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This chapter describes the problem and methodology for the carriage of patient diagnostic samples
from community clinics to a laboratory for analysis, accounting for realistic time constraints and using
practical assumptions. Our definition of land logistics encompasses diesel vans, electric vans and bikes,
and air logistics encompasses aerial logistics drones.

1 Background

Diagnostic specimens (commonly referred to as ‘pathology’ or ‘laboratory’ ‘samples’ or ‘specimens’)
are routinely taken by primary care clinicians across the world to aid in the diagnosis of patient ail-
ments, with roughly 1 in 3 (29%) of visits requiring a diagnostic test (Ngo et al. 2017). After being
taken, samples require transportation to a nearby laboratory, often at a hospital, for analysis so that
patients can be correctly diagnosed and effectively treated (Cherrett and Moore 2020). In the UK,
specimen transport is traditionally carried out by Light Goods Vehicles (LGVs), with samples being
taken from local surgeries to hospital laboratories using set vehicle rounds (NHS and Sedman 2020;
NHS and Nixon 2015). The routing problem can be simplified to one with collections from a set of
known nodes (surgeries/clinics) which are then delivered to a single node (hospital) in a set period of
activity.

Samples typically have a fairly short time frame in which they must be analysed, generally within
the day they are taken, and have specific requirements for storage and transportation (NHS and Sed-
man 2020). As a result, samples should be delivered to the hospital promptly to enable swift diagnosis
and maximise the effective use of laboratory staff undertaking the analyses. The Royal College of
Nursing in Wales (2020) identified that community COVID-19 testing was significantly slower than in-
hospital testing, with less than a third of community test results being turned around the same day, as
opposed to 80% in hospital. Previous studies and anecdotal discussions with hospital staff (McDonald
1972; Allan 2019) have suggested that there may be delaying factors within the surgeries and hospital
(e.g. administrative, staff scheduling, etc.), but these are beyond the control of the logistics carrier
and are ignored in this research. The period of greatest importance is the time spent travelling in the
vehicle as controlled conditions cannot be guaranteed, unlike at the origin surgeries and destination
laboratory (Anaya-Arenas et al. 2016); thus, strict constraints on in vehicle times across all surgeries
served should be applied. Samples are currently collected as part of scheduled collection periods; a
morning shift, and an afternoon shift. During these periods, scheduled sample collections calls are
made to surgeries, regardless of whether a collection is required. One area being explored as part of
this research is the effect of ’dynamic’ collections, where only those sites that have samples to collect
are served.

In addition to collection timing, there is an increasing need to reduce congestion and emissions in
urban areas which contribute to poor air quality, slow transit times, and anthropogenic climate change
(European Commission 2011), with policy makers often stating an aim to move to alternative, more
sustainable transport modes (European Commission 2013). Health care providers are responsible for
around 5% of the total national carbon dioxide footprint in developed nations (Pichler et al. 2019).
Of this, 62% of this contribution can be attributed to medicines, medical equipment, and other supply
chain sources (NHS 2020).
The National Health Service (NHS) in the UK has set a goal to be net-zero by 2040, and improving
the efficiency of logistics operations will be key to achieving this (ibid.). To support this target,
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changes to logistics systems are being explored such as mode-shift and adopting different supply-chain
management strategies (NHS 2020). To this end, this research considers how best to integrate multiple
modes, including vans, cargo bikes, and drones, into existing operations. Costs are an important factor
to consider when implementing such changes, hence the main objective explored in this research is to
minmise the cost of operations whilst considering the introduction of these alternative modes.

Other objectives are also explored in this research, including (i) minimising the maximum in-vehicle
time; (ii) minimising the number of vans; (iii) minimising the total driving time; (iv) minimising the
total fatality risk of the system (for all modes); (v) minimising the total energy requirement of the
system; (vi) minimising the total emissions/pollutants resulting from the system. The emissions can
also be priced, based on Department for Transport Transport Analysis Guidance (TAG) costings and
included in the core cost analyses.

With the use of drones becoming a topic of significant interest in operations research literature,
however there are significant practicalities that are neglected by the assumptions in many studies.
These include the suitability of sites for drones to safely serve them, the effects of wind on drone
trajectories, the effect of third party risk avoidance on drone trajectories, and accurate energy and
emission modelling of all modes. Furthermore, cost assumptions are often overly optimistic and assume
fully autonomous operations, or ignore key expenses such as the purchase and maintenance of the drone.
This study seeks to use more realistic assumptions and apply them to real-world case studies.

2 Problem Description

The complete problem and solution space is described in this section.

2.1 Key Terminology

Surgery = A site producing samples that need to be collected.
Consolidation Surgery/Site = A surgery at which samples are consolidated to and transshipment
occurs.
Hospital = The end destination where the analysis laboratory resides and to which all samples must
be delivered.
Van = A Light Goods Vehicle (LGV) <3.5T Gross Weight (4.25T if electrically powered).
Drone = Uncrewed Aerial Vehicle.
Bike/Cycle = Pedal powered vehicle with limited range and capacity but potential speed advantages
in high traffic areas.
Vehicle = One of: (i) a van; (ii) a drone; (iii) a bike.
Driver/Operator = The staff member operating a vehicle (vans), or set of vehicles (drones).
Shift period = The time window in which samples from a set of surgeries must be be collected and
delivered to the hospital. No vehicle activity can happen outside of this period.
Constant travel condition period = A time interval within a shift period with constant traffic,
weather, and ground risk such that travel times and paths/trajectories are uniform throughout the
period.
Path/Trajectory = The series of streets/points in 3D space taken by a vehicle to get from one site
to another.
Leg = An individual journey between two sites in a route.
Route = Continuous (i.e., no waiting) closed loop of multiple surgery stops, starting and finishing at
the same location, departing at a specific time.
Trunk Route = A route used to service sites directly or to collect from consolidation sites, delivering
to the hospital. Consolidation Route = A route used to service sites and deliver to a consolidation
site for onward transfer by a trunk route. Collection Round = The combination of a trunk route
and a set of consolidation routes that feed the trunk route.

2.2 Master Problem

The BAU activity presents a problem in which a set of known locations/nodes produce samples that
need transporting to a single location/node in reasonable time without incurring excessive cost, conges-
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tion, or environmental impact. In this problem, we aim to plan a set of vehicle shifts to collect samples
from a known set of surgeries and deliver them to a single hospital laboratory for analysis. The exact
numbers of samples produced is not known prior to the collection. Whilst historic data can suggest
sample production rates/trends, these are heavily weighted around the existing van col-
lection schedules, and any new system is likely to cause a shift in these timings regardless.

A day is split into multiple shift periods which do not overlap (e.g. morning shift, afternoon shift,
etc). This problem addresses the planning of an individual shift period in isolation. Surgeries produce
samples that require collection and subsequent delivery within a single shift period. Time points in a
shift period are discretised as a set of k discrete time points, K = {1, 2, 3, . . . , kn}. Traffic and weather
conditions will vary throughout the time period, likely affecting travel times and the trajectories/paths
taken; however, many points in K will have approximately equal traffic and weather conditions. Inter-
vals with pseudo constant traffic and weather conditions are identified within K, with the start time
points of the intervals being defined as {1, k1, k2, k3, . . . , kn−1}. The start of the associated constant
travel condition period for a given point, k ∈ K, is defined as k∗, where k ≥ k∗ and k < k∗ + 1. For
example, the travel durations for a given O-D pair and mode will be uniform for all time points in
k∗ to k∗ + 1, where k∗ + 1 denotes the start of the proceeding time period. In the special case where
k∗ = kn−1, then k∗ + 1 = kn, for the purposes of calculating travel times/durations. These features
are visualised in Figure 1 and examples are given in Table 1.

Figure 1: Time point notation visualised

Table 1: Time point and constant travel condition period examples.
Time Point k∗ k∗ + 1
1 1 k1
2 1 k1
3 k1 k2
4 k1 k2
k k∗ k∗ + 1

We define S as the set of surgeries that require a collection within the given shift period, and H as
the Target Hospital to which samples are delivered and vans and drones are based. The service time
required at each surgery visit is defined as σ, and captures the time spent completing the collection at
each surgery, or delivering at the hospital. The set of all nodes, including the target hospital is defined
as S′ = S ∪ {H}. Vans can also be based at a further subset of surgeries, SE ⊆ S, though must only
be used for purpose of consolidation back to the surgery they are based at for contractual and space
reasons. All vans must finish at the site from which they are based.

Three modes are available in this problem, V , which represents a van; D, which represents a
drone (UAV); and C, which represents a bike. Subsequently, the set of van routes based at the hos-
pital is defined as RV , the set of drone routes based at the hospital is defined as RD, the set of bike
routes based at any site is defined as RC , and the set of van routes based at sites in SE is defined as RE .

The commercial running cost of a van per km is denoted by pV and accounts for the van’s variable
vehicle costs (e.g. fuel, etc.). The commercial running cost of a drone per hour is denoted by pD and
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accounts for the drone’s variable vehicle costs (e.g. power, parts/servicing, etc.). A per hour cost is
used based on the expected part lifespans of the platform being the main driver of the variable costs.
Meanwhile, the commercial running cost of a cycle route is given by a fixed cost per job (route), pJ ,
and a per km variable cost, pC , over a minimum distance Cl.

The travel time for a van journey between a pair of surgeries (i, j) departing at time k is defined
as tVi,j,k. Due to variations in travel conditions, van travel times are approximated as a function of the

travel times within the travel condition periods that the journey spans, where TV
i,j,k∗ is the travel time

when departing at k∗ ∈ K.

tVi,j,k = min(1,
(k∗ + 1)− k

TV
i,j,k∗

)× TV
i,j,k∗ +max(0, 1−

(k∗ + 1)− k

TV
i,j,k∗

)× TV
i,j,k∗+1 (1)

It is assumed that no journey between an O-D pair spans more than two travel condition periods,
hence TV

i,j,k∗ is constant and no period beyond k∗ + 1 need be considered for each pair departing at
time k.

At different time points, the chosen path/trajectory of a van may also vary; thus, the distance of
the travelled path between a given O-D pair at time point k, lVi,j,k, is approximated in a similar way,

where LV
i,j,k∗ is the travel distance when departing at k∗ ∈ K.

lVi,j,k = min(1,
(k∗ + 1)− k

TV
i,j,k∗

)× LV
i,j,k∗ +max(0, 1−

(k∗ + 1)− k

TV
i,j,k∗

)× LV
i,j,k∗+1

Analogously, drone travel times and distances are approximated using the same formulation and
are denoted by tDi,j,k and lDi,j , respectively. Additionally, the energy requirement for a drone to travel

between a pair of surgeries (i, j) at departure time k is defined as ϵDi,j,k and is approximated in a

similar manner, where ϵDi,j,k∗ is the travel energy requirement when departing at k∗ ∈ K, and a drone’s
maximum energy capacity is denoted by Dϵ.

ϵDi,j,k = min(1,
(k∗ + 1)− k

TV
i,j,k∗

)× ϵVi,j,k∗ +max(0, 1−
(k∗ + 1)− k

TV
i,j,k∗

)× ϵDi,j,k∗+1

Conversely, cycle travel durations are deemed to be independent of departure time, thus the travel dura-
tion between a pair of surgeries (i, j) is given as tCi,j ∀k ∈ K and travel distance is given as lCi,j ∀k ∈ K.

For practical reasons (e.g. landing space, staff resource, contracts), drones and cycles may be re-
stricted such that they can only serve a select subset of surgeries. For drones the set of permitted sites
is defined as SD ⊆ S′, and for cycles SC ⊆ S′. The set SC only contains sites within large urban areas
due to the service areas of gig-economy courier companies.

Let vk = (H, s1, . . . , snv
, H) ∈ RV be a trunk van route departing at time k, where nv denotes

the number of surgeries being visited, si ∈ SV , ∀i ∈ {1, . . . , nv}. Note that all trunk vans are based
at the Hospital, H, and must return to H.
Each trunk van route has an associated distance, denoted by lvk

and is calculated by summing the
distances of the constituent legs of the route, each departing at time ks, where s denotes the departure
surgery:

lvk = lVH,s1,k
+

nv−1
∑

i=1

lVi,i+1,ksi

+ lVsnv
,H,ksnv

Each trunk van route also has an associated time, denoted by tvk and is calculated by summing the
durations of the constituent legs of the route, each departing at time ks, where s denotes the departure
surgery:

tvk
= tVH,s1,k

+

nv−1
∑

i=1

tVi,i+1,ksi

+ tVsnv
,H,ksnv

+ nvσ

The departure times (ks) and durations/distance of the route’s constituent legs are derived from the
departure time of the route such that no waiting time is incurred; e.g. a route departing at time k
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will have a first leg departure k, and a second leg departure k + tVH,s1,k
, and so on. Waiting time for

any reason (e.g. arriving before consolidation rounds have finished, or waiting for traffic changes) is
not permitted. Furthermore, σ is embedded in tvk and the variable running cost of a given van route
is calculated as pvk = pV lvk

.

Similarly, let esk ∈ RE be a consolidation van route departing at time k, where each van route
starts and finishes at s ∈ SE . The distances and timings of the consolidation van routes are denoted
by les

k
and tes

k
, respectively, and are calculated in the same way as trunk van routes, but with the start

and finish at surgery s.

Analogously to trunk vans, a trunk drone route is defined as dk ∈ RD. Further to the definition
detailed for van routes, drones are restricted due to regulation and capacity, and can only serve one
surgery per collection; thus, nd = 2 ∀dk ∈ RD, where the number of surgeries visited is equal to nd

denotes the number of surgeries being visited. Furthermore, the sites visited must be in the list that
permit drone service; si ∈ SD, ∀i ∈ {1, . . . , nd}. Note that all drones are based at the Hospital H
and must return to H. On arrival back at the hospital drones and electric vans are also subject to a
downtime duration, B, in addition to the embedded service time, to allow for battery changes/charges
to take place prior to their next departure. Each trunk drone route also has an associated distance
and time, denoted by ldk

and tdk
, respectively, and the variable running cost of a given drone route is

calculated as pdk
= pDtdk

Furthermore, the energy requirement to perform drone route is denoted by ϵdk
. ϵdk

is calculated as
the sum of the energy requirements between the surgeries visited ϵdk

= ϵDH,s1,k
+ ϵDs1,H,ks1

. To ensure

that a drone route can be safely undertaken, an energy limit is applied with a safety factor (FoS);
ϵdk

≤ FoS ·Dϵ.

Likewise, we define a consolidation bike route based at surgery s as csk ∈ RC with a departure at
time point k. The number of surgeries being visited is denoted by nc, and given capacity constraints
for cyclists (maximum load equal to three surgeries’ worth of samples), we constrain routes in RC such
that nc ≤ 4. It should be highlighted that the bike route should start and end at the same surgery
s ∈ SC .

Each bike route also has an associated distance and time, denoted by lcs
k
and tcs

k
, respectively.

Additionally, cycle routes are subject to a time constraint of tcmax
or less to ensure the cycle routes

can be managed as discrete gig-economy tasks; tcs
k
≤ tcmax

. The variable running cost of a given cycle

route is calculated as pck = pJ + pC(lck − Cl)

Surgeries can be served by:

• Trunk van route or drone route directly to the hospital; or

• Cycle route directly to the hospital (if the route is based at the hospital); or

• A local van route to a surgery, and then onward by trunk van or drone; or

• A cycle route to a surgery, and then onward by trunk van or drone.

Hence, we define two supersets of routes: R′ = {RV , RD} which contains all of the trunk routes
(drones and vans originating at H); and R′′ = {RC , RE}, which contains all of the consolidation routes
(bikes and vans). An individual trunk route (drone or van route starting at H) is denoted by αk ∈ R′,
and an individual consolidation route (local van or cycle route) based at s is defined as βs

δ ∈ R′′. The
notations associated with αk and βs

δ are analogous to the original route definitions, with δ denoting
the departure time of the consolidation route.

A collection round, rk = (αk, R
′′
αk

), is defined as the combination of a single trunk route αk ∈ R′

with a subset of consolidation routes R′′
αk

⊆ R′′ such that for any given consolidation route βs
δ ∈ R′′

αk

based at surgery s, it is satisfied that s ∈ αk, i.e, any consolidation route in R′′
αk

is based at a surgery
that is being visited by trunk route αk. Furthermore, other than surgery s where each βs

δ begins/ends,
the consolidation routes in R′′

α do not share any other surgeries; i.e. no surgery is served by multiple
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consolidation routes. We define the set of all collection rounds as R, and each collection round is
denoted by rk = {(αk, R

′′
αk

)| αk ∈ R′, R′′
αk

⊆ R′′}, rk ∈ R.

Note that, since R′′
αk

could be empty, then it can satisfied that R′ ⊆ R. The set of surgeries
served by all of the constituent routes of rk is denoted by Srk . Additionally, it should be noted that a
maximum of 2 stages can occur in a collection round; consolidation to a surgery, followed by trunking
to the hospital. Chained consolidation (e.g. bike-local van-bike-trunk van) is not permitted.

Bike routes that start and end at the hospital are permitted in order to serve the catchment area
of the hospital directly. To account for this in the model formulation, a dummy van route, v0k ∈ RV ,
is created. Starting and ending at the hospital, with no intermediate stops (v0k = (H,H)) and a travel
time of zero (tv0

k

= 0), v0k enables a collection round where surgeries which are cycle served only, r0k.
These routes can depart at any time within the collection so that they are completed by the end time.

The collection round’s departure time, k, is given by the trunk route’s departure time. Meanwhile,
the consolidation routes have their own departure times, and for a consolidation round to be feasible,
their departure must result in the consolidation routes in R′′

αk
being complete before the trunk route,

αk, serves the consolidation site, i.e. they do not incur waiting time for the trunk route.

Some example collection round scenarios are given in Table 2 to demonstrate different arrangements
of collection rounds.

Table 2: Example collection round scenarios, illustrating potential offsets. Offsets only demonstrated
at the first stop, other delays may occur. All consolidation routes deliver to first stop in these examples
unless otherwise stated. CR = Collection Round
Scenario Trunk Route

in CR, Dep.
Time

Consolidation
Routes in
CR, tβs

δ

Trunk Time
to First Stop

Latest De-
parture(s) for
Compatible
Consolidation
Routes

Trunk Route
Duration

CR Duration

Van + 1 bike,
trunk offset

(H,s1,s2,s3,H),
10:00

(s1,s4,s5,s1),
25 mins

20 mins 09:55 80 mins 85 mins

Drone + 2
bikes, no
trunk offset

(H,s1,s2,s3,H),
10:00

(s1,s5,s1),
15 mins;
(s1,s4,s1), 10
mins

20 mins 10:05, 10:10 80 mins 80 mins

Drone + 1 lo-
cal van, trunk
offset

(H,s1,s2,s3,s4,H),
10:00

(s1,s5,s6,s7,s1),
30 mins

20 mins 09:50 70 mins 80 mins

Van + no
bike, no van
delay

(H,s6,s7,s8,H),
10:00

- 30 mins 0 mins 85 mins 85 mins

Bike direct to
hospital

(H,H), 10:00 (H,s9,s10,H),
23 mins

0 mins 09:37 0 mins 23 mins

The commercial variable running costs of operating a given collection round is denoted by prk ,
and is a sum of the running costs (pvk

, pdk
, pck , pek), taken from the respective routes featured in the

collection round, pr = pαk
+
∑

βs

δ

∈ R′′
αpβ .

A binary decision variable, xrk is introduced to select collection rounds:

xrk =

{

1 if the collection round is used in the solution

0 otherwise;

We also define the integer variable Vrk for each collection round, denoting the number of van routes
(trunk and consolidation) being used in a collection round. Likewise, Drk defines the number of drones
(trunk) being used in a collection round. Vans and drones can be reused in the shift period, and in
any solution, the number of vans required throughout the entire shift period will never exceed the
maximum number in use across all time points in K (e.g. Table 3). This is particularly important
when calculating the number of vehicles and drivers/operators that contribute to the cost, with each
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van being operated by a single driver who is on-duty and paid for a the entire shift period (regardless
of how long they are driving routes). Similarly, each drone is monitored by an operator who is also
paid for the entire shift period, but can monitor up to δ drones simultaneously.

Table 3: Example of the number of vans used in a given solution. Shading indicates van in used. The
maximum across all time points in 3.

Time Point 1 2 3 4 5 6 7 8 . . . k

Van 1
Van 2
Van 3
# In Use 1 2 3 3 2 1 1 2 2 2

Hence, the maximum number of vans and drones used throughout the entire shift period are given
by:

AV
max ≥

∑

vk⇒k,vk ̸=v0

k

Vrkxrk ∀k ∈ K

AD
max ≥

∑

dk⇒k

Drkxrk ∀k ∈ K

The number of drone operators required for a shift period is defined by AO
max; an integer variable

constrained such that:

AO
max ≥

AD
max

δ

AO
max <

AD
max

δ
+ 1

The standing cost of a van and driver (combined) per shift period is given by WV , whilst the
standing costs of a drone and operator per shift (separate) are given by WD and WO, respectively.
The costs of vehicle fixed costs such as insurance, maintenance, etc. are included in WV and WD,
whilst the labour cost for the delivery window is included in WV and WO. Due to the contractual
arrangement of the drivers/operators, it is assumed that pay is guaranteed for the shift period. Hence,
the fixed costs of a solution are denoted by WV AV

max and WDAD
max +WOAO

max for vans and drones,
respectively. Bikes are considered to be more ad-hoc in arrangement and can be carried out as stan-
dalone discrete tasks (i.e. are not compiled into shifts) within a given time window.

The monetised indirect costs from the collection system (e.g. greenhouse gas emissions, pollutants)
are calculated as a function of the selected routes and arrival times of samples and are denoted by pz.

The objective of this problem is to minimise the sum of the operating costs and indirect costs for
a shift period. To this end, a multi-term objective function is used to sum the cost of the selected
routes, standing costs of each mode, and the indirect costs (Equation 2); meanwhile, the constants
θ1, θ2, θ3, and θ4 are used to balance the different each elements of the cost and allow weighting to-
wards different modes or the indirect costs should a decision maker wish to favour a particular mode. It
should be noted that in the event that the indirect costs are not known, the weighting can be set to zero.

The problem is constrained such that collection round durations are subject to time constraint
of tmax

r minutes or less (typically set to 90 minutes maximum (McDonald 1972)) to ensure timely
delivery of samples (Equation 3). A given collection round duration is calculated as the maximum
time between the first collection in any constituent round in rk and delivery to the hospital. If cycle
consolidation routes are used in rk, the time is measured from the start of the cycle route to account
for any uncertainty in the performance of 3PL logistics carriers.

The problem assumes an unlimited number of vehicles and operators/drivers are available, mean-
ing the problem is optimisation focused, rather than decision. It should be noted that it is possible
for a site to be served more than once by a given mode to ensure time constraints are met without
relaxation. The constraints relating to collection round durations must be maintained.
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To ensure all sites are served at least once, a further constraint is also added (Equation 4), whilst
xr must be binary (Equation 5).

Min : θ1
∑

rk

xrkprk + θ2W
V AV

max + θ3W
DAD

max +WOAO
max + θ4p

Z (2)

tr ≤ tmax
r (3)

∑

rk;i∈Srk

xrk ≥ 1 ∀ i ∈ S (4)

xrk ∈ {0, 1} ∀ r ∈ R (5)

3 Solution Approach

The solution algorithm used is an adaptation of the Clarke and Wright Savings Algorithm (Clarke and
Wright 1964) (hereafter C&WSA). The main change to the algorithm is that multiple savings options,
including the combining of routes, are tested. The initial solution is constructed of multiple routes, with
each site within range of the collection round duration being visited by one van route (i.e. one route per
site). Those sites beyond the range of the collection round limit are subsequently processed as drone
routes or consolidation routes (as a connecting cycle or van), connecting to one of the other van rounds.

The constructed routes use the maximum duration for all arcs in the route based on the time
matrices for the shift period, giving an upper bound. With each iteration (including the initial so-
lution), the potential route options are compiled into vehicle shifts based on an adapted best-fit bin
packing algorithm. The packing algorithm, hereafter referred to as the adapted best-fit (ABF), selects
routes based on the percentage difference between the maximum route duration (i.e. the constructed
route), and the duration at the the tested position (the assigned route). Those with a greater dif-
ference/improvement over the upper bound are fitted first, encouraging better positioning of more
variable routes. Consolidator routes are positioned adjacent to their associated trunk route with no
flexibility to change their timing.

To improve computational speed, the proposed savings offered by implementing each change are
stored for later recall. Where several routes may have changed in previous iterations, if a stored change
is recalled, the realised saving may be less than initially calculated due to time constraints when com-
piling new shifts. To prevent unexpected deviations from realised savings, a first-fit decreasing packing
algorithm (hereafter FFD) is applied to estimate savings, using the constructed route durations only
(i.e. based on the upper bound, no recalculation of times). If estimated savings are greater than 5%
different from the stored saving, the actual saving is recalculated.

In each iteration of the adapted savings algorithm, three different improvement options are tested:
(i) combining routes of the same mode, as in the original C&WSA; (ii) introducing a drone route in
place of a van route stop, eliminating the stop from the existing route (or eliminating the route if it
is the only stop); and (iii) transferring from a trunk route to a consolidating route (e.g. from a van to
a bike that consolidates to a van route). In the trunk to consolidation options, if a surgery is already
used as a consolidation site, it cannot be reallocated to a consolidation route.

To reduce the greedy nature of the initial algorithm, a shortlist of the best improvement options was
used in each iteration, with a random item being carried forward. Should a change be sufficiently ben-
eficial, it will reoccur for multiple iterations and likely be selected. A local search is also subsequently
applied to investigate: (i) a 2-opt algorithm within each route; and (ii) transferring sites between routes.

The use of a kick is also being tested, whereby a given set of sites is removed from the solution
and re-introduced as their Hospital-Surgery-Hospital drone routes where possible, or Hospital-Surgery-
Hospital van routes if drones are not permitted at that site. The adapted savings algorithm and local
searches are then reapplied. Sites are either chosen at random as a given percentage of all sites, or are
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taken from the longest, or the shortest routes in the best solution. The inter-route local search could
also be applied as part of the saving options, with each move being one option, or a full search of all
sites being the option considered in the shortlist.

Multiple visits to the same site is not considered by the algorithm. Whilst this does limit the
potential ability to combine consolidation van rounds into single shifts, it reduces the solution search
space and computational time. This is unlikely to cause significant decrements in solution quality due
unless the algorithm is used in a case study area where it is heavily dependant on consolidation (e.g.
very long trunk stem mileage). If consolidation van costings are not fixed to the full shift model, their
use may also increase, because shift compiling is less of a driving factor in their cost.

4 Integrating With eDrone Modelling Suite

To enable more realistic modelling, the Land-Air Logistics Optimiser integrates with the wider eDrone
modelling suite of tools. After a given problem is initially imported, including the sites requiring col-
lection, the destination, available modes, and cost/time constraints/parameters, an enumerated set of
O-D pairs for all constant time points is generated for vans and drones. For bikes, only a single time
point is required due to cycling times not being affected by traffic.

Further realistic constraints can also be applied at this point, such as gig-economy availabil-
ity/service areas, captured via the Stuart (gig-economy delivery operator) API (api-docs.stuart.
com).

The land energy logistics tool (developed by JK) is then queried, using the Google Routing API to
capture the routes and travel times/distances/speeds. The emissions and energy analyses are subse-
quently applied, returning the time, distance, emissions factors, energy requirements, and trajectory
for the O-D pair at a given time. For O-D pairs where cycling is permitted, the process is repeated,
querying a bike route. Emissions modelling is not required for this mode.

If an O-D pair can be served by a drone, each possible time point is queried using the Air Energy
and Risk Route Optimisation (AERRO) tool (developed by AB/AP/JK), identifying a drone trajec-
tory between the points that is optimised in terms of both energy and risk. As with the land energy
logistics tool, the AERRO tool returns a time, distance, emissions factors, energy requirements, and
trajectory for the O-D pair at a given time. If a drone cannot be used at a given time due to adverse
weather, the tool will return a failure.

The data is subsequently fed into the LALO tool, where the Adapted Clarke and Wright Savings
Algorithm with the Adapted Best-Fit Packing Algorithm is used to identify a solution.
The objectives of the algorithm can be changed to optimise towards alternative objectives, as detailed
in Section 1
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