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Recently, we presented a novel method for cal­
culating NMR spin dynamics (1). This involves a 
homogenous master equation (HME) and is partic­
ularly suitable for treating the interplay of incoher­
ent relaxation processes and coherent effects such 
as those involving applied rf fields. The new theory 

1 Presented in part at 5th Chianti V·lorkshop, San Miniato, 
Italy, May 1993. 

provides a unified framework within which a very 
wide range of magnetic resonance experiments may 
be described. A point of special interest is the treat­
ment of the long-term behavior of the spin system, 
such as the steady-state established under exten­
sive repetition of some pulse sequence. In refer­
ence (1), we demonstrated an unusual effect: If 
a two-spin system is exposed to a repetitive se-
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quence of non-selective 1r pulses, correlations be­
tween the nuclear spin polarizations are gradually 
established even where none existed before. This 
is manifested as a build-up of two-spin longitudinal 
order < 2IzSz >. The creation of two-spin order is 
the result of cross-correlated relaxation mechanisms, 
and is unconnected with the J-coupling between the 
spins. It runs counter to the naive expectation that 
a closely-spaced sequence of 1r pulses should saturate 
the spin system (destroying all order) if applied for 
long enough. 

In this article, we re-examine the HME and its 
consequences in a more physical and less formal 
light. We also emphasize another consequence of 
the HME: Carefully-chosen sequences of rf pulses 
may be used to simplify interconnected relaxation 
pathways. This is important in a number of situa­
tions (2-13): An example is the suppression of un­
wanted "spin diffusion" pathways in the relaxation 
of many-spin systems, as demonstrated by a num­
ber of groups (4,7-12). We show results here for 
the analogous problem of the selection of weak re­
laxation pathways driven by weak cross-correlation 
effects, in the presence of stronger autocorrelation 
effects. Although such experiments may also be 
treated within the framework of the ordinary mas­
ter equation, we hope to demonstrate that the HME 
gives a more general and powerful insight. 

II. The Inhomogeneous Master 
Equation (IME) 

The ordinary "master equation" for the evolution 
of the spin density operator O" has the following form: 

d -
dt (]" = -i[Hcoh, O"] + r (O"- O"eq) (1) 

The spin Hamiltonian Hcoh contains the "coherent" 
influences on the spin ensemble, i.e. those which are 
the same for all ensemble members. This includes 
external magnetic fields as well as the time-average 
of microscopic spin interactions such as chemical 
shifts and spin-spin couplings. The relaxation su­
peroperator f encodes the incoherent interactions 
which are inhomogeneous over the spin ensemble 
and fluctuate in time. The master equation is valid 
in the "Redfield regime" of rapid fluctations (14) 
(assumed for the rest of this article). The elements 
off can be written in terms of the spectral densities 
of the fluctuating incoherent interactions. 
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The term O"eq is of particular concern. It does 
not appear in the unmodified Redfield theory, which 
uses a clean division between spin system and envi­
ronment, with the states of the environment or bath 
implicitly uncorrelated with the nuclear spin states. 
As is well-known, this approximation leads to dis­
agreement with experiment, predicting that the nu­
clear spin order tends to zero at long times. In fact 
the nuclear spin system is polarized by the contact 
with the environment, which has a finite tempera­
ture. The master equation is patched up by includ­
ing the phenomonological correction term O" eq, given 
by (15) 

O"eq = z-l exp{-HcohTe} (2) 

The normalization constant Z is the statistical me­
chanical partition function and ensures Tr{ O"eq} = 

1. The temperature Tenv of the environment is de­
noted here by the time constant re defined 

n. 
re=--. 

kTenv 
(3) 

For high spin temperature [[Hcohre[[ « 1, the equi­
librium density operator can be approximated 

(4) 

where n is the number of states of each individual 
spin system. Since Hcoh commutes with a eq, the 
master equation leads to the correct convergence of 
a to a eq at long times. 

The correlation of bath states with spin states 
leads to a shift in the equilibrium position of the 
spin density operator. An entirely separate issue, 
which will not be discussed here, is the influence of 
such correlations on the time-average of microscopic 
interactions contained in Hcoh (16-18). 

The master equation, Eqn. 1, has a peculiar 
asymmetric form, with the coherent spin interac­
tions Hcoh applying to the full density operator a, 
while the relaxation superoperator f applies to the 
deviation from thermal equilibrium a- O"eq· Mathe­
matically, Eqn. 1 has the form of an inhomogeneous 
differential equation, and we will refer to it as the 
inhomogeneous master equation (IME). 

For concreteness, we now focus on the specific 
system of an ensemble of heteronuclear 2-spin-1/2 
pairs, each spin pair embedded in a rapidly tumbling 
molecule. Our main experimental case is the 13C-
1 H 2-spin system of 13C-labelled liquid chloroform 
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(CHC13 ). The 1 H spin will be denoted I and the 13C 
spin S. Each spin has a chemical shift anisotropy 
( CSA), and the two spins have a through-space mag­
netic dipole-dipole interaction (DD). Relaxation of 
the spin-pair system results from a combination of 
fluctuations in the three interactions 1itsA• 1i~sA 
and 1ij5l0 (19-22). Since all have a molecular origin, 
all are modulated in synchrony as the molecule ro­
tates, resulting in a finite cross-correlation between 
pairs of interactions (19,20,23-29). At any given 
time t, ensemble averages such as 

(5) 

do not vanish in general. The relaxation of the spin 
system is characterized by autocorrelation functions 
of the individual interactions, for example 

(6) 

and cross-correlation functions between pairs of in­
teractions, for example 

(7) 

In the absence of applied rf fields, the IME leads 
to three coupled differential equations for the single­
spin Zeeman polarizations <lz >: 

=~~ )( ~:~:~ ) 
-PJs ~< 2fzSz > 

(8) 
where f>< S1 > indicates the deviation of the expec­
tation value of a spin operator S1 from its thermal 
equilibrium value: 

<Sl>- <Sl>eq 
Tr{ o-0}- Tr{ O"eqSl} (9) 

These are known as the extended Solomon equations 
(20,27,29); explicit expressions for the equilibration 
rate constants PI, ps, Pis, the cross-relaxation rate 
constant PIS, and the CSA/DD cross-correlation 
transfer rate constants fi[ and 6 s can be found, for 
example, in ref.(29). 

This equation indicates a dynamic coupling of 
the expectation values of the three Cartesian prod­
uct operators Iz, Sz and 2IzSz. The system may 
be pictured as three coupled "reservoirs," each con­
taining "difference order" (deviation of the expec­
tation value from thermal equilibrium). The dif­
ference reservoirs "leak" with rate constants PI, Ps 
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PIS 

Figure 1: Physical interpretation of the extended 
Solomon equations for a heteronuclear 2-spin system 
Eqn. 8. The deviations from thermal equilibrium of 
the expectation values of the three spin operators 
form a set of coupled reservoirs. 

and Pis, and are connected by "pipes" correspond­
ing to the cross-relaxation rate constants o-1s, 61 

and 6 s (Figure 1). This picture should, however, be 
used cautiously: The "liquid" in each reservoir may 
have either sign, and the cross-relaxation rate con­
stants may be negative, indicating that the "liquid" 
is changed in sign on transferring from one reservoir 
to another. 

Nevertheless, the "reservoir" picture does give 
a clear image of the dynamic interdependence of 
the three expectation values. By a careful study 
of the trajectories of all three expectation values af­
ter some initial perturbation, it is possible in prin­
ciple to derive all the various rate constants (20). 
However, this is not very accurate for small rate 
constants, which have only a minor influence on the 
dynamics of the system. This problem is of course 
much worse for larger spin systems, where the in­
terconnections between the expectation values are 
more complex still. 

The measurement of small rate constants (for ex­
ample, the 6 terms in the above system), would be 
facilitated if the relaxation dynamics could be sim­
plified, isolating selected "subnetworks." It is nat-
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ural to try to accomplish this using rf pulse se­
quences. Analogous techniques are well-established 
for the simplification of spin Hamiltonians. For ex­
ample, in decoupling experiments, large couplings 
between different spin species are effectively re­
moved by applying a suitably modulated rf field to 
one of the species ( 30-33): small interactions of the 
non-irradiated spins are revealed even in the pres­
ence of much larger heteronuclear spin couplings. 
The problem of observing weak relaxation processes 
in the presence of stronger ones seems related. 

There is, however, a theoretical difficulty in de­
scribing experiments in which rf pulses (coherent 
perturbations) interfere with relaxation networks 
(incoherent processes). In the inhomogeneous mas­
ter equation, the rf fields act on the full spin den­
sity operator a, while the relaxation applies to the 
difference from thermal equilibrium a - aeq· It is 
not obvious how to mix these two worlds. In the 
framework of the IME, it is difficult to construct an 
average Liouvillian analogous to the average Hamil­
tonian ( 30-35) so successful in treating the coherent 
response. 

III. The Homogeneous Master 
Equation (HME) 

The awkward aeq term is avoided by using a 
homogeneous master equation (HME). This was 
first suggested by Jeener (36). A slightly different 
derivation, and some interesting applications, were 
sketched in (1). In this article we will concentrate 
on the consequences of the HME. 

The rotating-frame HME (see Appendix A) has 
the form 

(10) 

where the thermally-corrected relaxation superoper­
ator Y is given by 

(11) 

and 'Hcoh is the ordinary rotating-frame Hamilto­
nian. Instead of including aeq. the ordinary relax­
ation superoperator r is adjusted by adding a "ther­
mal correction" e. Eqn. 10 has the mathematical 
form of a homogeneous first-order differential equa­
tion. 

97 

This is best illustrated by example. The HME 
for the relaxing 2-spin system, in the absence of rf 
fields, looks like 

0 0 

o )(<P>) -PI -OjS -Dr <lz> 
-O'JS -ps -bs <Sz> · 
-bi -bs -Pis < 2lzSz > 

(12) 

The three new elements of the relaxation matrix are 

(13) 

where w~ and w~ are the Larmor frequencies of the 
two spins. 

The inclusion of the normalized unit operator ~ ~ 
has increased the dimension of the basis to 4. The 
expectation value < ~ ~ > of this operator repre­
sents the amount of spin disorder. The other ex­
pectation values < lz > ... are much smaller by a 
factor ~ w~Te (assuming ordinary thermal nuclear 
spin polarization). Nevertheless, all interesting ex­
perimental observations are associated with these 
small quantities. 

Since the top row of the new relaxation matrix 
contains only zeros, < ~ ~ > remains constant in­
dependent of the other expectation values. From 
Eqn. 4, the constant value is 

<~i >= Tr{aeq~4} = ~ (14) 

The dynamic independence of < ~ ~ > is an approxi­
mation valid for weak spin polarization. In addition, 
Eqn. 11 assumes a high nuclear spin temperature, 
and the expressions for the elements of e (Eqn. 13) 
assume that the interaction with the static field is 
much larger than the other spin interactions (strong 
field limit). These approximations are discussed in 
Appendix B and are well-satisfied under ordinary 
circumstances. 

The eigenvalues of Yare the same as f, although 
the eigenvectors are different. This means that the 
thermal correction terms do not change the char­
acteristic relaxation rates, only the position of the 
eventual equilibrium. 

In Appendix B, it is shown that the elements of 
e in Eqn. 13 may be written down by the following 
procedure: 
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1. Write down the usual Redfield relaxation ma­
trix in a basis of Cartesian product operators 
(in the above case, this corresponds to the ex­
tended Solomon equations). 

2. For columns corresponding to the Zeeman po­
larization < Ijz > of the spin Ij, multiply all 
elements by the factor ~wJre, where wJ is the 
Larmor frequency of spin Ij. 

3. Multiply columns corresponding to other po­
larizations (such as < 2ljzlkz > ... < Ijx > ... ) 
by zero. 

4. Sum the elements in each row to get the cor­
responding element of e. 

For example, in the current case, the second row 
of the Solomon matrix reads 

(15) 

After multiplying by the appropriate factors, we get 

<fz> <Sz> <2fzSz> 

<Sz> ( ' " -20"f~WITB -!psw~re 0 ) (16) 

Summing the row gives the correct thermal correc­
tion 

1 ( 0 0) Os = -2 O"JSWI + psw5 re . (17) 

This procedure is general for spin-1/2 systems 
within the approximations mentioned above. 

A pictorial representation of Eqn. 12 is shown in 
Figure 2. The relaxation dynamics appears as a uni­
directional flow from left to right in the picture. The 
physical significance of this "flow" is as follows: The 
three "reservoirs" enclosed by a dotted line contain 
the "spin order," which can be redistributed inter­
nally by the O" and 15 terms. The object on the left 
contains the large < ~ ~ > term, i.e. the disorder 
of the spin system. The three arrows labelled lh, 
8 s and 8 Is indicate the conversion of spin disorder 
into spin order, i.e. a decrease in spin entropy due 
to the polarizing influence of the finite-temperature 
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molecular environment. These three terms therefore 
take into account the spin-bath correlations. The 
three wiggly arrows marked PI, PS and Pis indicate 
the dissipation of spin order, i.e. the creation of 
spin entropy. These arrows do not need to "go any­
where": The destruction of order is an irreversible 
process which need not be balanced out somewhere 
else. Figure 2 is an authentic representation of the 
spin system as an open system, acting as a channel 
for the creation of entropy in the universe. Thermal 
equilibrium is established when the expectation val­
ues < Iz >, < Sz > and < 2IzSz > have values such 
that a steady flow is maintained, and as much spin 
entropy is created as is destroyed. 

IV. Application A: 1r pulses on 
the 1-spins 

So far the HME does not appear to be much of a 
simplification. Its power is only revealed when relax­
ation and pulses are mixed together. Since the HME 
relaxation superoperator Y applies to the complete 
spin density operator, not just to the deviation from 
thermal equilibrium, pulse superoperators and re­
laxation superoperators may be combined at will. 
The interaction between them may be elucidated 
using well-known techniques. 

As an example, consider a sequence of evenly­
spaced strong 1r pulses, separated by an interval T /2, 
applied to the I-spins. The relevant pulse sequence 
segment 

T T T 
CA =-- 1f[--- 1f[- -

4 2 4 
(18) 

has total duration 7. 

If each 1r pulse is short and ideal, it transforms 
the four spin operators as follows: 

~~ 
2 

---+ ~~ 
2 

lz ---+ -fz 

Sz ---+ Sz 
2fzSz ---+ -2fzSz (19) 

These equations refer to transformation properties 
such as 

(20) 
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r-------- ----------------~ 
I 

I 
L _________ ..,2___ ---- __________ I 

Ps\ 
Figure 2: Physical interpretation of the HME for the 2-spin system Eqn. 12. The expectation values of the 
four spin operators ~ ~, I" Sz and 212 5 2 constitute reservoirs. The three terms fh, 85 and 815 represent the 
creation of spin order by polarization from the environment. 

In superoperator form, the pulse can be written 

-1 

1 J (21) 

The four spin operators are classified according to 
their parity under IT1: The two operators ~ "1 and 

5 2 are unchanged in sign under ITI, and are termed 
gerade. The two operators 12 and 212 5 2 are changed 
in sign, and are termed ungerade. 

In the absence of rf fields, the evolution of the 
spin density operator from time to to time t 1 is given 
by 

It follows that the evolution of the density operator 
over the entire sequence C A can be written 

(23) 

where 

This corresponds to 

(25) 

where 

(26) 

The matrix representation of the transformed su­
peroperator Y' is the same as that of Y, except that 
elements connecting operators of opposite parity are 
changed in sign: 

0 

015 

-ps 
8s 

(27) 

It is convenient (but not essential) to take the 
limit of a cycle duration r short compared to the 
relaxation time constants. An approximation to 
Eqn. 25 is then: 

(28) 

(This is equivalent to taking the first term in a Mag­
nus expansion of the interaction frame Liouvillian: 
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by symmetry, the second term in the Magnus expan­
sion vanishes ( 30-35)). The propagator for the en­
tire sequence, including both relaxation and pulses, 
is therefore 

(29) 

where the effective relaxation superoperator Y A has 
a matrix representation 

c 
0 0 0 

' 0 -pJ 0 _,, l 
YA = ~~~ 0 -ps 

-~IS -iii 0 

(30) 

Thus, for rapid pulsing, the system separates dy­
namically into independent gerade and ungerade 
subspaces: 

with 

and 

0 0 
0 0 
0 -ps 
0 0 

0 0 
-PI 0 

0 0 
-81 0 

This is shown visually in Figure 3. 
We now consider individually the 

the two subspaces. 

(31) 

(32) 

(33) 

dynamics in 

1. Dynamics in the gerade subspace 

The dynamics in the gerade subspace are very 
simple. The expectation value < Sz > is polarized 
at the constant rate II s < ~ ~ > and dissipates at 
the rate Ps < Sz >. There is a single exponential 
approach to a steady-state value of S-spin polariza­
tion. If pulse cycles are C A are repeated one after 
the other, the value of S-spin polarization after N 
repetitions is 

<Sz>(NT) =<Sz>" 

+ (<Sz>o- <Sz>") exp{-psNT} 
(34) 
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where the initial S-spin polarization is < Sz >o and 
its steady-state value is 

<-21 ~>0s < s z > "= -"----'-
Ps 

This evaluates to 

(35) 

(36) 

using the thermal equilibrium expectation value 

<Sz >eq= Tr{creqSz} = -~w~Te . (37) 

Eqn. 36 describes the steady-state nuclear Over­
hauser enhancement of the S-spin magnetization on 
applying radio-frequency fields to the I-spin (22,37). 

Although this effect is well-known, its interpre­
tation in the HME formalism is unusual and reveal­
ing. The ="OE arises because the rf fields are able 
to stem the leakage of S-spin polarization into the I­
spin-order and two-spin-order terms. The applied 
fields merely turn off unwanted relaxation path­
ways, allowing a build, up of S-spin order under the 
favourable e s term. 

2. Dynamics in the ungerade subspace 

The dynamics in the ungerade subspace are also 
of interest. The central feature is that transfer of or­
der takes place between I-spin Zeeman polarization 
< Iz > and 2-spin order < 2IzSz > within a dynami­
cally simple two-dimensional subsystem. The weak 
cross-correlation pathway connecting the two terms 
is isolated, allowing a more accurate experimental 
measurement. 

We have examined dynamic isolation of the 
cross-correlation pathway using the pulse sequences 
shown in Figure 4. The sequence in Figure 4a is 
used to examine the unmanipulated transfer of or­
der from < Iz > into < Sz > and < 2IzSz >. Initial 
thermal equilibrium is disturbed by two 1r /2 pulses 
applied to the !-spins, which can have different rel­
ative phases. After a timeT, a 1r /2 pulse is applied 
to the S-spins and the signal detected. Signal from 
experiments in which the two I-spin ,-/2 pulses have 
the same phase are subtracted from those in which 
the two I-spin 1r /2 pulses have opposite phase. As 
discussed in Appendix E, thermal polarization ef­
fects in the subsequent evolution may then be ig­
nored. The contributions to < Sz > and < 2IzSz > 
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PIS 

p~ 
Figure 3: Relaxation dynamics in the presence of rapid 1r pulses on the !-spins. The effective relaxation super­

operator is factored into a gerade subspace { < ~ 4 >, < Sz >} and an ungerade subspace { < Iz >, < 2IzSz > }. 

through cross-relaxation from < Iz > over the in­
terval 7 are deduced by Fourier transforming the 
signal and manipulating the intensities of the two 
lines in the J-coupled multiplet in the usual way 
(38,39). The experiment is repeated for a range of 
cross-relaxation intenrals T. 

The 7-dependence of < Sz > and < 2IzSz > 
are shown in Figure 5a. The predominant pro­
cess, as expected, is the rapid creation of < S z > 
under the dominant autocorrelation CTJS pathway. 
< Sz > is negative since the cross-relaxation rate 
constant CTJs is positive for this small molecule. 
< 2IzSz > is also created, but in this experiment 
it is not easy to tell how much of this is due to di­
rect < Iz >--->< 2IzSz > transfer and how much to a 
two-step process < Iz >--->< Sz >--->< 2IzSz >. 

With one 1r pulse on the !-spins in the middle of 
the mixing time (Figure 4b ), the < Iz >--->< Sz > 
transfer is greatly suppressed (Figure 5b ). The 
< Iz >--->< 2IzSz > transfer is also attenuated at 
long times, indicating the removal of two-step con­
tributions (the change in sign on the right-hand side 
of Figure 5b is due to the inverting effect of the sin­
gle 1r pulse on the ungerade spin operators). 

By placing two 1r pulses at times 7 I 4 and 37 I 4, 
the autocorrelation pathway< Iz >--->< Sz > is elim-

inated and the observed polarization of < 2IzSz > 
can be attributed to an essentially uncontaminated 
{i[ cross-correlation term. The 7-dependences of 
< 2IzSz > in Figure 5(b,c) are essentially mirror­
images, indicating that pulse imperfections are neg­
ligible. In Figure 6 we show the difference between 
the < 2IzSz > curves in Figure 5a and Figure 5c on 
an expanded scale. This curve indicates the influ­
ence of multiple-step transfers in the unmanipulated 
experiment. Although in principle the derivative of 
the curve is zero at 7 = 0, the steep rise would make 
an "initial rate" analysis problematic. 

The transfer curves could be analyzed to obtain 
the value DI = -1.65 x 10-2 s-1 . We have strong ev­
idence (not discussed here) that this result is more 
accurate than that obtained from a previous dy­
namical analysis of the full relaxation network, per­
formed with the aid of two-dimensional spectroscopy 
(28). 

V. Application B: 1r pulses on 
both I and S-spins 

Interesting results are also obtained if the HME 
is used to analyze an experiment in which simulta-
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a 

I -Ht----.. ---.. -

s --~ 

b 
I -H. .I. • T/2 r:/2 

~ s 

c 
I -H. . I. .I . • 
s r:/4 T/2 r:/4~ 

Figure 4: Pulse sequence for exploring the dynamics in the ungerade subspace. The experiments begin with 
two phase-cycled 1r 12 pulses on the I-spins: These select the contribution from initial < Iz > polarization at the 
beginning of the mixing period T. A 1r 12 pulse on the S-sp ins at the end ofT and observation of the J-'COupled 
multiplet allows detection of cross-relaxed< Sz > and < 2IzSz >at the end ofT. (a) No manipulations of the 
relaxation network. (b) One I-spin 1r pulse at the centre of T (c) Two I-spin 1r pulses at T I 4 and 3T I 4. The 
relative pulse lengths are greatly exaggerated with respect to the delays. In practice, composite 1r pulses were 
used. 

neous (or nearly simultaneous) 1r pulses are applied 
to both I- and S-spin species. The relevant pulse 
sequence IS 

T T T 
Cs = - - 1rJ1rs - - - 7rJ1fS - -

4 2 4 
(38) 

which again has a total duration T. 

The operators are re-classified according to their 
parity under the two 1r rotations: 

(39) 

indicating transformation properties such as 

exp{ -i1r (Ix + Sx) }2IzSz exp{i1r (Ix + Sx)} = 2IzSz. 
( 40) 

The simultaneous " pulse pair can therefore be rep­
resented by a rotating-frame superoperator 

-1 J ( 41) 
-1 

This time both one-spin Zeeman operators Iz and 
Sz are ungerade, while the two-spin-order operator 
2IzSz and the normalized unit operator ~ "1 are ger­
ade. 
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<Sz> <2IzSz> 
a 

0.05 
-0.2 

-0.~ 

-0.6 

10 20 20 

b 
-0. 2 

-0.~ 

-o.os 
-0.6 i 

" 20 10 20 

c 
0.05 

-0.2 

0 
-0.4 \...--o.os 
-0.6 

10 20 10 20 

't/S 

Figure 5: Experimental results for 13C-labelled chloroform at a proton frequency of 200 MHz. Rows a, b 
and c correspond to the experiments in Figure 4. Left column: Cross-relaxed < Sz >. Right column: Cross­
relaxed < 2lzSz >. Vertical axes normalized to < Sz >eq. Note the different scales. In c, the suppression of 
cross-relaxed < Sz > indicates the isolation of the ungerade subspace. 

~, ~ 01,-----~-------------, 

- ·, . 0 :i_ 

-).02 

- ·, . 0 3 

2 4 6 8 10 

--r/s 

Figure 6: Difference between the -r-dependences of < 2IzSz > shown in Figure 5a and Figure 5c, on an 
expanded scale. The solid line has no theoretical significance. The curve has zero derivative at .,. = 0, but 
rises steeply. 
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If the arguments given above are repeated, we 
get an overall superoperator for the pulse sequence 

where the effective relaxation superoperator, as 
modified by the rf fields, is 

( 43) 

The matrix representations of the gerade and unger­
ade subspace relaxation superoperators are 

and 

yu -B- (! 

0 0 
0 0 
0 0 
0 0 jJ 

0 0 

D 
-PI -a Is 

-a Is -ps 

0 0 

A visual representation is shown in Figure 7. 

( 44) 

(45) 

1. Dynamics in the ungerade subspace 

The dynamics in the ungerade subspace are, as 
before, purely dissipative: order is transferred from 
< Iz > to < Sz > with the autocorrelation cross­
relaxation rate constant aJs, accompanied by dis­
sipation of the Zeeman orders with rate constants 
PI and PS· This describes a normal transient nu­
clear Overhauser effect experiment ( 20), with the 
minor difference that the participation of cross­
correlation pathways is eliminated. This experiment 
could therefore be used to avoid potential errors 
in distance estimation due to non-negligible cross­
correlation effects ( 40,41 ), as demonstrated else­
where (42). The method is analogous to the sup­
pression of cross-correlation effects in measurements 
of relaxation time constants (3,43). 

2. Dynamics in the gerade subspace 

The gerade subspace in this experiment throws 
up a real surprise. It is naively expected that long­
term irradiation by non-selective 1r pulses should 
saturate the spin system, equalizing all populations 
and destroying all spin order. The HME analysis 
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shows that on the contrary a dense sequence of non­
selective 1r pulses polarizes the multiple-spin-order 
terms, providing the relaxation mechanisms display 
suitable cross-correlation (1). By repeating the ar­
guments used in the previous section, a steady-state 
of 2-spin-order can be predicted: 

15 1w9 + 15 sw~ 
PJSW~ 

( 46) 

It should be emphasized that the 1r pulses do 
not merely preserve any existing two-spin order, but 
establish the conditions for its creation. Two-spin 
order develops even when the 1r pulses are applied 
to a spin system which is totally saturated. 

The effect is demonstrated by the sequence 
shown in Figure 8a. N repetitions of the cycle 
CB (Eqn. 38) are applied to the 13C-1 H system, 
starting from thermal equilibrium. The total ir­
radiation time is T = Nr. Composite 1r pulses 
(7rl2) 0 (27rlz,.;3 (7rl2)0 were used throughout in or­
der to reduce pulse imperfections (44). At the end 
of the long 1r pulse train, a 1r 12 pulse was applied to 
either the I-spins or the S-spins, and the free induc­
tion decays recorded. Fourier transformation gives 
J-coupled doublets in the I-spin or S-spin spectra, 
from which the values of < Iz > (T), < Sz > (T) 
and < 2IzSz > (T) may be extracted (20,38,39). 
The trajectories of the three expectation values un­
der the 7r pulse train are shown in Figure 9. As 
expected, the one-spin Zeeman orders < Iz > and 
< Sz > saturate under the 1r pulse sequence, while 
negative two-spin-order grows in, eventually attain­
ing a steady state of around -18% of the thermal 
equilibrium S-spin Zeeman polarization. The mag­
nitude of the steady-state agrees quantitatively with 
the cross-correlation rate constants derived by the 
experiment in the previous section. 

It is also possible to demonstrate this effect in 
homonuclear spin systems, using the pulse sequence 
shown in Figure 8b. Strong non-selective 1r pulses 
are used, affecting all spins in the sample. At the 
end of the 1r pulse train, a strong 1r I 4 pulse is ap­
plied and the spectrum recorded. (A 7r 12 pulse 
would be unsuitable, since two-spin order would 
be completely converted into unobservable multiple­
quantum coherence). The 1r I 4 pulse partially con­
verts two-spin Zeeman order into observable single­
quantum coherence, with the lines appearing in a 
characteristic antiphase pattern. 
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Figure 7: Rela:xation dynamics in the presence of rapid 1r pulses on both I and S-spins. The effective re­

laxation superoperator is factored into a gerade subspace { < ~ ~ >, < 2IzSz >} and an ungerade subspace 

{<lz>,<Sz>}. 

Figure 10 shows a series of experimental 1 H spec­
tra for a sample of exifone, 

HO 

HO 
H 

HO 0 

OH 

( 47) 

OH 

a system already used by the Lausanne group for 
studying cross-correlation effects ( 45). The normal 
1H spectrum (lowest plot) shows a four-line AX pat­
tern from the ortho and meta protons on one of the 
aromatic rings and a strong singlet from the two 
equivalent ortho protons on the other ring. When a 
long series of 7r pulses is applied, the singlet grad­
ually saturates, while the four AX lines eventually 
assume an antiphase character. The topmost spec­
trum is in the steady-state, after the application of 
many hundreds of 7r pulses. The two-spin order is 

small but certainly not negligible. We report else­
where a quantitative analysis at a set of different 
magnetic fields, including a treatment of pulse im­
perfections. These results indicate that the steady­
state provides a reliable estimate of CSA-DD cross­
correlation, possibly superior to the usual methods. 

Burghardt et a!. (46) previously observed 
steady-state two-spin order effects in simulations of 
synchronous nutation experiments (5,6) using the 
conventional master equation. 

VI. Discussion 

In the above discussion, the HME was written 
implicitly in the rotating reference frame. The use 
of the rotating frame in the context of the HME, 
and spin-lattice rela:xation in general, is discussed 
in Appendix A. 

The theory of the thermal correction to the re­
laxation superoperator is given in Appendix B. 

The above treatment was restricted to situations 
in which the rf fields implemented perfect, short, 
1r pulses. The treatment could then be restricted 
to a small Liouville subspace, making for a simple 
physical situation amenable to physical insight. 
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a 

I 

T=Nt 

b 
n/4 

T=Nt 

Figure 8: Pulse sequences for exploring steady-state effects in the gerade subspace; in the presence of non­
selective 7f pulses. (a) Heteronuclear experiment. 2N simultaneous 7f pulses are applied over a timeT= NT. 
A 1r /2 pulse on one of the spin species generates the signal. (b) Homonuclear experiment. 2N non-selective 7f 

pulses are applied over a timeT= NT before a 7f /4 pulse is used to convert the polarizations into observable 
signals. 
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Figure 9: Experimental results for 13 C-labelled chloroform at a proton frequency of 200 MHz, using the 
experimental sequence in Figure 8a. Composite 1r pulses were actually used. The cycle period was T = 200 ms. 
The horizontal axis is the total irradiation time T. The vertical axis is normalized to < Sz >eq_ Note the 
build-up of < 2IzSz >. 
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Figure 10: Experimental 1 H spectra for exifone at a frequency of 300 MHz, using the sequence in Figure Sb. 
The cycle period was T = 50 ms. 

Another simple case is when frequency-selective 
1r pulses are used. Providing the pulses operate per­
fectly, and relaxation during the pulse is neglected, 
the spin operators may be classified as ungerade or 
gerade with respect to the selective spin inversions. 
There is considerable freedom in the classification 
of the operators, limited only by the ease of exper­
imental implementation on the required timescale. 
The interposition of selective 1r pulses in the mixing 
period can therefore be used to restrict relaxation to 
an almost freely-chosen group of one-spin or multi­
spin operators. For example, cross-relaxation path­
ways involving spins falling in a given spectral range 
may be suppressed (10), or cross-relaxation may only 
be allowed between spins falling within two freely­
chosen spectral ranges ( 4,12). 

Similar results may also be obtained using con­
tinuous rf fields, rather than selective 1r pulses (5-
8). Such experiments are also amenable to HME 
analysis, although a larger Liouville subspace of or­
thogonal spin operators must be used. This involves 
no particular difficulties, although calculations can 
become cumbersome. A simple example is given in 

Appendix C. 
The HME is well-suited for numerical simula­

tion ( 4 7). It provides an attractive alternative to 
the methods developed by Ravikumar et al. ( 48), 
who took into account thermal polarization effects 
in a different way. Their method involves a separate 
estimation of the steady-state during each element 
of the pulse sequence, using the conventional mas­
ter equation. In contrast, HME calculations simply 
require the usual numerical diagonalization of the 
matrix representation of Y. The asymmetry of the 
matrix representation involves no special problems. 
A short cut is available for periods where rf fields 
are absent, as discussed in Appendix D. 

Griesinger et a!. ( 49) developed a technique 
known as "invariant trajectories" to analyze the av­
eraging of relaxation rates under general multiple­
pulse trains. The same results follow from a 
straightforward HME calculation in the interaction 
frame, followed by the average Liouvillian approx­
imation. Such calculations are useful for deriving 
"average relaxation rates" in the presence of rf fields, 
for example in the manipulation of spin diffusion 
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(4,7-12). The HME includes thermal polarization 
and nuclear Overhauser effects omitted from most 
other analyses. 

Many results arising from the HME can also be 
derived from the conventional master equation, al­
beit with more trouble. For many experiments in­
volving phase cycling or difference spectroscopy, the 
thermal correction term e may actually be omit­
ted, without generating incorrect results. This prop­
erty is extremely important, since otherwise, a great 
body of NMR experiments would have to be rein­
terpreted. This is discussed in Appendix E. 

In summary, the HME establishes a much needed 
link between incoherent and coherent averaging ex­
periments. The simplification of relaxation net­
works may be treated on an equal footing with the 
simplification of spin-spin coupling networks (i.e. 
decoupling experiments). The extensive literature 
on coherent averaging (30-35) becomes directly ap­
plicable to incoherent averaging experiments. The 
HME provides a strong physical insight, represent­
ing the spin ensemble as an open system, exchanging 
energy and entropy with the surrounding molecular 
environment. 
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VIII. Appendix A: The HME m 
the rotating frame 

The HME is normally used in the rotating frame, 
where the dynamics under radio-frequency fields ap­
pear particularly simple. However, there is scope for 
confusion as to the correct expression for the relax­
ation equations in the rotating frame, and numerous 
errors in the literature can be found. The problem is 
that the spin system exchanges energy with the lat­
tice, which is indifferent to the rotating frame used 
to analyze the spins. The comment of Abragam may 
be recalled (15): "spin and lattice temperatures are 
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defined in two different frames of reference and there 
is danger of being led astray by intuitive physical ar­
guments in this unfamiliar situation." 

The main problems center around the use of the 
term "rotating-frame Hamiltonian," i.e. the opera­
tor which generates the spin dynamics, as corrected 
for illusory forces arising from the motion of the 
frame (50). For example the equation of motion (ne­
glecting relaxation) of a rotating-frame spin density 
operator defined by 

aR(t) = exp{iwtiz} a(t) exp{ -iwtiz} (48) 

is 

d R -~ R R] 
dtCJ = -11-lcoh•(J ( 49) 

with the "rotating-frame Hamiltonian" 

1-l!h = exp{iwtiz} 1-lcoh exp{ -iwtiz}- wiz . (50) 

This type of "rotating-frame Hamiltonian" is so 
familiar in NMR theory that it is often forgotten 
that it is not a real Hamiltonian at all. It is a sort 
of "pseudo-Hamiltonian" which fulfils the dynamic 
but not the energetic function of a true Hamiltonian. 
In particular, < 1-l!h > is not the energy of the spin 
system (51), and 1-l!h cannot be used in statistical 
thermodynamical expressions involving the spin sys­
tem energy. For example, the steady-state density 
operator in the presence of a field has no relationship 
with the "rotating-frame Hamiltonian": 

(51) 

Erroneous statements to the contrary can unfortu­
nately be found in many textbooks and papers. 

A false impression is also left by the unfortunate 
terminology "spin-lattice relaxation in the rotating 
frame" and "rotating-frame nuclear Overhauser ef­
fect." These phenomena involve relaxation dynam­
ics in the presence of rf fields, and have no particular 
connection with the use of a rotating frame. 

To elucidate the role of the rotating frame, con­
sider the (lab frame!) HME in the presence of an 
applied rf field: 

d ( ' ' ) dt a(t) = -i1-lcoh(t) + Y(t) a(t) , (52) 

where Hcoh is the commutation superoperator with 
the time-dependent coherent Hamiltonian 

(53) 
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and the coherent Hamiltonian is assumed to have a 
large, time-independent, component Ho and a smalL 
time-dependent component 7{1 : 

(54) 

In principle, the relaxation superoperator is also 
time-dependent, since the eigenstates and energies 
of the spin system are affected by the modulation 
of Hcoh. However, if 1{ 1 is much smaller than Ho, 
and the fluctuations in the incoherent interactions 
are rapid compared to the magnitude of 7{1 , the 
effect of 1{ 1 on Y may be ignored and the HME 
approximated as 

d ( - - ) dt<7(t)~ -iHcoh(t) +Yo cr(t), (55) 

where Yo is the relaxation superoperator in the ab­
sence of the rf field. 

By using a transformed density operator of the 
form Eqn. 48, the HME becomes 

d R ( 'R - ) R dt"" (t)~ -iHcoh +Yo <7 (t), (56) 

where, for a proper choice of frame, the "pseudo­
Hamiltonian" H{;,h in Eqn. 50 can be made time­
independent. This is the most useful form of the 
HME: Normally the rotating-frame is assumed and 
the superscripts "R" and subscript "0" dropped. 

IX. Appendix B: The thermal 
correction e 

Since the lattice has a finite temperature, the 
probability of the nuclear spin system making a 
transition [r > --+ [s > differs slightly from that for 
the reverse transition [s > --+ [r > according to the 
relative energy of the two states. Elementary con­
siderations of this kind lead to an "improved" relax­
ation superoperator of the form 

Y = f' exp{wre} 

where the superoperator w has the property 

wr! = L Wrrlrr[r><rl . 
r 

(57) 

(58) 

The sum is over all eigenstates [r > of the main part 
of the coherent (lab frame!) Hamiltonian 

Ho[r> = wr[r> . (59) 
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Thus w projects out the "secular" components of 
an operator r!, weighting each component with the 
energy of the corresponding spin state. 

For high nuclear spin temperature, the exponen­
tial in Eqn. 57 can be approximated by the first two 
terms in a series, .giving 

(60) 

with 

(61) 

This looks simple but gives rise to rather compli­
cated expressions. 

Consider therefore the projection superoperator 
P., which removes all traceless components of its 
argument operator: 

(62) 

This can be used to decompose the density operator 
into a non-traceless and a traceless component: 

(63) 

The HME can therefore be written 

(64) 

Since the traceless part of the density operator is 
much smaller than the non-traceless part, by a fac­
tor of the order of [[wre II, the last term is propor­
tional to [[wre [[ 2 and can be ignored. The thermal 
correction is 

(65) 

which proves easier to handle. 
An expression for the elements of 8 in a 

base of normalized Cartesian product operators 
(38,39) can be derived as follows: Consider a 
spin system with n eigenstates. A suitable set 
of product operators is defined by { Q1, Qz ... } = 
2n-!/Z { ~ i, hzJzz ... 2hzlzz ... }. The operators 
are normalized such that 

(66) 

Now all elements 8jk = Tr{ QJ8Qk} with k i= 1 van­
ish since Qk>! are traceless. Similarly, all elements 
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elk vanish since t is symmetrical and f'~ = 0. We 
are left with the elements in the first column, 81 1 

with j i= 1. These may be written as follows: 

(67) 

Since P1 Q1 = Q1 , this becomes 

(68) 

Using the definition of w, and Q1 = n- 1 12 ~, we get 

811 = n-112 I;wrTofjk<riQkir>, (69) 
rk 

introducing the elements of the ordinary relaxation 
matrix in the Cartesian product basis 

(70) 

and the matrix elements <riQkir> of spin opera­
tors Q k, in the eigenbase of the coherent Hamilto­
nian. Now in high field, the energies Wr are very 
close to the eigenvalues of the pure Zeeman Hamil­
tonian defined by 

(71) 

where w~ is the Larmor frequency of spin I,_, ignor­
ing chemical shifts and spin-spin couplings. Hence 
the thermal correction elements can be written 

Bj1 = n- 1/2 I;fjk<r1Qklr><rl7-i~lr>To · (72) 
rk 

Since 7-i~ is diagonal for a spin system in high field 
(this is true even for strongly-coupled systems), this 
can be written in turn 

ej1 = n-112 I;rjk Tr{Qk7-i~}To' 
k 

or more explicitly 

ej1 = n-1
/

2 I:w~To[jk Tr{Qklp.z}. 
p.k 

(73) 

(74) 

Since for spins-1/2, Tr{I~2 } = n/4, this equation 
encodes the simple step-by-step procedure given in 
the text for the thermal correction elements (Eqns. 
15-17). 

X. 
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Appendix C: Continuous rf 
fields 

We give one example of the HME in a situation 
where additional operators must be included in the 
relevant Liouville subspace. Consider a heteronu­
clear two-spin system with continuous, on-resonance 
rf irradiation of the S-spin. This has been treated 
by Boulat and Bodenhausen (52) who showed that 
a naive application of the Solomon equations for the 
spin state populations fails. It is necessary to take 
into account the full spin dynamics, including the 
creation of spin coherences by the rf field. 

The rotating-frame HME in the presence of the 
rf field is 

0 0 
-PI -O"Js 

-a1s -ps 
0 w, 

where p~ is the transverse relaxation rate constant 
of S-spin coherences, and cross-correlation effects 
are neglected this time. The rf field is considered 
to have magnitude w1 in frequency units and phase 
7r /2. The Liouville subspace is extended by one row 
and one column, in order to encompass the mixing 
of the rotating-frame expectation values <52 > and 
< Sx > by the rf field. 

Eqn. 75 contains the full dynamical behaviour of 
the system, which could in principle be extracted 
by diagonalizing the 4 x 4 matrix A in the equation 
above. Let us just concentrate on the steady-state 
behaviour. The steady-state expectation values of 
the spin system form a vector v, which lies in the 
nullspace of A i.e. 

Av, = 0. (76) 

The nullspace is the set of eigenvectors with zero 
eigenvalue (53). 

In the present case, the actual steady state is 
that nullspace vector with < ~ ~ >= ~. Explicit cal­
culation, or computer algebra (54) gives the result 
immediately: 
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where 

A2 2 
'-'- =PIPS- UJs (78) 

and 

(79) 

In the limit of w1 much greater than the relax­
ation rates, and neglecting second-order effects, the 
expression reduces to 

( 

<li > l <iz>SS ~ 
<Sz>" -
<Sx>" 

1 
2 

0 

- (4pJwr) - 1 L\2w~re 

(80) 

Since the thermal equilibrium value of S-spin Zee­
man polarization is given by 

S eq 1 0 < z> = -4WsT& (81) 

the steady-state value of the transverse S-spin po­
larization < Sx > in the presence of the rf field is 

<S >" L\2 X ~ 

< Sz >eq PJWI 
(82) 

and the steady-state nuclear Overhauser enhance­
ment of the longitudinal I-spin polarization is de­
scribed by 

<fz>" ~1 + UJSW~ 
< Iz >eq PIWJ ' 

(83) 

i.e. the same as when 7r pulses are used. These 
results are in agreement with the calculation by 
Boulat and Bodenhausen (52). 

XI. Appendix D: Numerical cal­
culations with the HME 

The HME may be used for numerical spin­
dynamical calculations involving simultaneous re­
laxation and rf fields. In general, this can be done 
one pulse sequence element at a time. The evolu­
tion superoperator under a pulse sequence element 
B has the form 

(84) 
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where r is the pulse sequence element duration and 
Lis the effect of rf fields and relaxation, without the 
thermal correction: 

(85) 

The exponential in Eqn. 84 can be calculated nu­
merically in the usual way, by forming a matrix rep­
resentation of the superoperator and diagonalizing. 
The asymmetry of the matrix representation gener­
ates no particular problems. 

We point out here a special feature of Eqn. 84. 
Since Li = 0, we have 8£ = 8 2 = 6. Hence 

(i+ 8) 2 

(i+ 8) 3 

£2+£8 

£3 + £28, (86) 

and so on. It follows that the exponent can be writ­
ten 

00 

exp{ ( i + 8) T} = exp{Lr} + L 
n 

The evolution superoperator is itself the sum of a 
"normal" superoperator and a thermal correction 
term. This has important consequences (see Ap­
pendix E). Furthermore, in the special case of "free 
precession periods" where no rf fields are applied, 
Eqn. 87 may be set in the form 

exp{ ( Lo + 8) T} = exp{ Lor} 

+ (exp{Lor}- ~) wP1re 

(88) 

For free precession, the thermally corrected evolu­
tion superoperator may be derived from the non­
thermally corrected superoperator, in just the same 
way as y can be derived from r. 

XII. Appendix E: The HME and 
phase cycling 

Many magnetic resonance experiments involve 
taking a linear combination of results from related 
but slightly different experiments. A typical exam­
ple is phase cycling, in which the experiments only 
differ in the relative phase of some of the pulses. 
The signals from the phase-shifted experiments are 
multiplied by complex phase factors and combined 
in the processing device. 
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For many experiments of this kind the thermal 
correction terms e may be omitted from at least 
part of the calculation. This is fortunate, since it 
has been common practice to disregard the thermal 
polarization effects when convenient. A formal jus­
tification in the context of the HME may be useful. 

In the treatment by Ernst and co-workers (38), 
phase cycling is represented by an instantaneous 
projection of the density operator onto a subspace 
of operators with particular rotational properties, 
i.e. coherences of particular orders. This is very 
convenient for calculations. All elements of the den­
sity operator which do not belong to coherences of 
a given order are simply removed and the calcula­
tion carried further using only the elements which 
do have the "right" order. 

The basis for this procedure is awkward in terms 
of the ordinary master equation since the <Teq terms 
get in the way (55). It also not obvious what hap­
pens in the case of extended rf fields. In the HME, 
the treatment of phase cycling is more straightfor­
ward. Suppose a pulse sequence consists of two 
parts, A and B. The B part is performed in two 
versions, B 1 and B2, and the NMR signals s1 and 
s2 combined with complex factors c1 and c2 . In the 
HME, the individual NMR signals can be written 

Tr{o+ exp{C0t}.B,A.a-o} 
Tr{fl+ exp{C0t}B2Ao-0 } , (89) 

where 0 is the observable operator and o-0 the ini­
tial density operator, assumed identical in the two 
experiments. The combined signal c1s 1 (t) + c2s2(t) 
can be written 

s(t) = Tr{o+ exp{C0t}BAo-0 } (90) 

where 

(91) 

Thus the superoperators of different pulse sequences 
are combined linearly. In phase cycling, the experi­
ments are selected such that the averaged superop­
erator behaves according to: 

B=BPM (92) 

where PM projects out operator terms belonging to 
spin coherences of a particular order M, or set of 
orders. 
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From Eqn. 87, the superoperator including phase 
cycling, for M # 0, is 

exp{(i+e)r}PM = exp{CT}FM. (93) 

The "thermal correction" vanishes since P.l hvr = 6. 
It follows that if phase cycling is used to select 

coherences of some non-zero order M at a partic­
ular point in a pulse sequence, the thermal correc­
tion terms may safely be omitted from all subsequent 
pulse sequence elements. Similar conclusions apply 
to other forms of difference spectroscopy. 
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