-saving opportunity
- BUT, 3 of 21 studies reported an increase
- Major rebound effects:
 - Poorer trip-chaining
 - Family now has car to use
 - Bigger/more cars
 - Suburban sprawl
 - Less traffic \rightarrow more driving by others
- Unclear what comes first:
 - Teleworkers move farther
 - Suburbanites start teleworking more

Office

- Minor positive benefit
- Highly dependent on adaptability
 - Demand-controlled ventilation (DCV)
 - Occupancy-based lighting control
 - Sleep mode on electronics
 - Hotelling/hot-desking

Home

- Negative effect
 - Estimates range from 0.1 to 20 kWh/teleworked day
- Highly dependent on operations
 - Zoned heating/cooling/lighting
 - Optimally-scheduled setpoints with vacancy setback
 - Laundry, baking, etc. shift peak loads
- Bigger home to accommodate office?
 - 4% larger (Nilles, 1990)

Information and Communications Technology (ICT)

- Negative effect, but enabler of teleworking
- Internet uses 5-10% of total electricity use – expected to double in a decade
- Major uncertainty about energyintensity and data *actually* used for work
- 1 kWh = 100 GB (4 days of Netflix)
- 1 kWh = 15 km electric vehicle

Research methods and their limitations

Surveys/interviews/

<u>diaries</u>

- Measure the unmeasurable
- Understand causal directionality
- Measure decisionmaking logic
- Family/household issues
- Self-reporting error and bias
- Focused on individual scale

Modelling/simulation

- Many scenarios
- Multi-scale: time and space
- Difficult to capture complex decision-making processes
- Only as good as available theory/data
- May lack credibility

Secondary data

<u>analysis</u>

- Based on reality
- Large sample
- Original data may be broad/aggregate
- Definition of telework is elusive
- Difficult to separate correlation from causation

Field study

- Detailed/direct measurement
- Costly
- Labour-intensive

The verdict

Closing thoughts

- Clearly telework is growing in importance especially now.
- New expertise needed in field field is dominated by transportation researchers without building expertise
- Many new data sources (e.g., Google location data, building automation system) that has not been touched in the field

Thank You

Questions?

Liam.OBrien@carleton.ca

Presentations

Session 5 - Second presenter

Wang,

Alan &

Heydarian, Arsaian

University of Virginia, USA

Session 5

Day 2, 13:35

A Systematic Approach to Preserve Privacy in Smart Buildings A. Wang, A. Heydarian

Longitudinal studies for naturalistic occupant behavior implicitly carry privacy risks. Longer duration studies divulge more information about trends that might not have been easily visible in shorter studies. Furthermore, discovering the long term patterns in occupant behavior can lead to improved building energy efficiency, occupant well-being, and work productivity. However, increasing the modalities of data collected exposes users to contextual privacy concerns. In this work, we propose a framework to track and adopt longitudinally to users' privacy settings and increase their perceived trust in the system. In our system, at first, we define data access between a device and a user. Making each user a subscriber to the device groups allows for effective ontological management of scenarios common in a research setting. For example, in the case of environmental sensors (e.g. temperature and humidity sensor) in an open office setting, one device normally covers more than one occupant. We then define the data access relation between two users based on their hierarchical relationship (e.g., employee and supervisor). Users with any vertical hierarchical relationship above (e.g. supervisor) that of another user (employee) are defined by default to never have access to the lower user's data unless the user opts-in. Lastly, since actuating one device to one user relationships are trivial, we describe the behavior for actuating the privacy-related settings between multiple users. By default, the system utilizes the principle of least privilege. For example, when controlling the frame rate of a camera resource that might cover two users, the user with the smallest frame rate is what the camera would collect. For our future work, we look towards adopting real-time edge computing paradigms that reduce the risk of user exposure, allowing the system to pre-process the data and remove sensitive information before pushing it onto the database.

MUVA ENGINEERING

A Systematic Approach to Preserve Privacy in Smart Buildings

Alan Wang¹

Arsalan Heydarian²

Ph.D. Student, University of Virginia, <u>alanwang@virginia.edu</u> 2. Assistant Professor, University of Virginia, <u>ah6rx@virginia.edu</u>

Motivation and Background

- Occupant behavior is important (Wagner et al., 2018)
- Longitudinal tracking helps uncover adaptive interactions between occupant and surrounding environment (Lagevin, 2019)
- New methods required to **protect human research** participants in the age of **big data** (Fiske and Hauser, 2014)

3

Cyber-Physical Framework

Environmental Sensing

Occupancy (DTMS)

Power Blade (PB)

Air Quality (AW)

Temperature and Humidity (TH)

Contact (DS)

Light Level (LL)

ehavioral

Responsive and Automated

ntelligence

Labor

Human Sensing

Wearable -Physiological Monitoring

Emotion Recognition

Indoor Localization

5

ehavioral Responsive and Automated

ntelligence

Labor

User Interface System

information relevant to [STUDY TOPIC]. Then, you will be asked to answer some questions about it. Your responses will be kept completely confidential.

The study should take you around [SURVEY DURATION IN MINUTES] to complete. You will receive [INCENTIVE] for your participation. Your participation in this research is voluntary. You have the right to withdraw at any point during the study. The Principal Investigator of this study can be contacted at [NAME/ EMAIL ADDRESS].

By clicking the button below, you acknowledge:

- · Your participation in the study is voluntary.
- · You are 18 years of age.
- You are aware that you may choose to terminate your participation at any time for any reason.

I consent, begin the study		
I do not consent, I do not wish to participate		
	<u>8</u> >	
		-

Occupant Privacy

Edge computing to increase occupant-privacy

How does people's privacy preferences change over time and in response to personalized feedback (e.g., emotions)?

IMAGE-BASED			
cost carried			1.1
East Aways			
Same Office During of a			
Sumple For Swidho		2.01	-
	SAVE		
RADIO-BASED			

Users are able to set-up their own privacy settings (e.g. provide only specific data from smartwatch)

Research Question / Objective

- What are things we can do to protect the privacy of the user in a longitudinal system tracking occupant behavior?
- How might we put the **burden on the system** to preserve the privacy for the user?

Methodology

Passive privacy control

ehavioral Responsive and Automated

ntelligence

n) Labora

Privacy Preference Downscoping

- Each device can **only identify** the users **associated** to the device
- If all users within the view are
 - <u>Identified</u> default to the combined most private setting in the group
 - <u>Unidentified</u> default to **most private settings** (all off)

	` \
/	\mathbf{N}
/ 8	8 `,
Ô	
	. /
	` \ / _ \
	1
	1
ν <u>β</u>	8 , ′
\mathbf{X}	/
``	/

10

Privacy Filters

- Hierarchical filtering
 - Default not have access to people's information lower on that hierarchy
- **Research-oriented** data resolution filtering
 - Energy consumption pattern studies might not need very detailed user information
 - Impact of emotions on productivity then you need much detailed user data

11

Detailed Privacy Layers

- Find ways to encode user identifiers
- Assess the **difference** in data collected with and without these **passive privacy control**
- Impact of different modalities of data
 - Combination of information to reduce total information needed?
 - Most efficient times to collect data?
- Preferences of people for privacy
 - Different groups (socio-economic, culture, nationality) might have different privacy preferences

Future Works

Reducing information collected

while maintaining system efficiency

- Identifying the user trust based on:
 - The amount of data collected
 - Where their data is being used
 - Based on the **rewards** they receive e.g. monetary, goal-oriented

14

Thank you!

alanwang@virginia.edu heydarian@virginia.edu

WVA ENGINEERING

Presentations

Session 5 - Third presenter

Aragon, Victoria

UK

University of

Session 5

Day 2, 13:45

Southampton,

Understanding New Technology and their Impacts on Occupants *V. Aragon, S. Gauthier, P. James, A. Bahaj*

In a domestic environment, the success of a certain technology will depend both on the effectiveness of its system and interface, and how users perceive and interact with it. This work examines the impact of Smart Thermostatic Valves (STVs) in the energy demand and user behaviour in a care home in the United Kingdom, as well as the technology's suitability to the type of residents. The analysis is based in energy and indoor monitoring (temperature and relative humidity) on site for more than two years. As part of Thermoss, an EU funded project on retrofitting heating systems across the EU, the heating system of the entire building was upgraded from manual valves to STVs in all radiators. A preliminary analysis on technology readiness and user acceptance predicts that there is a possible mismatch between the valves interface and elderly residents. Results show that : (i) residents adaptation was very difficult, requiring help from staff and intervention from researches to add visual aids, (ii) there was a change in

residents. Results show that : (I) residents adaptation was very difficult, requiring help from staff and intervention from researches to add visual aids, (ii) there was a change in the correlation between indoor and outdoor temperatures, (iii) several flats showed a reduction in the daily temperature range in Lounges. These results highlight the importance of understanding users comfort needs and how they interact with technology when selecting technology. Future work will focus on the usage of valves and control patterns before and after the upgrade. **2020 Occupant Behaviour Symposium**

Understanding New Technology and their Impacts on Occupants

Victoria Aragon, Stephanie Gauthier, Patrick A.B. James, A.B.Bahaj

E-mail: V.Aragon@soton.ac.uk

Overview

Technology readiness & acceptance

Rid

Easy of use

- Relies on visual
- No mechanical min/max feedback
- Interface is different to previous valves

Usefulness

 Allows selecting ambient temperature

- Elderly
- Visual / cognitive impairment (rely on carers for managing heating)

Innovativeness & Optimism

- Used to old system
- Did not choose to have new TRVs

Insecurity & Discomfort

- Do not trust new technology
- Rely on surface temperature to "test" the radiators

Technology readiness & acceptance

Impact: Energy demand

Monthly gas usage vs Heating Degree Days

Lounge Temperatures Setpoint setpoint — T Outdoor var room_temp Max = 30 C30 20 Temperature C 10 Min = 10 C 0 2019-11-01 2019-11-02 2019-11-02 2019-11-02 2019-11-02 2019-11-02 2019-11-02 2019-11-02 2019-11-02 2019-11-02

Preliminary Conclusions & Future Work Southampton

Smart Thermostatic Valves

- Very difficult adaptation to technology
- Most residents found the STVs difficult to understand
- Acceptance based on understanding, not technology performance ?

Occupant behavior

- Impact observed on Indoor Temperatures in Lounges
- More options == more comfort?
- Does behavior remain or change with different technology?

Future Work

- Level of Interaction with TRVs & setpoints in all building
- Before & After labels

Thank you! Any questions?

V.Aragon@soton.ac.uk

www.energy.soton.ac.uk

Presentations

Session 5 - Fourth presenter

Gosselin, Louis &	Towards Low-Energy Housing in the Canadian North from an Occupant-Centric Perspective L. Gosselin, J. Rouleau				
Rouleau, Jean	Nunavik is the northern region of the Province of Québec (Canada). It has a population of around 14,000, most of which being Inuit (90%). They live in 14 villages along the coast. Due to their remoteness, these communities are off-grid. A diesel power plant in each village provides electricity, while space heating is obtained from fuel oil. Due to the				
Université	cold climate, the typical heating need exceeds 300 kWh/m2. The environmental footprint				
Laval,	of fossil fuels and their cost are among serious issues in that region. Additionally, the				
Canada	lack of dwellings and their unfitness to meet local needs have been recurrent problems				
o : -	related to housing in the North. Historically, Inuit were nomadic; they gradually				
Session 5	transitioned to sedentary only in the 1950s. At that time, the government provided				
Day 0 40.55	matchbox houses, which proved to be unfit for their needs. I oday, stakeholders are				
Day 2, 13:55	aiming in the direction of designing, building and operating highly energy-efficient				
	dwellings that are also culturally and socially adapted. With this target in mind, an				
	occupant-centric perspective appears to be crucial. The analysis of building operational				
	better understand how accupants use anergy in Nunavik's houses, what can be done to				
	reduce that consumption and increase comfort, and what solutions are adapted to the				
	people. During the talk, we will present current research projects on that tonic and share				
	some preliminary results.				

408

Towards low-energy housing in the Canadian North from an Occupantcentric perspective

OB-20 Session 5 – Other Building Occupant-Related Research

Jean Rouleau and Louis Gosselin Université Laval, Canada

- Nunavik has a population of 14,000, most of which are Inuit (90%).
- Typical heating demand of 300 kWh/m².
- Communities are off-grid.
 - Space heating: Fuel oil
 - Electricity: Diesel power plant

	Heating degree days		
Quaqtaq (58° N)	10,379		
Oslo (59° N)	4,850		
Tromsø (69° N)	6,292		

Research projects

- Monitoring of occupant behaviour in residential buildings (12 dwellings).
 - > Indoor temperature and relative humidity;
 - Use of heating and electricity;
 - DHW consumption;
 - > Control of windows and mechanical ventilation;
- Interviews/workshops with Inuit.
- Comparison of occupant behaviour observed in Nunavik and occupant behaviour observed in the South of Canada.
- Energy simulation of monitored buildings.

© Société d'habitation du Québec

Preliminary results (2 dwellings)

Réunion. France

Session 5

Day 2, 13:59

Presentations

Session 5 - Fifth presenter

User Behaviour in Low-Environmental Impact Buildings in Tropical Climates Payet, M. Payet Maareva

Efforts are currently made to reduce the impact of the building sector. However, studies have shown that the impact of user behaviour on energy consumption is poorly estimated by designers. As a result, there are discrepancies between the energy University of La performance predicted by simulation software and the actual one. Tropical climate characteristics allow the development of bioclimatic buildings, which use passive solutions, and where air handling uses are different from current temperate climates. These include the use of natural ventilation, sometimes combined with the use of fans, and the addition of air conditioning during the hottest periods, currently the main source of energy in the building sector. Except some recent post occupancy evaluation, which showed different behavioural patterns between air-conditioned and naturally ventilated environments, there is little feedback on user behaviour in naturally ventilated buildings in tropical climates. The aim of our research work is to analyse when users will switch from natural ventilation, by acting on windows, to the use of fans and air conditioning, and thus better predict consumptions. Data collection is in progress on 2 tertiary buildings in Reunion Island. We measure simultaneously the environmental parameters (indoor and outdoor weather), and the action parameters through the real time consumption monitored by end-use (air-cooling, fans) and by the level of opening of the windows. A statistical regression is applied to the first data, to detect which factors influence actions. The next step will be to use probabilistic models to model behaviours, preliminary step to the integration in simulation software. The originality of this study is its tropical character which determines particular uses of natural ventilation and air treatment. This issue could concern more geographic areas in the coming years that will be confronted with summer problems due to global warming.

User behavior in low-environmental impact buildings in tropical climates

5TH INTERNATIONAL SYMPOSIUM ON OCCUPANT BEHAVIOR

MAAREVA PAYET¹², MATHIEU DAVID¹, PHILIPPE LAURET^{1,} FRANÇOIS GARDE¹

PHYSIQUE ET INGÉNIERIE MATHÉMATIQUE Pour l'Énergie, l'Environnement et le bâtiment

SPECIAL CONTEXT

BUILDINGS EVOLUTION

QUESTIONS RAISED AND METHODOLOGY

Scientific How to define new user profiles for mixed-mode buildings with the particular use of NV with/without ceiling fans and/or *questions* air-conditioning?

When will the users switch between the different operating modes ?

Input	Measured variables			
	Consumption of ceilling fans			
	Consumption of air-conditioning			
Building inputs	Total consumption			
	Indoor air temperature			
	Indoor Relative Humidity			
	State of Louvers			
User inputs	State of celling Fans			
	Occupation			
	Outdoor air temperature			
Environmental	Outdoor Relative Humidity			
inputs	Wind speed			
	Horizontal solar radiation			

Ilet du Centre : Office building

Enerpos : Academic building

To establish user profiles and patterns for bioclimatic building in tropical climate

To identify the key factors impacting the behavior

To create a database of more tropical buildings to better predict consumptions at the design stage

To be an active user in a passive building

Thank you for your attention

maareva.payet@univ-reunion.fr

5TH INTERNATIONAL SYMPOSIUM ON OCCUPANT BEHAVIOR

Presentations

Session 5 - Sixth presenter

Gao, Nan

N-Gage: Sensing in-class Multidimensional Learning Engagement in the Wild *N. Gao*

Royal app Melbourne inst Institute of inte Technology As University, eng Australia mu acti

- Session 5
- Day 2, 14:03

The study of student engagement has attracted growing interests to address problems such as low academic performance, disaffection and high dropout rates. Existing approaches to measuring student engagement typically rely on survey-based instruments. While effective, those approaches are time-consuming and labourintensive. Meanwhile, both the response rate and quality of the survey are usually poor. As an alternative, in this paper, we investigate whether we can infer and predict engagement at multiple dimensions just using sensors. We hypothesize that student multidimensional engagement level can be translated into physiological responses and activity changes during the class, and also be affected by the environmental changes. Therefore, we aim to explore the following questions: Can we measure the multiple dimensions of student's learning engagement including emotional, behavioural and cognitive engagement in high school classrooms with sensing data in the wild? Can we derive the activity, physiological, and environmental factors contributing to the different dimensions of student learning engagement? If yes, which sensors are the most useful in differentiating each dimension of the learning engagement? Then, we conduct an insitu study in a high school from 23 students and 6 teachers in 144 classes over 11 courses for 4 weeks. We present the n-Gage, a student engagement sensing system using a combination of sensors from wearables and environments to automatically detect student in-class multidimensional learning engagement. Extensive experiment results show that n-Gage can accurately predict student multidimensional engagement in real-world scenarios with an average mean absolute error (MAE) of 0.794 and root mean square error (RMSE) of 0.977 using all the sensors. We also show a set of interesting findings of how different factors (e.g., combinations of sensors, school subjects, CO2 level) affect each dimension of the student learning engagement in high school.

N-Gage: Sensing in-class Multidimensional Learning Engagement in the Wild

Nan Gao (PhD Candidate) Supervisor: A/Prof Flora Salim, Dr Wei Shao, Dr. Mohammad Saiedur Rahaman

The research is funded by ARC linkage program (No. LP150100246) 'Swarming: micro-flight data capture and analysis in architectural design' by Prof J Burry, Prof S Watkins, A/Prof F Salim, RMIT University. Industry Partner of this research is Aurecon.

Student engagement

As many as 40-60% of high school students are disengaged

- Low academic performance
- Low disaffection
- High dropout rates

Research Questions

- Can we measure the multiple dimensions of student's learning engagement including emotional, behavioural and cognitive engagement in high schools with sensing data in the wild?
- □ Can we derive the activity, physiological, and environmental factors contributing to the different dimensions of student learning engagement? If yes, which sensors are the most useful in differentiating each dimension of the learning engagement?

Data Collection

- **D** Time: 4 week in 2019
- Location: a private high school in Melbourne
- Participants: 23 Year 10 students, 6 teachers, 4 classrooms
- Collected data:
 - ✓ Wearables: ACC, PPG, EDA, Skin Temperature sensors
 - ✓ Weather station: temperature, humidity, noise, CO2 sensors
 - ✓ Daily survey: multi-dimensional engagement, thermal comfort, etc.

(a) Empatica E4wristbands

(b) Netamo indoor weather station

(c) Classroom for Year 10 students

Table 5. Description of the features computed for different sensors

Sensors	Feature Name	Description of features		
-	eda/tonic/phasic_avg	Average value for the raw, tonic, phasic data		
EDA	eda/tonic/phasic_std	Standard deviation for the raw, tonic, phasic data		
	eda/tonic/phasic_n_p	Number of peaks for the raw, tonic, phasic data		
	eda/tonic/phasic_a_p	Mean of peak amplitude for the raw, tonic, phasic data		
	eda/tonic/phasic_auc	Area under the curve of the raw, tonic, phasic data		
	num_arouse	Number of arousing moments during the class		
	ratio_arouse	Ratio of arousing and unarousing moments		
	level _k	Ratio of the number of level _k and the length of S_k		
	eda/tonic/phasic_pcct	Pearson correlation coefficient with teacher		
	eda/tonic/phasic_pccs*	Pearson correlation coefficient with average value of students		
	eda/tonic/phasic_dtwt	Dynamic time wraping distance with teacher		
	eda/tonic/phasic_dtws*	Dynamic time wraping distance with average value of students		
	hrv_bpm	Average beats per minutes		
	hrv_meani	Overall mean of RR intervals (Meani)		
	hrv_sdnn	Standard deviation of intervals (SDNN)		
	hrv_lf_power	Absolute power of the low-frequency band (0.04-0.15 Hz)		
PPG	hrv_hf_power	Absolute power of the high-frequency band (0.15-0.4 Hz)		
	hrv_ratio_lf_hf	Ratio of LF-to-HF power		
	hrv_rmssd	Root mean square of successive RR interval differences		
	hrv_sdsd	Standard deviation of successive RR interval differences		
	hrv_pnn50	Percentage of successive interval pairs that differ >50 ms		
	hrv_pnn20	Percentage of successive interval pairs that differ >20 ms		
	acc_avg	Average physical activity intensity during the class		
	acc_std	Standard deviation of physical activity intensity in class		
ACC	acc_dtw_t	Dynamic time wraping distance with teacher		
nee	acc_dtw_s*	Dynamic time wraping distance with average value of students		
	acc_pcc_t	Pearson correlation coefficient with teacher		
	acc_pcc_s*	Pearson correlation coefficient with average value of students		
ST	sktemp_avg/max/min	Average/maximum/minimum value of skin temperature		
CO2	mean/max/min_co2	Average/maximum/minimum value of CO2		
TEMP	mean/max/min_temp	Average/maximum/minimum value of indoor temperature		
HUMID	mean/max/min_co2	Average/maximum/minimum value of humidity		
SOUND	mean/max/min temp	Average/maximum/minimum value of sound		

Extracted features

Engagement distribution

Fig. 5. Box plot of the general engagement scores for 23 student participants during 4-week data collection.

General Prediction performance

Table 6. Prediction performance for emotional, cognitive, behavioural, and overall engagement with all sensing data

Dimension	MAE			RMSE			
	Proposed	Baseline (avg.)	Baseline (rand.)	Proposed	Baseline (avg.)	Baseline (rand.)	
Emotional	0.675	0.746	0.998	0.856	0.928	1.285	
Cognitive	0.928	0.979	1.173	1.122	1.180	1.557	
Behavioural	0.779	0.862	1.236	0.953	1.027	1.537	
Overall	0.603	0.644	0.907	0.757	0.798	1.134	

Most influential features

Table 7. The most influential features on multidimensional engagement.

Engagement	Association	Most influential features
E	(+)	acc_pcc_s, tonic_a_p, eda_pcc_s
Emotional Engagement	(-)	acc_avg*, sktemp_avg*, eda_dtw_t
Committing Engeneration	(+)	intemp_min*, level_1, hrv_ratio_lf_hf
Cognitive Engagement	(-)	<pre>acc_pcc_s*, co2_max, acc_std</pre>
Pak aniounal Engagement	(+)	acc_std, acc_pcc_s, eda_pcc_avg
Benaviourai Engagemeni	(-)	<pre>sktemp_avg*, acc_pcc_t*, acc_dtw_t</pre>
Querall Engagement	(+)	level_1, tonic_a_p, intemp_max
Over un Engagement	(-)	<pre>acc_dtw_t*, sktemp_avg, acc_avg</pre>

* indicates p-value < 0.01.

Impact of different sensor combinations

Table 8. Summary of the Prediction performance of multidimensional engagement using different data sources. X_1 indicates all the wearable data including EDA, HRV, ACC and ST data, and X_2 means the indoor environmental data including CO₂ and temperature data.

Data source	MAE/RMSE					
Duru source	Emotional	Cognitive	Behavioural	Overall		
EDA	0.699/0.879	0.962/1.157	0.854/1.028	0.639//0.803		
HRV	0.715/0.900	0.952/1.146	0.836/1.006	0.658/0.808		
EDA+HRV	0.701/0.877	0.963/1.159	0.845/0.993	0.623/0.786		
EDA+ACC	0.677/0.856	0.932/1.137	0.813/0.982	0.625/0.784		
HRV+ACC	0.689/0.871	0.930/1.131	0.810/0.980	0.642/0.800		
EDA+HRV+ACC	0.679/0.859	0.929/1.132	0.804/0.964	0.621/0.781		
X_1^*	0.674/0.858	0.930/1.124	0.813/0.983	0.621/0.778		
$X_1 + X_2^*$ (all)	0.675/0.856	0.928/1.122	0.779/0.953	0.603/0.757		

* indicates the proposed combination of features for engagement prediction.

Impact of class subjects

Fig. 7. Engagement scores on different subjects

Result

Any Questions?

Presentations

Session 6 - First presenter

Lassen, Niels

Introduction to PhD Thesis: Subjective Data-Streams for Indoor Climate Assessment in Buildings *N. Lassen*

Norwegian University of Science and Technology, Norway

Session 6

Day 2, 14:50

A general presentation of background, research questions, experimental activities and preliminary findings in an ongoing PhD thesis. The aim of the thesis has been to understand the potential, functioning and validity of methods for continuous subjective occupant feedback for indoor climate in buildings and answer the question «Can continuous, non-intrusive collection of subjective data from occupants outperform traditional deterministic comfort models and POE's and can they bring added value to building benchmarking, tuning, control and design?». The research activities range from literature studies, development of a framework for classifying subjective information sources, and field experiments of occupants in 6 separate office spaces in Norway and Berkeley, USA. Field tests have focused on the validation of information gathered through a public smiley face poling station placed in the office environment, as well as occupants' use of personal heaters. Collected field data has been compared to results from occupant surveys and measurements of the physical climate during normal operation and during temperature interventions. All field tests have been performed on un-informed subjects performing regular office activities. Preliminary results indicate that real-time non-intrusive occupant feedback can outperform traditional predicting models and was able to capture occupant dissatisfaction in cases where physical measurements and comfort models were proven incapable.

Introduction to PhD thesis: "Subjective data-streams for indoor climate assessment in buildings"

Niels Lassen

Senior advisor, PhD student IEQ & Smart Buildings Skanska Norway / NTNU

2020-04-21

Background

- Discipline specific performance criteria lead to sub-optimal solutions in holisticly designed ZEB's
- There exists a performance gap for occupant satisfaction and energy performance
- Can we use subjective occupant feedback to learn and support more holistic design choices?

Aim and research question

- Aim: Understand the potential, functioning and validity of methods for continuous subjective occupant feedback for indoor climate in buildings
- RQ: Can continuous, non-intrusive collection of subjective data from occupants outperform traditional deterministic comfort models and POE's and can they bring added value to building benchmarking, tuning, control and design?

Psychological feedback loop from De Dear, Brager, Cooper (1998)

SKANSKA

System des	ign			
Physical environment	Sensations / Complaints / Control actions	Total user satisfaction		
		Harry Ward Survey Surve		
ODES management	¢FLIR	SKANSKA Sime levens Help us pinpoint the problem Too hos or sold Eliad levens Poor sighting Sound issues		
Physical measurements of Temp and Co2 from building BS and/or external sensors	QR codes on each workdesk + personal heaters.	Public satisfaction polling station (SPS) near exits.		

SKANSKA

Theoretical study

- Review of studies on subjective occupant feedback
- Thermal comfort theory Gap between expected and actual satisfaction
- Psychology and Neuroscience of subjective occupant evaluations – Senses are combined into perceptions
- Market psychology Occupant as consumer of indoor climate

Experiments

- 6 field studies in office buildings (Norway and California)
- Collected data from system & performed occupant surveys
- Temperature interventions
- Un-informed subjects

SKANSKA

Collected data

SKANS	SKA .
How satisfied are you w at your workst	ith the indoor climate pace today?
SKANS	KA
Help us pinpoint	the problem
Toolog	Victority as one
forrad	Stand store
0.46	k diting kawa
	The second se

		Building 1	Building 2	Building 3	Building 4	Building 5	Building 6	Total
	Population	14	26	12	25	95	25	205
	Length of study (days)	90	88	42	37	80	60	587
PS	Number of entries	612	97	124	90	1252	534	2882
N	Number of entries on survey days	33	16	14	34	233	73	403
nts	Length of study (days)	-	-	-	25	80	60	165
PS plai	Number of entries	-	-	-	41	519	137	697
Com	Number of entries on survey days	-	-	-	20	112	11	143
×	Length of study (days)	90	15	14	-	-	-	309
8R dbao	Number of entries	8	10	5	-	-	-	29
Feed	Number of entries on survey days	1	1	0	-	-	-	2
	Days in use	30	40	22	14	-	-	106
Heater	Number of responses	20	978	54	445	-	-	1497
	Number of responses on survey days	4	270	0	131	-	-	405
ey	Days	2	3	1	5	5	5	21
Surv	Number of responses	11	40	7	97	413	60	628

SKANSKA

Findings – Satisfaction polling station (SPS)

- Daily votes 20-40% of building population
- Large and variable Nonresponse bias, dissatisfied voters vote more often in some buildings
- High correlation between thermal complaints in SPS and Survey, outperforming PMV-PPD model (with temperature interventions)

Findings – Occupant feedback and control actions

- QR codes were not used frequently by users
- Personal heaters with manual control were used very frequently by approximately 20% of users. They were very satified with them.
- Analysis of heater usage is not yet completed.

SKANSKA

Findings – Classification of feedback data

- We have different data sources from building occupants which are linked to different levels of physiological and cognitive processes within the user
 - Satisfaction or comfort ratings (cognitive & affective evaluation, subjective, conscious)
 - Complaints (cognitive evaluation & action, subjective, conscious)
 - Control actions (cognitive action, subjective, conscious)
 - Physiological reactions (objective, conscious or subconscious)
- They are not directly comparable, but there does not exist a framework to arrange them
- Unfortunately outside of PhD scope..

Summary

- Easy to make a working system which is taken into use by un-informed occupants
- The information collected has value for building tuning, control and design (is correlated with temperature changes and survey responses)
- It may also be usable for benchmarking, but must correct for the non-response bias which varies between buildings.
- There are differences between user groups in how they respond (demography, how communicated, attitude)
- We are missing a framework to classify what subjective data we are collecting

Presentations

Session 6 - Third presenter

Sarran, Lucile

Technical

Denmark

Session 6

Day 2, 15:10

University of Denmark,

Learning to Live in Low-Energy Dwellings: A Mixed-Methods Case Study L. Sarran

Occupants' routines and practices around the use of the building services in their home may lead to energy performance gaps and indoor environmental issues, in particular when the building services are unknown. This work aims at documenting the successes and difficulties encountered by occupants while getting acquainted with new building services (heating and mechanical ventilation systems) after moving in a low-energy dwelling. Explanatory mixed methods were adopted. A questionnaire survey was first carried out in a social housing complex of 2007 recently retrofitted and non-retrofitted single-family houses in Denmark. The questionnaire investigated occupants' satisfaction with the indoor environment in their homes as well as their experience with using the building services. In a second phase, semi-structured interviews were carried out. The interviews set to ask the "why" questions and elucidate occupants' use and understanding of the building services. 23 interviews were carried out in the same social housing complex followed by 14 supplementary interviews in three newly built multifamily residential buildings. The questionnaire was answered by 344 residents (response rate: 17.1%). Occupants were in majority able to achieve a satisfactory indoor environment in their homes. In particular, stable temperature and pleasant air quality were largely appreciated. The usability of building services was however more of a concern, with occupants expressing difficulties to understand and operate them. Reasons for these issues were dysfunctional systems, lack of information and knowledge, and lack of personal control. Automation was mainly perceived as detrimental to comfort and user satisfaction when the building services were not functioning as intended. In order to avoid frustration and discomfort among occupants, the increasing complexity and automation in residential building services must go hand in hand with an increased product quality and a better exchange of information with the residents.

Lucile Sarran, Christian A. Hviid, Carsten Rode Learning to Live in Low-Energy Dwellings A Mixed-Methods Case Study Introduction

- Perceived personal control has an influence on perceived comfort
- Personal control on comfort is often assumed to be high in **private dwellings**
- New and retrofitted dwellings are increasingly fitted with new, **complex**, **automated** building services
- Several POE show usability concerns with building services in low-energy dwellings

Usability:

"The extent to which a product can be used by specified users to **achieve specified goals** with **effectiveness**, **efficiency** and **satisfaction** in a specified context of use." (ISO 9241-11)

How do occupants experience indoor environmental quality after moving in a low-energy dwelling?

What is their experience with the usability of the building services (space heating and mechanical ventilation) and how do they learn to use them?

Is there a link between indoor environmental quality and occupants' perceived usability of building services?

Methodology

A mixed-methods case study

Reported satisfaction with:

- I Thermal comfort
- II Indoor air quality
- III Usability and control of heating systems
- IV Usability and control of mechanical ventilation systems

Analysis:

SEMI-STRUCTURED INTERVIEWS

Deeper explanation and description:

- Reasons for satisfaction or dissatisfaction
- Evaluation of occupants' understanding of HVAC systems
- New routines
- Expectations towards low-energy dwellings

Analysis:

Recording

Transcription

2

Thematic coding + occupants' stories

The case buildings

Case 1: Social housing (2007 houses)

Case 2: Owned new apartments (14)

	Case 1				Casa 2	
	Туре А	Туре В	Type C	Type D		
Geometry	Row houses	Semi- detached	Semi- detached	Semi- detached	Apartments and row houses	
Status	Retrofitted	Retrofitted	Retrofitted	Original from 1965	Newly built	
Building standard	BR10	BR10	BR15	None	BR10 class 2020 DGNB Gold	
Move-in date	2014-2015	2016-2018	2017-2018	Various	2015-2017	
Water-based radiators + thermostatic valve	Bedrooms	x	х	х		
Water-based floor heating + programmable thermostat	Living room				x	
CAV balanced mechanical ventilation with heat recovery	x	х	х		x	
Ventilation supply diffuser location	High on wall	Under radiators	High on wall		High on wall	
Turbo mode	Manual + moisture- controlled		Moisture- controlled		Manual	

Questionnaire statistics	Type A	Type B	Type C	Type D
Number of houses	552	495	258	702
Number of valid responses	69	78	94	103
Response rate (%)	12.5	15.8	36.4	14.7
Number of interviews	7	6	10	6

Thermal comfort and heating

QUESTIONNAIRE

Type A: Floor heating with programmable thermostat

> Type B: Standard radiators

Type C: Standard radiators

Type D: Non-retrofitted house with standard radiators

manual

Sol West

20

SEMI-STRUCTURED INTERVIEWS

- Temperature is comfortable and stable
- Floor heating: aesthetic, pleasant to be home without slippers, no temperature swings
 - A lot of **overheating** complaints
- **Slow dynamics** of floor heating: difficult learning process
- The floor is actually rarely warm! Leads to increased setpoints
- General lack of information about efficient heating operation

Indoor air quality and ventilation

SEMI-STRUCTURED INTERVIEWS

- Ventilation makes air **fresh**, **healthy** and **airing** almost unnecessary
- Problems with automated operation:
 - People are told not to touch systems and given little **information**
 - Can't do anything about **noise** and **draft**
 - Perceived **waste of money** in summer and when windows are open
- Occupants take control:
 - Tape, paper or magnet to **obstruct** diffusers
 - Switch off power supply
 - Sometimes maintenance people find hacks too!

Correlation study

Is there a link between comfort and perceived usability?

✓ Significant correlations between IEQ satisfaction and usability satisfaction

Is a high perceived usability a necessary condition for comfort? **NO (IN MOST HOUSES)**

Many occupants are satisfied with indoor environment and rate poorly the systems' usability

Interviews:

0.000 L 5.00 L Relative number of respondents (1 = uniform distribution)

- 0

*** p<0.001

- Satisfactory comfort achieved with **passive** house qualities and **automatic** features of building services
- Complaints about lack of manual control mainly in case of **dysfunctional systems** or **wrong** operational settings giving bad IEQ

Discussion and conclusion

Limitations: representativeness

- Limited response rate (17.1%)
- Average age higher than general population
- Particularly high user engagement in retrofit

Learnings

- Shorter questionnaire
- Better engagement of housing association

Conclusions

- Large IEQ satisfaction (except for summer overheating)
- Usability issues observed:
 - Caused by lack of **communication** and **information**
 - Can lead to energy-intensive or unhealthy hacks
- Significant correlation between IEQ perception and usability satisfaction
- Occupants can however achieve comfort in spite of poor usability
- Low usability and excessive automation are problematic when dysfunctional systems and operational failures give bad IEQ

If automated, building services must be commissioned often and occupants must be better informed

Thank you for your attention!

Lucile Sarran

lucjsar@byg.dtu.dk

+45 42 12 76 04

in Lucile Sarran

Presentations

Session 6 - Fourth presenter

Barthelmes, Verena Capturing Real-Time Motivations Behind Human-Building Interactions: The OBdrive App V. Barthelmes

EPFL, Switzerland

Session 6

Day 2, 15:20

Despite significant advances in the field of energy-related behavioural research in buildings, gaining a more comprehensive and "multi-dimensional" understanding of drivers and perceived motivations behind human-building interactions remains an open challenge. Increasing effort is put on understanding how the combined effect of IEQ factors affects user perception and behaviour in real buildings. Oftentimes, the motivations behind actions are deducted solely from physical measurements of the environment, which might not always reflect the real triggers behind occupants' actions. On the other hand, certain combinations of perceived motivations related to different dimensions of comfort (e.g. thermal comfort and indoor air quality) might be stronger linked than others. In the context of the eCOMBINE project ("Interaction between energy use, COMfort, Behaviour, and INdoor Environment in office buildings"), we developed an ad-hoc designed mobile application aimed at gathering feedback from the occupants each time they interact with windows, window blinds, and lights. In that way, perceived motivations can be compared to results from the environmental monitoring campaign. Further, the compact design of the app allows for gaining basic information on group dynamics and social interactions before interacting with controls. This contribution is aimed at presenting the OBdrive mobile application and provide first insights into the analysis of perceived motivations behind the interactions with windows and blinds, and their link to physical measurements of the global indoor environment. The study was carried out in Swiss open space offices over two-weeks monitoring campaigns during the Fall and Winter season.

IEA-EBC Annex 79 – 5th International symposium on Occupant Behaviour Southampton, 20-23 April 2020 Session: Case studies of Occupant-Centric Modelling, Design and Operations

Capturing Real-Time Motivations Behind Human-Building Interactions: The OBdrive App

Verena M. Barthelmes, Dolaana Khovalyg

Thermal Engineering for the Built Environment Laboratory (TEBEL) Ecole polytechnique fédérale de Lausanne (EPFL), Switzerland

April 21, 2020

CONTEXT

The mobile application OBdrive was developed in the context of the *e*COMBINE project (Interaction between energy use, COMfort, Behaviour, and INdoor Environment in Office Buildings) - the goal of this project is to study the dynamic cause-effect relationship between occupants and combined environmental factors.

Motivations behind interaction with controls is not only retrieved by objective measurements, but also by **collecting motivations behind actions directly from the user** each time he/she interacts with controls (windows, window blinds, and desk lights)

A Annex 79 Expert eting & ernational

nposium on

OBdrive

cupant Behaviour

ifth International Symposium on pant Behavior and Fourth Expert ng of IEA EBC Annex 79 will be d at the University of Southampton om E Oth 🕥 d Ap ... 20 s will be held virtually, click the n below to register.

EPFL

Showcase of OBdrive

DISCUSSION and CONCLUSION

Results of the OBdrive mobile application can be compared to what objective data tells us about the environment and the relationships between environmental data and the human-building interaction

Next improvements might include:

- Order of priority of different motivations («I open the window because I feel too hot, but I also enjoy some fresh air»)
- ✓ Open answer: employees can give a **personalized answer** if one of the predefined motivations does not fit
- Translation into other languages (currently only available in English, even if used in the French and German speaking context)

IEA-EBC Annex 79 – 5th International symposium on Occupant Behaviour Southampton, 20-23 April 2020 Session: Case studies of Occupant-Centric Modelling, Design and Operations

Thank you

eCOMBINE team:

Verena M. Barthelmes, TEBEL, <u>verena.barthelmes@epfl.ch</u> Dolaana Khovalyg, TEBEL, <u>dolaana.khovalyg@epfl.ch</u> Caroline Karmann, LIPID, <u>caroline.karmann@epfl.ch</u> Jan Wienold, LIPID, <u>jan.wienold@epfl.ch</u> Marilyne Andersen, LIPID, <u>marilyne.andersen@epfl.ch</u> Viviana Gonzalez, HOBEL, <u>maria.gonzalezserrano@epfl.ch</u> Dusan Licina, HOBEL, <u>dusan.licina@epfl.ch</u>

Presentations

Session 6 - Fifth presenter

Raw,	Evaluating Varying Comfort
Gary	G. Raw

Gary

GRPS,

Session 6

UK

Understanding behaviour entails understanding the environmental perceptions that underlie behaviour. In the case of thermal comfort, numerical scales for measuring human response have emerged largely in the context of environmental conditions and respondents' activities that vary little over time - for example in climate chambers or conditioned offices. In this context, asking "how do you feel" makes sense and lends itself to understanding how comfort is determined at a point in time. But many people live or work in conditions that vary markedly over time, and where their physical activity varies too – even within seasons or within a day. It is questionable how people in these Day 2, 15:24 circumstances would give a single scale rating. We have therefore tested an alternative approach. In a pilot study in a UK primary school, we asked staff to report the percentage of the time when it is (a) too cold and (b) too warm. They were asked to report separately for summer and winter and within a single day. Students also separately indicated whether they had felt too hot or too cold during the day. Both staff and students were able to report without difficulty and could state, for example, that the same room was sometimes too cold and sometimes too warm, even within one day. Furthermore, the findings show a logical relationship with other subjective variables and with objectively measured conditions in different parts of the school. Further research should serve to refine this approach and set benchmarks, thus allowing the performance of an indoor or outdoor space to be evaluated in a way that better matches how people experience that space.

Evaluating varying comfort

GRPS and UCL Energy Institute

In collaboration with Paul Ajiboye, CETEC UK Manager

Why evaluate varying comfort?

Schools are not climate chambers.

- > The temperature varies.
- > Activities vary.
- > Occupants are present typically for an hour at a time.

Asking "how do you feel" or "how have you been feeling" makes little sense in these conditions.

So we tried something different – something as simple as possible.

New questions

For staff

What percentage of the time is/was it (a) too cold and (b) too warm? ... in winter ... in summer ... today.

For students

In your classroom today ... do you remember ... Feeling too hot (yes/no) Feeling too cold (yes/no)

(And many other questions on thermal conditions and other environmental conditions.)

The pilot study

Questionnaires issued in a primary school in South East England.

- End of school day (warm day in September).
- Staff 13 classrooms plus non-classroom staff (n=27).
- Students in Years 3-6 (ages 7-11) eight classes (n=227).

Objective environmental measurements in selected classrooms.

- Thermal conditions.
- Indoor air quality.
- > Noise level.

Staff thermal comfort

Able to report being sometimes too warm, sometimes too cold, within a day or season.

Student thermal comfort

Able to report being sometimes too warm, sometimes too cold, within a day.

Consistency with other measurements

South side only – two classrooms with ceiling fans, two without.

Fans make it feel cooler – more so at the front of classrooms (perhaps because of greater downward displacement of HVAC supply air).

With fans running, in two classrooms (centre of the room):

- temperature reduced by 0.3-1.2 °C
- air speed increased by 0.12-0.18 ms⁻¹
- > CO_2 concentration reduced by 369-384 ppm

Also consistent with objective and subjective measurements of other environmental variables – overall and by location.

So much to say.

But time's up!

I commend further development of this method to the House

Gary Raw

rawgj@hotmail.com

Supported by CETEC Foray Ltd

Additional slides in case of questions

Students – location and fans

South side only – two classrooms with ceiling fans, two without.

Ratio of [% too hot]:[% too cold].

Fans make it feel cooler – more so at the front of classrooms (perhaps because of greater downward displacement of HVAC supply air).

Student thermal comfort rating

Percentages giving each rating on a 7-point scale.

Sarah

Fraunhofer

Institute. Germany

Session 6

Day 2, 15:28

Presentations

Session 6 - Sixth presenter

Case Study: Reasons of Office Occupant's Dissatisfaction with an Automated Weiner. Lighting Control System

S. Weiner

In order to reduce the energy demand of buildings, building automation systems are being used more and more frequently, especially in office buildings. For instance, the presence and brightness in an office room are measured in order to control the lighting based on this data. Such automated lighting control system focus primarily on energy efficiency rather than on the comfort of occupants. Potentially leading to the often reported higher dissatisfied of occupants with automated systems than with a manual controlled systems. This contribution presents data on the current spread of automated lighting control systems in German office buildings, based on survey data from 2018/19. The results confirm an increased dissatisfaction among the occupants with automated control systems. In order to investigate the background to this tendency in more detail, a further survey was carried out in an exemplary office building, together with the evaluation of the building automation data. In this building an automated lighting system, which adjusts the level of illumination depending on the brightness in the room once it has been activated and automatically switches off after an hour of inactivity in the office, is used. The results of this study characterize several sources of discomfort in the context of the building under investigation and highlight differences in the occupant behavior based on the distinct levels of satisfaction with the lighting control system. The presented findings contribute to a better understanding of the reasons for dissatisfaction and adaptive occupant behavior regarding automated office lighting control systems.

CASE STUDY: REASONS OF OFFICE OCCUPANT DISSATISFACTION WITH AN AUTOMATED LIGHTING CONTROL SYSTEM

M. Sc. Sarah Weiner

IBP

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

offen

Case Study - CONTEXT Lighting control options in German Offices

Results of a German-wide survey conducted in February 2019:

Case Study - QUESTIONS

3 © Fraunhofer IBP

Case Study - SITE Characteristics of offices and lighting control

Case Study – MAIN FINDINGS

Questionnaire Survey: August 2019

SAMPLE

1 building

58 valid responses

Reasons for Dissatisfaction

- Automatic dimming is irritating
- No switching off, although the room is bright enough
- Individualized configurations are not possible
- Control logic not comprehensive

Building Data: 02. – 20. December 2019

SAMPLE

3 rooms per type of satisfaction (satisfied, neither, dissatisfied)

orientation to the east

9 single occupied rooms

Behavior of Dissatisfied Occupants

- highly demand-oriented behavior:
 - Actively increase the lighting levels when automation has dimmed it down
 - Usage primarily in the twilight hours

Presentations

Session 6 - Seventh presenter

Mahdavi , Ardeshir &	Impact of Visual and Auditory Factors on Perceived Thermal Comfort: A Case Study A. Mahdavi, C. Berger			
Berger, Christiane	The present contribution reports on a case study of multi-aspect indoor-environmental exposure situations. As with a number of similar efforts, this research is motivated by the circumstance that most available human comfort models (as well as related standards and guidelines) focus on one indoor-environmental independent variable at a time. In			
TU Wien, Austria	other words, thermal, visual, auditory, and olfactory aspects are typically addressed in isolation. Whereas past research has – to some extent – explored multi-domain exposure situations, there is a need for continued research in this area. In this context,			
Session 6	the present contribution describes an empirical research study that was conducted under controlled conditions in two small office-like units in a laboratory. The thermal conditions			
Day 2, 15:32	can be controlled in these units. Moreover, the lighting settings in the units can be arranged in different ways. In addition, outdoor soundscape (for example, traffic noise) can be emulated in the larger laboratory space that houses the office units. Small groups of participants experienced – on a short-term occupancy basis – similar thermal conditions in the two units, but different visual or acoustical conditions. Using customized evaluation scales, the participants provided feedback regarding their perception of thermal, visual, and acoustical conditions. The results of the experiments were analyzed to determine if and to which extent evaluations of similar thermal conditions were influenced by differences in other (i.e., visual or auditory) variables.			

Impact of visual and auditory factors on perceived thermal comfort: A case study

Ardeshir Mahdavi and Christiane Berger

Department of Building Physics and Building Ecology TU Wien, Austria

OB 2020

From mono-causal to multi-domain comfort and behavior models

Challenges of multi-domain research

The observed cross-sensory influences:

- Frequently insignificant
- At times contradictory
- Inconclusive
- Short-term
- Small number of participants
- Limited profile of participants
- Mostly artificial (office) settings
- Privacy and ethical issues
- Hawthorne effect
- Expenditures (time/cost/...)

Experimental settings and design

- **Participants**: 78 (49 f + 29 m); 24 to 26 y.o.
- **Sessions**: 45 min; simulated office work
- **Measurements**: Temperature, humidity, sound level, illuminance, UGR, CO₂
- Subjective votes:

Thermal, visual, auditory sensation and comfort

	Setting	Temperature [°C]	UGR	L [dB(A)]
i	T1_G1_L1	L	L	L
ii	T1_G2_L1	L	н	L
iii	T1_G1_L2	L	L	н
iv	T1_G2_L2	L	Н	Н
v	T2_G1_L1	Н	L	L
vi	T2_G2_L1	Н	Н	L
vii	T2_G1_L2	Н	L	Н
viii	T2_G2_L2	Н	Н	Н

Challenges of multi-domain research

- Short-term
- Small number of participants
- Limited profile of participants
- Mostly artificial (office) settings
- Privacy and ethical issues
- Hawthorne effect
- Expenditures (time/cost/...)

Looking into the future...

- More long-term and in-situ studies
- Buildings' affordance and social interactions
- Collaborative and interdisciplinary studies

Impact of visual and auditory factors on perceived thermal comfort: A case study

Ardeshir Mahdavi and Christiane Berger

Department of Building Physics and Building Ecology TU Wien, Austria

OB 2020

Organised & compiled by

Energy and Climate Change Division | Sustainable Energy Research Group

ISSN 1747-0544