

PRiME is a five year EPSRC funded research programme (2013-

2018), in which four UK universities address the challenges of

power consumption and reliability of future high-performance

embedded systems utilising many-core processors.

Hierarchical Run-time Management for Energy-

Efficient Thermal Management

A major challenge for modern multicore embedded

systems is decreasing lifetime reliability due to

elevated operating temperatures caused by high

power densities. This leads to an acceleration of

device wear-out. Thermal management is, therefore,

emerging as a major design consideration for mobile

computing, alongside energy consumption which

translates directly to battery life. Effective

management of the energy consumption and

temperature requires dynamic control of the

hardware (e.g. voltage-frequency scaling of the multi

core CPU) and the software (e.g. allocation of

application threads), in response to an executing

application’s performance requirement, its cross-layer

interactions with the operating system/hardware and

the resulting thermal profile.

PRiME has investigated three main thermal

parameters – peak temperature, average temperature

and thermal cycling. Two control levers are used – CPU

voltage-frequency and thread allocation, managed

using the operating system APIs cpufreq and affinity,

respectively. The underlying control algorithm for

managing energy and temperature is based on

reinforcement learning principles, specifically Q-

learning. The overall run-time approach is

implemented in a hierarchical manner:

• CPU voltage-frequency is controlled from the

lower hierarchy at a shorter interval to

manage average temperature, peak

temperature and energy consumption.

• Affinity is controlled from the upper hierarchy

at longer intervals to manage thermal cycling.

Demonstrator: nVidia Jetson

The adaptive and hierarchical approach has been

validated by implementing a run-time manager for

embedded Linux running on an nVidia Jetson

development board. This platform integrates a Tegra

K1 System-on-Chip (SoC) with quad-core ARM A15

CPU and 192 GPU cores (see figure 1).

Figure 1. nVidia Tegra K1 block diagram

The SoC supports 22 frequency levels and integrates a

thermal sensor for accurate on-chip temperature

measurement.

The work to date has primarily focussed on energy and

thermal management of the multicore ARM CPUs, but

in future, this approach will also be extended to the

GPU cores.

The PRiME demonstrator uses “FFmpeg” application

software to illustrate thermal run-time management.

FFmpeg is the most common video decoding

application in mobile and embedded platforms. In the

demonstrator, the embedded Linux plays a 24 frames

per second (fps) 1080p video using the FFmpeg

application.

Application hook-ups and embedded Linux

modifications are illlustrated in figure 2.

Research Brief
Power-efficient, Reliable, Many-core Embedded systems www.prime-project.org

Energy Efficient Thermal Management of Embedded Systems

Future Work

Ongoing work will extend this thermal management

approach to GPUs and other heterogeneous elements

More information

Visit the PRiME programme web site, including the

opportunity to sign-up for programme updates, or

contact the PRiME Impact Manager:

Gerry Scott
Email: gerry.scott@soton.ac.uk
Tel: +44 (0)23 8059 2749

Figure 2. Application hook-ups and embedded linux modifications

Results

Compared to the Linux ondemand governor, the

following are the key results:

1. thermal improvements:

- 14 degC in average temperature

- 16 degC in peak temperature

- 54% in thermal cycling

2. energy reduction of average 15%

3. scalability

Figure 3. Thermal performance – PRiME vs. linux ondemand

Figure 3 shows the thermal behaviour (blue)

compared with Linux’s ondemand governor (red). The

overhead of the hierarchical approach is shown below. www.prime-project.org

compute_vlc(core_id) {

 allocate(core_id);

 int a,b;

 vector<double> dct;

 …

}

compute_enc(core_id) {

 allocate(core_id);

 int a,b;

 …

 …

}

Application

int main () {

 int a;

 double frame;

 …

 for(uint n=0; n<FRAMES; n++) {

 thread.create(compute_vlc(c1));

 thread.create(compute_enc(c2));

 …

 run_time_manager();

 }

}

set_thread_affinity()

set_cpu_fre()

Frame_count % LTI == 0?
No

Ye

s

Run-time Manager

predict_workload()

select_action() determine_state()

Q Learning

update_q-table()

Multicore
Hardware

PMU . . .

Operating System

<thread allocation> pthread_setaffinity_np(curr_thd,core_id)

<frequency control> cpufreq_set_frequency(core_id,freq)

<performance monitor> ioctl.read(PERF_COUNT_HW_CPU_CYCLES)

<temperature monitor> coretemp.read(core0, core1, …, core N)

Temperature
CPU cycles

Thread allocation
frequency setting

ei-1 ei
ti-1 ti ti+1

time

