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1 INTRODUCTION  
There are many applications where monitoring of physical quantities such as strain, acoustic 
pressure, vibration or temperature over large distances would be beneficial, for example condition 
monitoring along railway lines1, pipelines2 or subsea cables3. An array of single point sensors is often 
costly and impractical due to amount of cabling required, so ideally a sensor in the form of a long 
cable continuously monitoring the spatial distribution of a disturbance would be a desirable solution. 
Optical fibres are excellent candidates due to the low cost of the fibre; moreover, the opto-electronic 
technology is well established due to use of optical fibres in telecommunications. 
 
A large amount of research has been carried out on the subject of distributed optical fibre sensing4–7 
This is understandably focused on the design, analysis and improvement of the opto-electronic 
measurement systems. In comparison, little has been written about the vibro-acoustic response of 
distributed optical fibre sensors, despite the fact that theoretical analysis of structural dynamics and 
acoustics is very well established, and the analytical and numerical tools are available. This paper is 
a step to bridge this gap. 
 
The paper is structured as follows: firstly the principles of operation of distributed optical fibre sensors 
are explained briefly. This is followed by a theoretical analysis of the dynamic behaviour of a 
homogeneous fibre. This analytical model is then compared with results from a finite element model. 
Some numerical results for a clad fibre are also presented. 
 
2 DISTRIBUTED OPTICAL SENSORS - PRINCIPLE OF 

OPERATION 
One of the first reviews on the possibility of using optical fibres for distributed sensing was by Rogers 
in the 1980s8,9. A more recent review is given by Masoudi et al.10 Taylor and Lee11 proposed a 
distributed sensor for detecting intruders in 1993. 
 
A distributed sensor utilises light scattering in the fibre. A pulse of light is sent through the fibre and 
backscattered light is detected by photodetectors. When the optical fibre is disturbed this causes a 
phase change of the scattered light wave. The basic relationship describing the phase 𝜙𝜙 of a light 
wave propagating through the fibre is12,13: 

𝜙𝜙 = 𝛽𝛽𝛽𝛽 (1) 

where 𝛽𝛽 is the propagation constant (wavenumber), given by 

𝛽𝛽 =
2𝜋𝜋𝜋𝜋
𝜆𝜆

(2) 

where 𝜋𝜋 is the effective refractive index of the optical fibre and 𝜆𝜆 is wavelength of the light source. 𝛽𝛽 
is the distance travelled by the light wave. The change in the phase of a light wave due to a 
mechanical disturbance is: 

𝛥𝛥𝜙𝜙 =  𝛽𝛽𝛥𝛥𝛽𝛽 + 𝛽𝛽𝛥𝛥𝛽𝛽 (3) 
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The first term is due to physical length changes of the section of fibre and the second is due to 
changes in propagation constant, which contains two terms:  

𝛽𝛽𝛥𝛥𝛽𝛽 = 𝛽𝛽
d𝛽𝛽
d𝜋𝜋

𝛥𝛥𝜋𝜋 + 𝛽𝛽
d𝛽𝛽
d𝐷𝐷

𝛥𝛥𝐷𝐷 (4) 

The first of these terms is due to the change of refractive index 𝜋𝜋 and the second is due to changes 
in diameter (waveguide mode dispersion effect). The effect of changes in diameter is negligible as it 
is three orders of magnitude lower than the changes of length and refractive index.13  
 
When an external pressure ∆P is applied to the fibre, the phase sensitivity per unit pressure and 
length is given by (see Refs. 12–14 for details): 

𝛥𝛥𝜙𝜙
𝛥𝛥𝛥𝛥𝛽𝛽

= 𝛽𝛽 �𝜖𝜖𝑧𝑧 −
1
2
𝜋𝜋2[(𝑝𝑝11 + 𝑝𝑝12)𝜖𝜖𝑟𝑟 + 𝑝𝑝12𝜖𝜖𝑧𝑧]� (5) 

where 𝑝𝑝11,𝑝𝑝12 are photo-elastic constants and 𝜖𝜖𝑟𝑟 , 𝜖𝜖𝑧𝑧 are strains in the radial and axial directions. Since 
𝛽𝛽 is dependent on the wavelength of the light source, the source independent “normalised” phase 
sensitivity is introduced: 

𝛥𝛥𝜙𝜙
𝛥𝛥𝛥𝛥𝛽𝛽𝛽𝛽

= 𝜖𝜖𝑧𝑧 −
1
2
𝜋𝜋2[(𝑝𝑝11 + 𝑝𝑝12)𝜖𝜖𝑟𝑟 + 𝑝𝑝12𝜖𝜖𝑧𝑧] (6) 

This simple relationship shows that the phase of the light is dependent mainly on the axial and radial 
strains and the photo-elastic parameters of the optical fibre. 
 
Three scattering mechanisms exists in the optical fibres, namely Rayleigh scattering, Brillouin 
scattering and Raman scattering. However, only the Brillouin and Rayleigh scattering processes are 
sensitive to strain in the fibre4. Rayleigh scattering occurs due to density fluctuations in the fibre. 
These inhomogeneities are created during manufacturing process of the fibre. Brillouin scattering, on 
the other hand, is the effect of the interaction between the light and acoustic phonons, which are 
thermally generated acoustic waves4.  
 
Practical implementation of a distributed optical fibre sensor system requires an optical fibre 
interrogation technique. Various techniques exist for both scattering processes. For Rayleigh 
scattering Phase Optical Time Domain Reflectometry (φ-OTDR) is the most promising. Frequency 
domain methods also exist but have a more limited strain range. Techniques for the Brillouin process 
include Brillouin optical time domain reflectometry, Brillouin optical time domain analysis and Brillouin 
optical correlation-domain analysis4. 
 
Brillouin scattering sensors have several disadvantages such as limited frequency range, short 
sensing range, long averaging time needed to extract the desired signal, and low strain resolution. 
Rayleigh scattering sensors can achieve a higher signal-to-noise ratio, a broader frequency range 
and a longer spatial range3. One of the main features of the Rayleigh scattering sensors is that only 
the relative phase of the backscattered light between the ends of the gauge section is measured, 
which can affect the accuracy of the measurement, as only the net elongation across the gauge will 
be measured3,4. 
 
3 VIBRO-ACOUSTIC RESPONSE OF A HOMOGENEOUS ROD 
Dynamically, an optical fibre can be modelled as a cylindrical rod. The core is usually made of silica 
glass; and additional layers of material can be added to protect the fibre from the environment, which 
can affect the amplitude of vibration in the fibre. Different coatings could be used to enhance or reduce 
the sensitivity to external pressure or stress12,15. For simplicity the analysis begins with a 
homogeneous rod before considering the effect of the cladding on the acoustic response of the fibre. 
 
In the current study a number of simplifying assumptions are made. The rod diameter is assumed to 
be much smaller than the wavelength of the acoustic excitation. The diameter of standard optical 
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fibres is 0.4 mm, although this may vary depending on the actual type of fibre. This does not include 
any potential additional cladding. The pressure gradient around the fibre is assumed to be negligible, 
so the pressure excitation is taken as axisymmetric. The material damping is neglected in the current 
model. Acoustic excitation is simplified to be either a section of uniform pressure or a section of 
pressure which varies spatially as a cosine function to simulate a spatially windowed plane wave 
excitation. The fibre is treated as a rod and no additional tensile stress is included. 
 
Since axisymmetric excitation is assumed, one can expect that only longitudinal waves will be 
generated in the fibre. This suggests taking a similar approach as in the well-known derivation of the 
equation of motion for longitudinal vibration of a rod16,17: 

𝜕𝜕2𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧2

−
1
𝑐𝑐2
𝜕𝜕2𝑢𝑢𝑧𝑧
𝜕𝜕𝑡𝑡2

= 𝐹𝐹𝑧𝑧𝑒𝑒j𝜔𝜔𝜔𝜔 (7) 

where 𝑢𝑢𝑧𝑧 is the axial displacement, 𝑧𝑧 is spatial coordinate along the axis of the rod, 𝑡𝑡 is time and 𝑐𝑐 is 
the wavespeed of longitudinal waves in the rod, given by: 

𝑐𝑐 = �
𝐸𝐸
𝜌𝜌

(8) 

with E the Young’s modulus and ρ the density. In the above equation an external axial harmonic force 
(per unit length) 𝐹𝐹𝑧𝑧𝑒𝑒j𝜔𝜔𝜔𝜔 at circular frequency ω acts along the axis of the rod. In the case of an optical 
fibre sensor, the excitation acts radially on the outer surface of the fibre and the longitudinal waves 
are generated due to the Poisson’s effect. One needs to determine the equivalent axial force due to 
this radial excitation. This is done by using the full stress-strain relationship: 

𝜎𝜎𝑧𝑧 = 𝐸𝐸𝜖𝜖𝑧𝑧 + 𝜈𝜈�𝜎𝜎𝑟𝑟 + 𝜎𝜎𝜑𝜑� (9) 

where 𝜎𝜎𝑘𝑘 is the stress component and subscripts 𝑘𝑘 = 𝑟𝑟,𝜑𝜑, 𝑧𝑧 denote radial, angular and axial 
components respectively, 𝜖𝜖𝑧𝑧 is the axial strain. Note that usually in the derivation of the equation of 
motion for rods only the simplified stress-strain relationship is used: 

𝜎𝜎𝑧𝑧 = 𝐸𝐸𝜖𝜖𝑧𝑧 (10) 

From the theory of elasticity it is known that for an axisymmetric stress distribution the radial stress 
of a circular cross-section is equal to the angular stress18: 

𝜎𝜎𝑟𝑟 = 𝜎𝜎𝜑𝜑 (11) 

When equation (9) is used in the usual derivation of the equation of motion for longitudinal waves in 
the rod instead of equation (10), the modified equation of motion will be: 

𝜕𝜕2𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧2

−
1
𝑐𝑐2
𝜕𝜕2𝑢𝑢𝑧𝑧
𝜕𝜕𝑡𝑡2

= −
2𝜈𝜈
𝐸𝐸
𝜕𝜕𝜎𝜎𝑟𝑟
𝜕𝜕𝑧𝑧

(12) 

Equation (12) shows that the amplitude of the vibration in the rod excited radially will be proportional 
to the Poisson’s ratio of the material and inversely proportional to the Young’s modulus.  
 
To determine the response of the fibre, the radial stress is equated to the external pressure. Consider 
a simple excitation consisting of a uniform, axisymmetric harmonic pressure acting over a length 𝛽𝛽. It 
can be defined as: 

𝜎𝜎𝑟𝑟(𝑧𝑧, 𝑡𝑡) = −𝛥𝛥(𝑧𝑧) = −𝛥𝛥𝑒𝑒j𝜔𝜔𝜔𝜔Π �
𝑧𝑧
𝛽𝛽
�  (13) 

where Π�𝑧𝑧
𝐿𝐿
� is the rectangular function over the section 𝛽𝛽. The derivative of the rectangular function 

is given by the sum of two Dirac deltas: 

𝜕𝜕 �Π �𝑧𝑧𝛽𝛽��

𝜕𝜕𝑧𝑧
= 𝛿𝛿 �𝑧𝑧 +

𝛽𝛽
2
� − 𝛿𝛿 �𝑧𝑧 −

𝛽𝛽
2
� (14) 
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So the equation of motion with the external forcing can be written as: 

�
𝜕𝜕2𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧2

−
1
𝑐𝑐2
𝜕𝜕2𝑢𝑢𝑧𝑧
𝜕𝜕𝑡𝑡2

� =
2𝜈𝜈𝛥𝛥
𝐸𝐸

�𝛿𝛿 �𝑧𝑧 +
𝛽𝛽
2
� − 𝛿𝛿 �𝑧𝑧 −

𝛽𝛽
2
�� 𝑒𝑒j𝜔𝜔𝜔𝜔 (15) 

The solution to the equation of motion for excitation by a Dirac delta is well-known; it was derived for 
strings and is available in number of acoustics textbooks such as Morse and Ingard19. For excitation 
by 𝛿𝛿(𝑧𝑧 − 𝑧𝑧0) the solution is17: 

𝐺𝐺(𝑧𝑧|𝑧𝑧0) =
j

2𝑘𝑘
𝑒𝑒−j𝑘𝑘|𝑧𝑧−𝑧𝑧0| (16) 

where 𝑘𝑘 = 𝜔𝜔
𝑐𝑐
 is the structural wavenumber. So using equation (16) in equation (15), the following 

expression is obtained for the axial displacement: 

𝑢𝑢𝑧𝑧(𝑧𝑧, 𝑡𝑡) =
𝜈𝜈𝛥𝛥j
𝐸𝐸𝑘𝑘

�𝑒𝑒−j𝑘𝑘�𝑧𝑧+
𝐿𝐿
2� − 𝑒𝑒−j𝑘𝑘�𝑧𝑧−

𝐿𝐿
2�� 𝑒𝑒j𝜔𝜔𝜔𝜔 (17) 

The axial strain is obtained by differentiating the above equation: 

𝜖𝜖𝑧𝑧(𝑧𝑧, 𝑡𝑡) =
𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧

(18) 

𝜖𝜖𝑧𝑧(𝑧𝑧, 𝑡𝑡) =

⎩
⎨

⎧𝐵𝐵 �𝑒𝑒−j𝑘𝑘�𝑧𝑧+
𝐿𝐿
2�sgn �𝑧𝑧 +

𝛽𝛽
2
� − 𝑒𝑒−j𝑘𝑘�𝑧𝑧−

𝐿𝐿
2�sgn �𝑧𝑧 −

𝛽𝛽
2
�� 𝑒𝑒j𝜔𝜔𝜔𝜔, 𝑧𝑧 ≠ −

𝛽𝛽
2
∧ 𝑧𝑧 ≠

𝛽𝛽
2

𝐵𝐵�1 + 𝑒𝑒−|2j𝑘𝑘𝑧𝑧|�𝑒𝑒j𝜔𝜔𝜔𝜔, 𝑧𝑧 = −
𝛽𝛽
2
∨ 𝑧𝑧 =

𝛽𝛽
2

(19) 

When this is analysed in detail it is apparent that the motion of the fibre outside the excited region 
consists of outward travelling waves and that inside the excited region is a standing wave pattern 
dependent on the length 𝛽𝛽 of the excited segment. 
 
To determine the full response to a mechanical disturbance on the optical fibre, the radial motion is 
also required. Since the fibre is thin and lateral inertia can be neglected, the stress-strain relationship 
will suffice to calculate the radial displacement and strain. The relationship is given in equation (9). 
Keeping in mind that angular and radial stress are equal for the axisymmetric case and transforming 
stress-strain relationship (9), the radial strain is given by: 

𝜖𝜖𝑟𝑟 =
𝜎𝜎𝑟𝑟(1 − 𝜈𝜈 − 2𝜈𝜈2)

𝐸𝐸
− 𝜈𝜈𝜖𝜖𝑧𝑧 (20) 

The radial displacement can be calculated by integrating the radial strain over the radial coordinate: 

𝑢𝑢𝑟𝑟(𝑟𝑟, 𝑧𝑧, 𝑡𝑡) = �𝜖𝜖𝑟𝑟(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑟𝑟 = 𝑟𝑟𝜖𝜖𝑟𝑟(𝑧𝑧, 𝑡𝑡) + 𝐶𝐶 (21) 

The integration constant 𝐶𝐶 can be set to 0 since, for axisymmetric excitation, 𝑢𝑢𝑟𝑟(0, 𝑧𝑧, 𝑡𝑡) = 0. 
 
4 APPROACH TO STUDY A MULTI-LAYERED ROD 
According to McNiven et al.20 and others21–27 the exact solution for both a homogeneous and a multi-
layered cylindrical rod can be derived from 3-D elasticity equations using the method of potentials 
and the Helmholtz decomposition in cylindrical coordinates. The resulting solution is a complicated 
equation involving a combination of Bessel functions of the first and second kinds. The boundary 
conditions required to calculate the dispersion relation (wavespeed vs. frequency) in an infinite freely 
vibrating clad fibre for axisymmetric motion are as follows (see McNiven et al.20): 
 

i. Continuity of radial displacement at the interface between two layers 𝑢𝑢𝑟𝑟1(𝑅𝑅1, 𝑧𝑧) =
𝑢𝑢𝑟𝑟2(𝑅𝑅1, 𝑧𝑧) 
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ii. Continuity of axial displacement at the interface between two layers 𝑢𝑢𝑧𝑧1(𝑅𝑅1, 𝑧𝑧) =
𝑢𝑢𝑧𝑧2(𝑅𝑅1, 𝑧𝑧) 

iii. Continuity of radial stress at the interface between two layers 𝜎𝜎𝑟𝑟1(𝑅𝑅1, 𝑧𝑧) = 𝜎𝜎𝑟𝑟2(𝑅𝑅1, 𝑧𝑧) 
iv. Continuity of shear stress at the interface between two layers 𝜏𝜏𝑟𝑟𝑧𝑧1(𝑅𝑅1, 𝑧𝑧) = 𝜏𝜏𝑟𝑟𝑧𝑧2(𝑅𝑅1, 𝑧𝑧) 
v. Continuity of radial stress at the outer layer of the rod 𝜎𝜎𝑟𝑟2(𝑅𝑅2, 𝑧𝑧) = 0 for the dispersion 

calculation and 𝜎𝜎𝑟𝑟2(𝑅𝑅2, 𝑧𝑧) = −𝛥𝛥(𝑧𝑧)𝑒𝑒j𝜔𝜔𝜔𝜔 for the acoustic excitation 
vi. Shear stress vanishes at the outer layer of the rod 𝜏𝜏𝑟𝑟𝑧𝑧2(𝑅𝑅2, 𝑧𝑧) = 0 

Stress-strain relationships are required to connect the boundary conditions i-vi and the displacement 
solutions derived from the potential method. The resulting set of homogeneous equations for the “free 
vibration” have solutions only when determinant of the coefficients of a 6x6 matrix D is equal to zero. 
From setting the determinant equal to zero the dispersion relation can be calculated. The 
homogeneous rod excited by an external pressure only required one boundary condition, which is the 
continuity of stress at the outer layer of the cylinder. 
 
The exact solution is complicated and difficult to interpret, thus the current research effort is directed 
towards deriving a simplified model using a one dimensional equation for the clad rod as derived by 
Lai25,26 and using a plane strain approximation for the cross-section of the coated fibre12,28,29. 
 
5 RESULTS OF NUMERICAL AND ANALYTICAL MODELS 
Finite element models have been created and used for comparison with the analytical model. 
Perfectly matched layers (PML) are used to simulate an infinite rod. Material parameters used in the 
numerical modelling are summarised in Table 1. All the parameters were taken directly from Comsol 
material library. The results in this section serve two purposes: to validate the analytical model and 
to understand the vibro-acoustic behaviour of the sensor. 
 
Figure 1 depicts the spatial response of complex axial displacement due to a unit acoustic pressure 
at 10 kHz applied over a region of length 𝛽𝛽 = 0.1 m. The analytical response was calculated using the 
analytical expressions from Section 3. The real part of the response can be thought of as a snapshot 
at  = 0 . As can be seen from Figure 1, the agreement for axial displacement is excellent apart from 
the perfectly matched layer (PML) regions, where the wave decays as expected. 
 
The corresponding results for the radial strain are shown in Figure 2. Agreement between analytical 
and numerical models is again excellent. Moreover it can be observed that the sign of the radial strain 
is opposite to the axial strain which means that the second term in equation (6) partially “cancels out”, 
which means that the sensitivity of the fibre optic sensor is in this case mainly dictated by the axial 
strain. 
 
Next the FE model is used to study coated fibres. Figure 3(left) shows the axial strain response of a 
coated fibre for three frequencies, 100, 1000 and 10000 Hz. The coating is a generic acrylic plastic 
with external radius 1.25 mm, i.e. 5 times that of the fibre. The sensitivity within the excited region is 
largely independent of frequency, but wave effects are apparent outside the excited region at high 
frequencies. Figure 3(right) compares the results for the bare fibre, the coated fibre, and fibre coated 
with a steel casing. The acrylic coating increases the sensitivity by 26 dB (factor of 20) whereas the 
steel coating reduces it slightly. 
 
Figure 4(left) shows the effect on the fibre response of increasing the outer radius of the cladding. 
Increasing the radius improves the sensitivity of the sensor. However there is a limit to this approach 
and further increasing the radius has only a small effect. Figure 4(right) shows the effect of varying 
the Young’s modulus of the fibre coating. The results are given for different values of the ratio of 
Young’s moduli of the coating 𝐸𝐸1 and the cladding 𝐸𝐸2, i.e. 𝐸𝐸 = 𝐸𝐸1/𝐸𝐸2. Decreasing the Young’s 
modulus of the coating (i.e. larger values of 𝐸𝐸) increases the sensitivity of the response, whereas 
higher values make the fibre less responsive. Again there is a limit to this approach.   
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Figure 1 Comparison of complex axial strain spatial response calculated using analytical 
model and numerical FE model, PML located at z = ±0.5 m and PML length 0.75 m at each 
end. Load was applied at −𝛽𝛽/2 > 𝑧𝑧 > 𝛽𝛽/2, with 𝛽𝛽 = 0.1 m. Frequency of the excitation 10 kHz. 
Results evaluated for homogeneous silica rod with 0.25 mm radius 

 
Figure 2 Comparison of complex radial strain spatial response calculated using analytical 
model and numerical FE model, PML located at z = ±0.5 m and PML length 0.75 m at each 
end. Load was applied at −𝛽𝛽/2 > 𝑧𝑧 > 𝛽𝛽/2, 𝛽𝛽 = 0.1 m. Frequency of excitation 10 kHz. Results 
evaluated for homogeneous silica rod with 0.25 mm radius 
s.  
 

  
Figure 3 Magnitude of axial strain in dB ref 1. Left: fibre coated with acrylic plastic 1.25 mm 
radius at different frequencies. Right: comparison of bare fibre (0.25 mm radius) with different 
coated fibres (1.25 mm radius) at 1 kHz. Numerical FE modelling results  
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Figure 4 Effect of increasing the radius of the cladding Rratio=R2/R1 (left) and changing the 
Young’s modulus of the coating E=E1/E2 (right) on the magnitude of the axial strain, 
frequency 1 kHz, L=0.1 m, Values in dB ref 1 

Table 1 Summary of the material parameters (𝑐𝑐 = �𝐸𝐸/𝜌𝜌) 

Material Density 𝜌𝜌 [kg/m3] Young’s Modulus 𝐸𝐸[GPa] Poisson’s Ratio 𝜈𝜈 Wave speed 𝑐𝑐[m/s] 
Silica glass 2203 73.1 0.17 5760 
Acrylic plastic 1190 3.2 0.35 1640 
Steel 7850 205.0 0.28 5110 

 
6 DISCUSSION AND CONCLUSIONS 
An initial study has been presented of the vibrational response of a fibre excited axisymmetrically 
along a finite section. This is a fairly complicated phenomenon: travelling waves are generated at the 
edges of the excited region, which can potentially complicate interpretation of the results from the 
optical fibre system. It has also been shown that using a softer material for the cladding can improve 
the sensitivity of the sensor, in the case of a generic acrylic plastic by a factor of 20. Moreover, 
increasing the radius of the coating and softening of the material (reducing Young’s modulus) can 
improve the sensitivity further; however there is a “saturation limit” for both approaches.  
 
This study has several limitations such as neglecting damping in the fibre, so the actual extent of the 
travelling wave is unknown. The analytical model for the coated fibre is still under development. This 
model is desirable as it would help understanding of the wave generation in the fibre, it would serve 
as a design aid to choose an appropriate coating and also improve speed of calculation. Other 
important factors to consider are the photo-elastic coupling, spatial integration of the sensors along 
the gauge length, and the effect of relative phase detection in Rayleigh scattering based systems. 
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