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ABSTRACT 
Technological advancements in microelectronics and continuing research into signal 
characterisation and classification techniques have lead to promising results in developing an 
advanced sound meter.  This instrument would be capable of characterising a sound field in 
terms of the relative contributions of the different noise sources.  This paper provides an 
overview of this collaborative project, due for completion in October 2009, and the milestones 
that have been reached.  In particular, the consideration and implementation of sensors and 
systems, the signal processing algorithms of source identification and classification, and the 
potential uses of the instrument in specific noise assessments in the UK are discussed. 
 

1. INTRODUCTION 
The collaborative work of three Universities; Newcastle upon Tyne, York and Southampton, 
has led to promising results in the development of an advanced sound meter that could 
provide a powerful measurement platform for many applications ranging from environmental 
noise assessments to the recording and evaluation of a variety of soundscapes. 
 
Partners at the University of Newcastle upon Tyne have developed a multi-sensor technique 
for localising sound sources.  In their particular method, the commercially available 
SoundField microphone probes have been used for 2D and 3D sound source localisation.  
Also, known beamforming techniques have briefly been investigated as an alternative 
technique for source localisation.  Partners at the University of York have made use of a 
single SoundField microphone probe instead for developing a single-sensor technique for 
source localisation, separation and signal classification.  Finally, partners at the University of 
Southampton have investigated the potential uses of ISRIE in existing noise legislation, 
planning and guidance and have also liaised with a wide range of stakeholders that could 
directly benefit from the use of such an advanced sound instrument. 
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2. ACOUSTIC SOURCE LOCALISATION 
Over the course of the ISRIE project the co-authors at Newcastle University implemented an 
acoustic localisation system that is capable of locating a single sound source using at least 
three omni-directional microphones (i.e. 2D linear arrays) in a reverberant indoor environment 
with high accuracy for angle detection and small errors for distance estimation1.  Sound 
source localisation in a 3D environment has been achieved by utilising the commercially 
available SoundField probes. 

 
Figure 1 shows the use of three acoustic sensors in the context of a sound localisation 
system. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Three-microphone array system for acoustic monitoring1. 
 
The three acoustic sensors (omni-directional or 3D SoundField microphones) capture the 
sound simultaneously and the Time Delay Estimation (TDE) is extracted from any two sound 
signals from the three sensors using the Generalized Cross-Correlation (GCC).  This method 
would ultimately derive sound source direction and distance through triangulation and 
geometric parameters.  The three microphones are positioned in a straight line and the sides 
of the triangles formed by the source and each microphone represent the directional 
propagation paths from the source to each microphone.  The direction of each propagation 
path is determined from the time differences between the signals arriving at the microphones.  
GCC is used to increase robustness to the adverse effects of early reflections and 
reverberation. 
 
A. The 3 SoundField Microphone Method 
Three SoundField SPS422B microphones were arranged in a straight line in order to achieve 
source localisation in a 3D environment1.  Each microphone output is formed into a special 
signal format, the B-format, where four channels represent the velocity component in the three 
Cartesian directions; X (front-back), Y (left-right), Z (above-below) and one omni-directional 
signal, W, representing the pressure component.  These signals are then fed into a PC for 
post-processing. 
 
The Y and Z channel will generally be the same due the linear arrangement of the probes.  
The 2D configuration can be used for tilt and yaw estimation of sound direction in 3D.  The X 
and W were therefore used for estimation in the experiment.  With this arrangement, it has 
been possible to locate a single sound source in a reverberant indoor environment with an 



accuracy of 1° for angle detection and errors less than 4% for distance estimation.  A 
rearrangement of the soundfield array in the Z Cartesian direction was tested in order to 
provide estimates of yaw instead of azimuth angles.  The W and Z microphone outputs were 
used for the estimation and the results were similar.  The SoundField probes could therefore 
potentially be used in a commercial source localisation system, where the sensitivity of these 
microphones to sounds arriving from different directions will be applied to source localisation 
in planes other than that defined by the line of the array. 

 
B. Beamforming Techniques 
In the literature, beamforming is another suggested technique that has extensively been used 
in developing instruments for soundscape recognition, identification and sound source 
localisation2, 3. The beamforming technique is a technique that searches for a peak (or peaks) 
by achieving a full directional scan in order to determine the source(s) direction(s) from this (or 
these) peak(s). This can be achieved by delaying and summing the acoustic emitted signals to 
minimise the noise effects and enhancing (or maximising) the amplitude of the point (or 
direction) that represents the location of the sound source2, 3. The sound source can be 
considered to be in the near-field if the wavefront is modelled as spherical, whereas it is 
considered to be in the far-field if it is assumed to be planar3. The consequences of these 
assumptions are that in the near-field both the range and Direction of Arrival (DOA) can be 
computed, whereas in the far-field, only the DOA can be estimated due to computational 
costs3. Li3 designed a flexible broad-band beamformer using nested Concentric Ring Array 
(CRA) that can be divided into sub arrays, where each sub array can cover a specified 
operating range.  In our study, the acoustic camera, which mainly includes a microphone array 
of Star 36 sensors4, a data-reader device, a laptop computer and the "NoiseImage" software4, 
has been used for the investigation on flexible beamforming techniques and instrument 
validation.  The data from this study is currently under investigation. 
 

3. SOURCE SEPARATION 
The task of automated recognition of audio signals is made considerably more complex by 
multiple sources being present in the audio recording, with a consequent reduction in 
recognition accuracy rates. To provide enhanced recognition accuracy, ISRIE employs a 
source separation algorithm prior to the recognition stages.  The separation method 
developed for ISRIE is based on the assumption of W-disjoint orthogonality. That is, audio 
sources are sparse in a time-frequency domain.   The sensor used is a Soundfield ST350, a 
B-format coincident microphone array5, 6 that offers a more portable microphone system over 
the SPS422B. 
 
A. Model 
Consider a 3-dimensional coincident array comprising of 3 orthogonal sets of figure-of-eight 
microphones and an omni-directional microphone at the centre of the array. Given the location 
of the sources, the B-format mixture of signals in the anechoic case can be expressed as: 
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where x , y , z  are the mixtures observed on the Cartesian axis, w  is the mixture observed 

by the omni-directional sensor, and θ , λ  are the azimuth and elevation for the direction of 

arrival of a particular source. 
 
B. Assumptions 
Separation of a given mixture is subject to two conditions on the source mixture being met. 
These are W-disjoint orthogonality7 and radial sparsity. These are described formally below.  
 
W-disjoint Orthogonality 

Two sources is  and js  are W-disjoint orthogonal if the following condition is met. 

 

0),(),( =τωτω ji SS  ∀ τω,,ji ≠  (2) 

where ),( τωS  represents the time-frequency domain transformation of )(ts . 

 
Radial Sparsity 
This a condition placed on the geographical location of the sources. Each source must have a 
unique direction of arrival at the sensor. 
 

),(),( jjii λθλθ ≠  ∀ ji ≠  (3) 

 
C. Direction of Arrival (DOA) Calculation 
Provided the above conditions have been met, the DOA of the B-format audio signal can be 
calculated in the time-frequency domain using a method from Directional Audio Coding 
Scheme (DirAC)8, 9. 
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D. Source Location Estimation 
Using the calculated DOA vectors, it is possible to perform source localisation using a variety 
of techniques. Perhaps the simplest is to construct a histogram over an arbitrary time period, 
and look for peaks. This method, along with another clustering method based on self-learning 
neural networks, has been looked at to perform this task. 
 
E. Demixing 

For each source location, which is denoted 
iE , 

iM  describes a bit mask in the time-frequency 

domain for each source. 
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where δ  provides a user defined angular margin around the source location. 

 
The sources can then be recovered by using the mask to filter W in the time-frequency 
domain. 
 

),(*),(ˆ τωτω WMS ii =  (6) 

from which iŝ  can be gained by performing an inverse time frequency transformation. 

 
F. Results 
Table 1 shows the results from a signal separation experiment. 

 

Table 1: Results from a signal separation experiment. 

Performance Measure Location Speaker 

Signal-to-Interference 
Ratio 
(SIR) 

in mixture 

SIR 
after masking 

SIR 
gain 

Preserved Signal Ratio 
(PSR) 

after masking 

azimuth elevation 

1 -0.17 dB 12.14 dB 12.32 dB 12.32 dB 120 0 

2 -2.96 dB 12.30 dB 15.27 dB 15.27 dB 280 10 

3 -6.81 dB 10.89 dB 17.70 dB 17.70 dB 340 20 

 
The separation algorithm was tested on a mixture of three male speakers reading passages 
from a novel. Each speaker was recorded independently under anechoic conditions, and the 
mixture created by the summation of the three B-format recordings. The recordings were 
performed in this manner to allow analytical comparison of the separated speakers with the 
original recording.  Speakers one and two show much higher Preserved Signal Ratio (PSR) 
results compared to speaker three. This is perhaps unsurprising, considering that speaker 
three has an initial Signal-to-Interference Ratio (SIR) of −6.81 dB. All the speakers are 
intelligible on listening, although there is an appreciable level of crackling on speaker three. 
The SIR gain for all speakers shows excellent results, showing high suppression of the 
interfering speakers, with an average improvement in SIR of 15 dB. These results compare 
well to those listed for mixtures of two speakers10. 
 
As far as the validity of the assumptions, W-disjoint orthogonality has been shown to be a 
valid assumption for speech signals. Acoustic niche theory also suggests an evolutionary 
pressure for this to be the case in the animal kingdom. However, the authors concede that in 
the general case, the assumptions are not guaranteed to hold true.  Further investigations into 
the applicability of these assumptions to a range of situations need to be performed. 
 



4. SIGNAL CLASSIFICATION 
ISRIE will also perform the classification of the separated audio signals which are provided by 
the signal separation as discussed previously. The output of the classification algorithms will 
advise the user of ISRIE which category of sounds a particular signal belongs to. It is 
assumed that the input signal to the classification system contains only one sound source. 
 

A. Sound Categories 
A taxonomy of sound categories has been devised specifically for the purpose of ISRIE. 
Figure 2 illustrates these categories. 
 

 
Figure 2: Urban soundscape categories. 

 
Initially, the soundscape is split into three main categories. Anthropophony relates to sounds 
made or caused by human activity, biophony sounds are those made by animals, and 
geophony encompasses sounds not caused by either of the above. 
 

B. Classification using Time-Domain Signal Coding 
A typical classification system consists of two components: a feature extractor and a 
classifier11. There is sometimes a third component to provide some pre- or post-processing 
either at the input or output to the system. The data that is to be classified will be passed into 
the feature extractor whose role it is to reduce the complexity of the data before it reaches the 
classifier11 thus optimising the classification process. A good overview of a selection of these 
techniques can be found in the comparison made by Cowling and Sitte12. 
 
The feature extraction method that has been used for data reduction in ISRIE is known as 
Time-Domain Signal Coding (TDSC). This is a purely time-domain analysis method which has 
previously shown to be successful in the identification of wood-boring insects13 and in the 
classification of different Orthoptera14.  The data produced by the TDSC algorithm describes a 
waveform by the number of samples (duration - D) and number of minima (shape – S) 
contained within each epoch (signal between 2 consecutive zero crossings) of the waveform. 
The D-S information is stored for a given frame of the waveform by means of a codebook. 
After a signal has been analysed using TDSC, each code within the codebook will have a 
number of occurrences associated with it to describe its D-S characteristics. It is this 
frequency information, the S-matrix, which is then used for classification. A more detailed 
explanation of how TDSC was developed and the other features it can extract from the full 



bandwidth signal is given by Chesmore14. Figure 3 shows how the TDSC analysis fits into the 
classification system. 
 

 
Figure 3: Proposed classification system. The S-matrices for each frame of the waveform are classified 

individually. 

 
It was decided that a neural network approach in the classification would be adopted. Initially, 
an unsupervised Self-Organising Map (SOM) network was used but this struggled to 
differentiate between the test pieces of audio data. Significant improvements in classification 
were gained by introducing supervised learning into the system. A Learning Vector 
Quantisation (LVQ) network was implemented using the LVQ1 learning rule15, 16. Eight 
different categories of sounds were placed into 4 groups: group 1 contained air traffic, air 
conditioning and ventilation units, and building works; group 2 contained road and rail traffic; 
group 3 contained birdsong and also recordings of crickets; and group 4 contained some 
speech examples. The grouping of the sounds was chosen based on how consistent the 
signal was throughout the duration of the recording. After training was completed using a 
training set of 40 recordings, the network was tested using a 30-second test audio file which 
combined audio from each of the 4 groups. Network accuracy for each of the individual groups 
was poor for all but group 1 (88%). However, when combined results were observed for how 
well the system could recognise non-bioacoustic audio (groups 1 and 2), the accuracy rose to 
93%. This shows that it is possible to perform an initial classification using the relatively simple 
methods discussed above. Work is now focused on developing the system further to 
incorporate classifiers to differentiate between the various bioacoustic and non-bioacoustic 
signals. Feed-forward neural networks with backpropagation training are being experimented 
with and are showing positive initial results. 
 

5. APPLICATIONS 
The uses of ISRIE could range from assisting acoustic consultants and planners in making the 
right decision on the most appropriate control measures in a project where noise concerns 
may arise, through to assisting soundscape artists and sound engineers with the recording of 
isolated sound events for either artistic reasons or for the subjective evaluation of different 
soundscapes.  The usefulness of ISRIE in environmental noise impact assessments, such as 
PPG 2417, BS 414218 and noise nuisance applications have previously been discussed19.  
Over the course of this research project, different stakeholders have also been interviewed in 
order to assess what measurement parameters would be required from such an instrument to 
log and what would be the additional benefits from the use of such an instrument. 
 



A. BS 4142 
In BS 4142 assessments, ISRIE could potentially be used to obtain the specific noise level 
LAeq of a source and the background noise level LA90 without requiring the need to measure 
these descriptors separately.  The instrument would offer individual logged values of these 
two environmental noise level descriptors in order to establish the arithmetic difference 
between the intruding mechanical noise level and the typical background noise level without 
the presence of any mechanical plant or industrial noise.  Also, in practice, there are instances 
where it is not possible to obtain separate measurements of these two descriptors, because 
either the mechanical source cannot be turned off in order to measure the background noise 
level, or the mechanical noise cannot accurately be quantified at the receptor’s location due to 
interference from other sources, such as transportation related noise.  ISRIE would be 
capable of deriving these parameters through its discrimination and classification algorithms 
as discussed above. 
 
B. PPG 24 
In PPG 24 assessments, the existing environmental noise levels are established over a 24-
hour measurement period, when planning a new housing development.  The measurements 
are normally unmanned for economic reasons since they cover such an extensive 
measurement period.  Firstly, it is apparent that in mixed soundscapes, where for example 
there is almost an equal contribution of railway and road traffic noise, it is difficult to quantify 
the contributing noise sources, or even determine which is the dominant noise source.  
Therefore, it is not always feasible to establish the most representative noise source category 
in which the noise environment should be assessed in.  ISRIE would be useful in obtaining 
these individual contributions in LAeq terms in order to decide which is the prominent noise 
source in that specific environment.  Secondly, ISRIE would automatically log and classify 
individual events that exceed a certain criterion, such as 82 dB LA,max,S and assess whether 
these transient events are intrusive sources of noise, e.g. mechanical, or non-intrusive, e.g. 
birdsong or sounds from other animal life.  This type of automated assessment is not possible 
with the use of current technology since the noise survey is normally unmanned and these 
individual transient events can only be evaluated and assessed at the post-processing stage. 
 
C. Noise Nuisance 
Environmental Health Officers (EHOs) of Local Authorities in the UK would make use of an 
advanced sound instrument for various reasons.  Firstly, ISRIE would enable them to 
investigate complex noise complaints in the case where it is not clear which mechanical plant 
noise source affects the complainant’s house in a highly built-up area.  Secondly, the problem 
of low frequency noise, potentially originating from tunneling or drilling works, can be an issue 
for some residents in a community. These noise complaints can be difficult to assess with the 
current technology of sound level meters and ISRIE’s characterisation capability would work 
well in these types of problem where the source is of tonal character.  Thirdly, ISRIE would aid 
in monitoring the noise from music events and assist EHOs in reaching decisions upon the 
licensing of commercial premises that may give rise to noise complaints. 
 
D. Other Engineering Consultancy Problems 

The use of a conventional sound level might not be adequate in some cases since there can 
be interference from other noisy equipment when trying to quantify a particular noise source in 
an industrial area.  There are also instances, where the noise of certain installations, such as 



electrical transformers, cannot easily be quantified because either these installations are near 
sources of transportation noise, e.g. motorways, or because there are other 
electro/mechanical installations nearby that may contribute to the overall measured level.  
Also, as part of the Land Compensation Act, difficulties can arise when trying to establish only 
the road traffic components at houses that are situated miles away from a newly constructed 
or modified road.  ISRIE would be capable of solely measuring the traffic noise components 
from the remaining background noise, something that is not possible with the current sound 
level meters.  Similar measurement problems can arise when trying to quantify noise solely 
emanating from racing tracks that might affect nearby communities. 
 
E. Soundscape Recordings 
Recordings of soundscapes is developing in many applications ranging from creating archived 
sound recordings of a variety of animal sounds through to the recordings of any other types of 
soundscape for recreating experiences in art installations, museums and galleries.  The need 
for carrying out recordings of sounds in isolation is important in many applications. At the 
moment, in order to separate different sounds, noise suppression techniques are used in 
order to filter out the remaining sound, or the recording is delayed until the level of the 
intrusive noise has dropped to such a level that it is not significantly contributing to the overall 
level.  ISRIE would be useful in recording these sounds as isolated events and hence 
providing a reference instrument for sound recording. 
 
F. Future Policy 
ISRIE could enable planners to consider the balance between ‘positive’, e.g. natural sounds 
and ‘negative’ sounds, e.g. mechanical-like sounds in a mixed sound environment as part of a 
regeneration plan for improving the quality of life in urban agglomerations or assist in the 
design of new spaces of personal enjoyment and recreation in metropolitan cities.  The first 
step would be to establish which types of sound are considered ‘wanted’ and ‘unwanted’ in 
that environment.  Then, ISRIE would be used as an instrument to establish the current 
percentage of wanted and unwanted sounds through its source discrimination and 
classification algorithms as presented above.  Finally, the management of these sounds would 
involve standard noise abatement techniques along with the potential introduction of more 
wanted sounds.  In the end, ISRIE could be used to assess whether the desired ‘mix’ of 
wanted and unwanted sounds was achieved. 
 

5. CONCLUSIONS 
The need of a network sensor system with the development of algorithms and techniques for 
automatically characterising sounds in a complex sound environment is more evident than 
ever before.  This paper has presented a number of suggested measurement platforms for the 
measurement of sounds along with promising techniques for signal separation and 
classification.  The use of ISRIE could ultimately revolutionalise the way we currently perceive 
soundscapes and could affect the way we measure, assess and record sounds in the future. 
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