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1 INTRODUCTION 

The Freight Optimisation with RiSk and mixed-mode Transport Integration (FORSETI) is a logistics 

planning tool, designed to analyse a given situation regarding demand for transport of goods and 

determine how best to deploy and integrate transport resources to meet that demand.  Developed 

with the collection of NHS diagnostic specimens in mind, it can be used tactically (i.e., short notice, 

planning for a near future demand), or strategically (i.e., long-term planning, using historic data). 

 

The logistics transport modes available in FORSETI are diesel or electric vans; bicycle couriers; and un-

crewed aerial vehicles (UAVs; commonly known as drones or Un-crewed Aircraft Systems, UAS). 

FORSETI has been developed around the case study of NHS pathology logistics, where samples are 

taken from patients at doctors’ surgeries and transported to centralised pathology laboratories 

(typically located at large hospitals) for analysis.  The underlying framework of FORSETI could easily 

be applied to other logistics operations through adaptation to the software. 

2 SYSTEM STRUCTURE 

FORSETI is made up of four component tools that integrate with each other but can also be used 

independently (Figure 1). 

 

The first is the Land-Energy-Route-Optimiser (LERO), which takes a given origin-destination (OD) pair 

and identifies (i) the most likely best route between the two sites (supported by the Google API); and 

(ii) calculates the energy requirements for the connection, based on a statistical correction of the 

COPERT environmental model using recorded vehicle energy data captured in the Southampton area. 
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The second is a ground risk optimisation model (GRO), which calculates the best flight trajectory 

between each OD pair with respect to third-party ground risk. It aims to minimise the cumulative risk 

over the trajectory to reduce the probability of fatalities in the event of a drone failure. Failures are 

modelled with either a ballistic, glide, or parachute descent, depending on the drone characteristics; 

meanwhile, the probability of hitting a third-party and causing a fatality is based on the drone’s state 

at the point of failure, its energy on impact, wind conditions, and a statistical distribution of the 

population on the ground, according to census data. Risk optimal trajectories tend to avoid areas of 

high population density as a result. 

 

The third OD tool is the air energy route optimiser (AERO), which produces energy optimal trajectories, 

based on the characteristics of the drone and constraints around its speed and control surfaces. 

Energy optimal trajectories are typically a straight line, following a bell-shaped curve for altitude. In 

FORSETI, AERO and GRO are used in combination to produce trajectories that are balanced between 

energy and risk, resulting in paths that are typically an intermediate of straight-line and avoiding high 

density areas. 

 

The final tool is the Land-Air Logistics Optimiser (LALO), which uses the complete set of OD pair data 

to analyse the best combination of vans, drones, and cyclists to serve the input demand. Optimising 

to minimise a balance of operating cost, emissions, and the maximum in-transit time, LALO uses 

constraints relating to drone site suitability, operator:drone ratios, operating times, and vehicle 

capacities. 

 

The remainder of this document outlines how each component of FORSETI functions in more depth. 

 

Figure 1. An overview of the FORSETI framework, broken down into the four main sections and highlighting the key 

parameters and problem constraints. 
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3 LAND-ENERGY ROUTING OPTIMISER (LERO) 

This section describes the methodology of estimating travel time, energy consumption and emissions 

for land logistics. The assumed definition of land logistics encompasses diesel vans, electric vans and 

pedal bikes.  The work presented in this chapter has been published by Krol et al. (2023). 

 

In assessing the energy consumption of diesel and electric vans, modelling first employs a physics-

based model assuming constant speed. This initial calculation is subsequently refined using a statistical 

model derived from historical data. Both diesel and electric vans undergo a similar process, albeit with 

distinct physics models and forms of statistical corrections. 

 

The chosen physics-based models for this analysis are the Comprehensive Modal Emission Model 

(CMEM) for diesel vans and the Comprehensive Power-based EV Energy Consumption Model (CPEM) 

for electric vans. To determine the appropriate form of statistical adjustment, a Gaussian Process 

Regression is utilised. To construct this adjustment, both CMEM and CPEM are applied to historical 

driving cycles on an instantaneous basis and compared to instances where the instantaneous speed is 

set to the mean velocity. The analysis incorporates a comprehensive dataset of 14,984 driving cycles, 

representing diverse traffic states ranging from highway to urban driving. These data, sourced from 

various regions in the United States, were collated by the National Renewable Energy Laboratory. 

 

The model's validity was verified using data collected from van journeys between different medical 

facilities in the Solent Region, located in the southwestern part of the United Kingdom. These locations 

simulate real-life logistics scenarios, with medical samples being transported to Southampton General 

Hospital for analysis. 

 

The logistics model includes a built-in emissions model for estimating the emissions produced by 

electric and diesel vans.  The pollutants considered are carbon dioxide equivalent1 (CO2e), carbon 

dioxide (CO2), oxides of nitrogen (NOX) and particulate matter (PM10).  Pollutants are calculated using 

emissions factors (EFs) produced by the UK government.  Emissions associated with climate change 

(CO2e and CO2) are calculated using EFs related to vehicle energy and fuel consumption (BEIS & DEFRA 

 

 

1 Total CO2e for all species of greenhouse gases (GHGs) emitted, where CO2e is the amount of CO2 emitted that 
would cause the same time-integrated radiative forcing, over a given time-horizon, as an emitted amount of 
other GHGs. 
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2022) (Table 1).  Emissions associated with detrimental effects on air quality (NOX and PM10) are 

calculated using EFs related to vehicle average speed and distance travelled (DfT 2023) (Table 2). 

 

For climate change pollutants, the two components of Well-To-Wheel (WTW; i.e., total) emissions are 

calculated: i) Well-To-Tank (WTT) emissions associated with fuel production, processing and 

distribution; and ii) Tank-To-Wheel (TTW) emissions associated with fuel used in-vehicle.  The terms 

WTT and TTW are more properly appropriate for liquid fuels (e.g., diesel), and so WTT-equivalent 

(WTTe) and TTW-equivalent (TTWe) have been adopted for electric vans.  WTTe describes emissions 

associated with extraction, refining and transport of primary fuels before use in electricity generation 

and with losses in electricity transmission and distribution.  TTWe describes emissions from generating 

the electricity used in-vehicle. 

 

Air quality pollutants are a concern when emitted in proximity to sensitive receptors (i.e., humans), 

such as when emitted from the tailpipes of road vehicles (Uherek et al. 2010; Smit et al. 2008).  

Therefore, for NOX and PM10, only tailpipe (i.e., TTW) emissions from diesel vans are calculated 

(electric vans are assumed to not produce tailpipe emissions of these pollutants). 

Table 1. Emission factors for CO2e and CO2 based on energy and fuel consumption (BEIS & DEFRA 2022). 

CO2e Emissions EF CO2 Emissions EF 

CO2e WTTe 0.0505 kg CO2e/kWh CO2 WTTe 0.0499 kg CO2/kWh 

CO2e WTT 0.6099 kg CO2e/L CO2 WTT 0.6010 kg CO2/L 

CO2e TTWe 0.1934 kg CO2e/kWh CO2 TTWe 0.1912 kg CO2/kWh 

CO2e TTW 2.5578 kg CO2e/L CO2 TTW 2.5206 kg CO2/L 

Notes: WTTe is Well-To-Tank-equivalent; WTT is Well-To-Tank; TTWe is Tank-To-Wheel-equivalent; TTW is Tank-
To-Wheel. 
 
Table 2. Average speed emission model coefficients for NOX and PM10 tailpipe emissions from diesel vans (DfT 

2023). 

EF 
(g/km) 

a b c d E f g 
Min. 

Speed 
(km/h) 

Max. 
Speed 
(km/h) 

NOX 1.9E-02 2.5E-03 -5.5E-05 6.6E-07 -3.5E-09 2.4E-11 -6.9E-14 10 100 

PM10 2.0E+00 4.6E-01 -5.1E-03 1.4E-04 -2.0E-06 1.4E-08 -7.6E-12 10 110 

Average speed emission model format is EF = (a + bv +cv2 + dv3 + ev4 + fv5 + gv6)/v; where v = vehicle average 
speed (km/h). 
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4 GROUND RISK OPTIMISER (GRO) 

This section summarises the approaches and methods for quantifying and mapping the third-party 

risk (TPR) posed by UAS to uninvolved persons on the ground, in the vicinity of overflight. The model 

is fully parameterised and applicable to a wide variety of aircraft. The approach encompasses all four 

relevant dimensions, that is, three spatial dimensions and a temporal dimension, and is therefore 

highly specific to the operation at hand, aiming to provide the most accurate representation of ground 

risk. There are several steps involved in the procedure and the work  has been published in Oakey et 

al. (2022) and Pilko et al. (2023). 

4.1 Spatiotemporal Population Mapping 

This work estimates actual population distributions from the highest resolution authoritative source 

available, namely census data. Whilst this is likely better than a uniform value being set for population 

density over large areas, this approach can still result in overestimation of the risk posed in urban 

areas due to the loss of resolution caused by using real data. The approach presented here is therefore 

more suited to longer BVLOS operations outside and around urban areas. The decision to use generic 

national data sources instead of attempting to concatenate many local datasets, which may have 

offered finer detail, was made to allow the approach to have a wide spatial applicability. 

 

Estimates for dynamic populations derive from daily workflows segregated by demographic categories, 

for example school children or the elderly, which are mapped to their expected spatial locations for a 

given time. In this case, data from the census detailing the residential population is assumed to form 

100% of the available population and is constant for a given area. The population categories are 

mapped to locations from human activity pattern studies to find the proportions of the population 

located in each of 10 different locations at a given time of day. The temporal population proportions 

must then be located spatially; this requires combination with geospatial geometries appropriate to 

the activity. The residential population in a given area is an estimate from a combination of censual, 

OpenStreetMap (OSM) and National Human Activity Pattern Survey (NHAPS) data. The population 

density of each census area is found from the census data, as shown in Figure 2. 

 

The population density value for each area is then scaled according to the proportion of the population 

that is located in residential locations for a given time of day. This ensures the population spatial 

distribution remains the same compared to the census data. There is no generally available 

counterpart to the census for non-residential areas that could be used to determine population 

densities for such areas on a large scale. Whilst it is possible to find building maximum occupancy data 
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for a smaller collection of buildings, this approach does not scale well to larger or different areas, 

requiring a large amount of manual data input and subsequent updating.  

 

Firstly, the total population must be found. As previously discussed, taking the census data to form 

the total population is suitable. Secondly, the total population value is scaled by the proportions of 

the population for each location, to find the absolute values for the population in each of the locations. 

Next, the geospatial geometries of each location are found using data from OSM. The area for each of 

these geometries is calculated and summed together for all geometries associated with a given 

location. This is repeated for each location. The population and spatial data are then combined to a 

population density by dividing the absolute population value for each location by the total area for 

that location. 

 

Figure 2. Residential Population map for the Southampton area. This shows the maximum density each residential area can 
have. 

 

The road traffic population is derived from historical road traffic and vehicle occupancy estimates. It 

is used in combination with assumptions about the road geometry to derive the density of people 

located on any given location along a road. Historical road traffic is derived from open governmental 

data provided by the United Kingdom Department for Transport in the form of Annual Average Daily 

Flow (AADF) tables. AADF tables are produced by a combination of automatic traffic counters and 

manual enumeration of vehicles at a given point of on the road network.  
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The data used in this work uses the amalgamated traffic direction version, with counts categorized by 

vehicular type. AADF values are scaled by similarly provided values corresponding to hours of the day 

in order to obtain estimates for traffic flow for an average day in the year. Algorithm TKTK is based on 

the projection of each road geometry to a single dimension, followed by the superposition of traffic 

counter locations on the line according to distance along the road. The counter values are then 

interpolated between and projected back onto the original road geometry. This is used to generate a 

population density value for each section of road considered. Figure 3 demonstrates the large 

temporal variation in road population density for the same area at different times. This is calculated 

using Algorithm 1. 

 

Figure 3. Roads population density at around Southampton, UK. Left shows a quiet period during the night, right shows a 
“rush hour” traffic period. 
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Algorithm 1. Calculation of road population density. 

 

4.2 Flight Path Ground Risk Analysis 

The probabilistic approach taken to analyse the risk posed to people on the ground by a UAS is widely 

used in previous work. It is based on the sequential occurrence of independent events, each with 

associated probabilities. The events, in order of occurrence, are: 

1. Loss of Control (LoC) event that results in the UAS impacting the ground 

2. Striking a person(s) as a result of the uncontrolled descent 

3. The struck person(s) being fatally injured as a result 

Previous models are subsequently extended with the addition of time-based quantities: 

 

where x and y refer to the spatial dimensions, t is hour of the day. The hour of the day t is used to as 

input to the spatiotemporal population density model. 

4.2.1 Probability of Striking Persons 

The probability of striking a person, Pstrike, given an impact of a UAS at a position x, y and time t is 
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Where ρ is the population density; Aexp is the lethal area for the impact angle θ. The lethal area is 

found by: 

 

Where the height of a person, hperson, is assumed to be 1.8m, the radius of a human, rperson is assumed 

to be 1.0m and the aircraft radius, ruas, is set to half the maximum dimension of the aircraft considered. 

4.2.2 Probability of Fatality 

The fatality model used here was proposed by Dalamagkidis et al. (2008) and is based upon a logistic 

growth model as shown in Figure 4. The curve is defined by: 

 

where Eimp
K (x, y) is the impact kinetic energy, α is the impact energy required for 50% probability of 

fatality at a shelter factor S = 0.5 and β is minimum impact energy to cause a fatality with no shelter 

(S −→ 0). The shelter factor S(x, y) is in the interval [0, 1] and encompasses shelter effects that 

obstacles in the vicinity of the impact (e.g., buildings, vehicles) have both in terms of blocking the path 

of the UAS, resulting in it not striking a person, and absorbing impact energy. In this work, the 

sheltering factor is set to 0.3 as a conservative average value with more detailed sheltering maps left 

to future work. 

 

Figure 4. Fatality Curves created from the model by Dalamagkidis et al. (2008). 
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4.3 Mapping of Ground Risk 

A region encompassing Southampton, UK is used as an example; a satellite view of the region is seen 

in Figure 5. The upper right of this view also shows Southampton Airport which is only considered later 

through the addition of the corresponding Flight Restriction Zone for UAS around it. 

 

The population density maps generated demonstrate a marked redistribution of population through- 

out the day with residential areas almost regaining their full populations as defined in the census data 

during night-time hours, shown in Figure 6. Conversely, daylight hours demonstrate a shift toward 

industrial, commercial, public and retail areas as people relocate to workplaces and engage in 

commerce. The final ground risk maps can be seen at various times of the day for the same region as 

the population maps. Figure 7 and Figure 8 show the strike and fatality risk respectively for the Swoop 

Aero Kookaburra aircraft at 120m above ground. 

 

 

Figure 5. Southampton region used throughout this paper for demonstration (Maps © Google, 2023). 



FORSETI Overview  e-Drone 

 Page 11 of 25  

 

 

Figure 6. Comparison of population densities at different times of the day around Southampton, UK 

 

Figure 7. Comparison of strike risk maps at different times of the day around Southampton, UK. Swoop Aero aircraft used at 

a height of 120m. 
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Figure 8. Comparison of fatality risk maps at different times of the day around Southampton, UK. Swoop Aero aircraft used 

at a height of 120m. 

5 AIR ENERGY ROUTE OPTIMISER (AERO) 

This section explores the methodology used to generate routes for a UAV through a 3D space that are 

dynamically feasible and energy minimal. There are a series of components that must be defined to 

effectively achieve this, including the energy consumption model, the dynamic equations of motion 

of the UAV, the state space which the drone can operate in, the control vector of the UAV and any 

other constraints that may act on the drone. Each of these components are separately explored int 

this section. The work presented has been published by Blakesley et al. (2022). 

5.1 Energy Consumption Modelling 

In order to achieve minimum energy routes between two locations in a 3D space, a model for the 

energy consumption of a UAV needs to be defined and then minimised within an objective function. 

To compute the energy consumption in the objective function without excessive computational demands 

(and thus avoid long run times), an estimation is used to find the energy consumption during route 

optimisation.  The estimation of the objective function is given by: 

𝐸  =  ∫ ∑𝜔𝑖

4

𝑖=1

𝑡𝑓 

𝑡0 

 𝑡3𝑑𝑡 
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Where ω is the angular velocity of the rotor blades for the ith motor. This is then minimised 

throughout the optimisation by the objective function, given by 

min
𝜔𝑖 

𝐸 

Once the trajectory has been identified, a more detailed model is used to find the exact energy 

consumption. The instantaneous energy, Ei, associated with the i-th motor is evaluated following an 

approach in [9], given by 

 

where KT is the motor torque constant, KV is the motor velocity constant, Tf is the motor friction torque, Df 

is the motor viscous damping coefficient and R is the resistance of phase winding. 

 

5.2 Dynamic Equations of Motion 

The dynamic equations are applied as a constraint to the problem to ensure that the UAV flies 

realistically throughout the trajectory. These equations are formulated as a series of force balancing 

equations in the x, y, z directions, moment balancing equations around the body co-ordinate frame 

and auxiliary equations to convert between the first and second order differential equations systems. 

These are given by 
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Where all variables are given in Table 3. 
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Table 3. Variables used in the air energy route optimisation tool. 

 

5.3 State, Control Vectors and Bounds 

The state space consists of a UAV's position (x, y, z) relative to the earth frame and rotation (φ, ϴ, ψ) 

around the body frame in the x, y, z directions, as well as their rates of change over time, i.e. 

𝑋 = [𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓, 𝑥̇, 𝑦̇, 𝑧̇, 𝜙̇, 𝜃̇, 𝜓̇]
𝑇

, 

and the control vector consists of the angular velocity, ω, of the four motors of the quadcopter, i.e. 

𝑈 = [𝜔1, 𝜔2, 𝜔3, 𝜔4]
𝑇. 

A series of bounds are also applied to the problem to reduce the size of the state space and to 

ensure the drone flies realistically. These are given by 

0 ≤ 𝜔𝑖 ≤ 𝜔𝑚𝑎𝑥, 

0 ≤ 𝑧, 

𝜙𝑚𝑖𝑛 ≤ 𝜙 ≤ 𝜙𝑚𝑎𝑥, 

𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥. 
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6 COMBINED AIR RISK-ENERGY TRAJECTORY OPTIMISER 

In order to include risk as well as energy in the route optimisation framework, a second term is added 

to the objective function. This term queries the risk map at the locations along the trajectory in order 

to find the value of the cumulative risk, R, over the course of the trajectory. The objective function 

becomes: 

min
ωi

𝛼𝑅 + (1 − 𝛼)𝐸. 

The optimiser then finds an optimal route by minimising the objective function. The result for a flight 

between Southampton General Hospital and Hythe Hospital can be seen in Figure 9. 

 

Figure 9. A minimum energy and risk route generated by the AERO and GRO sections of the FORSETI framework between 

Southampton General Hospital and Hythe Hospital. The risk is given by a colour map and a black line is overlaid to show the 

travelled trajectory of the UAV. 
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7 LAND-AIR LOGISTICS OPTIMISER (LALO) 

After collating the OD pair data (see previous sections), LALO is then used to identify the best 

combination of routes to use for a given objective. The work presented in this section has been 

published in Oakey et al. (2022) and Oakey et al. (2023). 

 

Modelling considers vans to operate in rounds of any number of stops, serving any site; drones 

operating to single sites (due to capacity and regulatory constraints), serving only those that are 

deemed drone suitable in the input scenario (e.g., Figure 10); and bikes serving up to 4 sites (due to 

capacity constraints), serving only those that are deemed cycle accessible in the input scenario ( Figure 

11). Range and time constraints can also be applied to the individual routes, as required. 

 

Figure 10. Drone landing site space can influence the suitability of sites for drone service. Note: featured exclusion zone is a 
relaxation on existing regulations. 

 

Figure 11. Area with available gig-economy cyclists in the Southampton area. 
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The LALO model is constructed with the movement of NHS diagnostic specimens from community 

clinics (GP surgeries) to a hospital laboratory for analysis. Current operations use diesel vans that 

complete scheduled vehicle rounds, serving multiple surgeries before each return to the delivery point. 

In the proposed system, routes are designed to work in combination, with cyclists and some vans 

being based at local clinics, completing local consolidation to local clinics; meanwhile, drones and the 

majority of vans are based at the hospital, serving the consolidation sites and others that fall out of 

the range of consolidation (Figure 12). 

 

Figure 12. Schematic of operating strategy 

The model aims to optimise a weighted objective function, balancing a combination of (i) the 

operating costs of the system (p and W values in below equation); (ii) the maximum transit time across 

the system (u value in below equation); (iii) the energy/emissions of the system (Ꜫ value in equation 

below) (Figure 13). The full formulation is given in Chapter 6 of Oakey (2023). The weights (ɵ values) 

can be defined according to the users’ objective requirements. 
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Figure 13. Solution space covered by the objective function 

Other objectives, such as third-party risk, the number of vehicles, or total driving time can also be 

considered in modelling, though were not so relevant in the medical use case studied. 

 

The model splits operations into shift periods of a few hours (as defined by the user), where every site 

is served once per period. Cost structures are based on typical operations, assuming drivers and 

remote drone operators are paid for a full shift period if they are assigned any routes; thus, the 

maximum number of each mode used at any point defines the fixed costs (Figure 14).  

In the case of drones, operators can also manage more than 1 drone each, depending on the 

drone:operator ratio. In modelling, a 1:20 ratio was used; thus, 1 operator would be required for 1 

drone, whilst 1 operator would also be required for 15 drones. 

 

 

Figure 14. The number of van drivers required is defined by the maximum number in use at any time point. 

 

Both drone and van costs are broken into a fixed cost, based on the number of vehicles/operators 

required in each shift; and the sum of the route costs, based on a distance-based metric (vans) or a 

time-based metric (drones, per flight hour) that depend on the variable costs such as parts and 

maintenance or fuel. The per flight hour approach aligns with typical flight maintenance scheduling  

used in crewed aviation to guarantee airworthiness (CAA 2022). 
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Cyclists are assumed to operate on a gig-economy style structure, where riders are used on demand 

and are paid subject to a fee per route, with supplementary fees for longer distances and additional 

stops. It should be highlighted that there are challenges associated with the gig-economy model, 

though for the purposes of modelling, this approach is sufficient to demonstrate the effects of cycling. 

Further details on the modelled costs and typical values are provided later in this document. 

 

The transit time objective is given by the maximum time samples spend in transit across all sites. i.e., 

the longest period between the first collection and subsequent delivery in a route, for all routes. This 

value represents the timeliness of deliveries, with the transit time being the most easily and reliably 

influenced factor that can be changed by logistics planners to improve service quality in this sector 

(McDonald 1972). To this end, minimising the maximum time was chosen to encourage service equity 

across an area, in a similar manner to ambulances, as opposed to using an average, where times could 

be unevenly skewed. 

 

To guarantee a given level of service, transit times can also be subject to a limit. In modelling, both (i) 

no limit, and (ii) a limit of 90 minutes (based on proposed targets in literature (McDonald 1972)) were 

explored. With respect to individual stops, a uniform dwell time was used across all stops and modes. 

In the modelling this was 2.5 minutes to allow for tasks such as loading/unloading and transporting 

the packages to/from the clinics. On return to the hospital, drones were subject to a further downtime 

period (10 minutes in modelled cases) to allow for battery changes and airworthiness checks. 

 

Finally, to limit the data requirements, OD pair data are captured on an hourly basis and scaled for 

travel times between these periods. i.e., a 30-minute journey between two sites at 09:45 would be 

scaled using the travel time from 09:00 and 10:00. 

 

To solve the model, an adapted Clarke and Wright Savings Algorithm with adapted bin packing 

algorithms are used. This provides effective solutions in a relatively short space of time, allowing for 

planning of operations in a short period prior to the shifts commencing for maximum foresight of 

weather and traffic conditions, and the required collections for the day. For more detail on heuristic 

solution approach methodology, please refer to Chapter 6/7 in Oakey (2023). 

 

 

 

7.1 Van Cost Values 



FORSETI Overview  e-Drone 

 Page 21 of 25  

 

Suggested values for diesel van costs (Table 4) were obtained from the Manager’s Guide to 

Distribution Costs (MGDC) published in the UK by the Freight Transport Association (FTA). 

Table 4.  Diesel van cost values. 

Van Cost 
Input 

Value 
(FTA 2020) 

Value 
(FTA 2022) 

Per Mile £9,346/35,000mi = £0.27/mi £12,254/36,000mi = £0.34/mi 

Per Hour 
(Labour) 

£10.78/h £11.93/h 

Per Vehicle 
Per Day 

(£5,255+£1,639)/252 days = £27.36/veh./day (£5,338+£2,054)/252 = £29.33/veh./day 

FTA is the Freight Transport Association.  Number of working days in a year (excluding eight Bank Holidays) is 
252. 

 

7.2 Bicycle Courier Cost Values 

Bike courier cost values were based on the prices charged in the UK by a real-world bike courier 

company (Stuart Couriers, a provider of independent bicycle, motorcycle and car couriers in several 

European countries, https://couriers.stuart.com/).  Within Stuart served areas (i.e., geographic areas 

where Stuart couriers are operational), prices charged by Stuart (available via online queries) are used 

to calculate the actual costs of each bike courier journey. 

 

If Stuart areas are selected, then only collection locations within the Stuart area will be considered for 

servicing by bike (as long as the bike option has been selected for a particular location by the user).  

Collection locations outside the Stuart area will not be serviced by bike (regardless of whether or not 

the user has the bike option selected for a particular location). If Stuart areas are selected off, all 

collection locations with the bike option selected by the user will be considered for servicing by bike, 

and default bike costs will be used.  Suggested values for these default bike costs (Table 5) were 

derived from an analysis of Stuart prices for a given sample of different bike courier journeys. 

 

Table 5. Bicycle courier default cost values. 

Bike Courier Cost Input Value 

Per Mile £1.01/mi 

Per Mile Threshold 0.5 mi 

Per Task £7.07/task 

Per Stop £2.78/stop 

 

Regarding Table 5, a task was defined as one bike courier journey making collections from one or more 

collection locations for one delivery, all at the same delivery location.  Additional stops were defined 

https://couriers.stuart.com/
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as the number of extra collection locations in addition to the first collection location on a particular 

courier journey.  Threshold distance was defined as the distance beyond which couriers are paid the 

additional mileage rate (i.e., Cost 1).  For example, one courier journey of 2.5 miles involving two 

collections would cost (1 task x £7.07/task) + (1 additional stop x £2.78/additional stop) + (2.0 mi x 

£1.01/mi) = £11.87. 

 

7.3 Drone Cost Values 

Suggested values for drone costs (Table 6) were derived from a combination of: literature sources, 

commercially available data, and the drone expertise possessed by members of the FORSETI 

development team and associated partners (https://cascadeuav.com/).  The costs are related to four 

elements: i) life expectancy of drone components (e.g., airframe, motors, propellers, servos, 

autopilots, and communications equipment); ii) electrical energy consumption during different flight 

stages (e.g., take-off, cruise, landing); iii) personnel involved (e.g., operator (often known as mission 

commander), safety pilot, loader); and iv) operational insurance.  The current values in Table 6 

represent estimates for present-day costs (i.e., in 2023). 

 

The potential future values in Table 6 represent estimates for drone costs in a future situation based 

on a reasonable assumption of increasing automation as drone logistics operations and technologies 

mature.  Automation of operations was assumed to result in employment as a drone operator 

becoming a less skilled (and therefore lower paid) occupation, and for the requirements for safety 

pilots and loaders to be reduced or removed entirely.  Drone platforms were assumed to be less costly 

in the future due to economies of scale resulting from the forecast expansion of the global drone 

industry. 

Table 6.  Drone cost values. 

Drone Cost Input Current Value Potential Future Value 

Per Hour 
(Labour) 

£175.64/h 
(1x Operator at £50/h; 2x Safety Pilot at 

£50/h; 2x Loader at £10.26/h) 

£31.44/h 
(1x Operator at £20.26/h; 0x Safety Pilot at 

£20.26/h; 1x Loader at £10.26/h) 

Per Flight Hour 
(Vehicle) 

£32.40/h 
(Drone platform; electricity) 

£20.33/h 
(Drone platform; electricity) 

Per Vehicle Per 
Day 

£8.99/veh./day 
(Insurance; UTM fees) 

£8.99/veh./day 
(Insurance; UTM fees) 

Potential future values are provided in terms of the present value of the UK pound (2023) and would need to be 
adjusted for inflation if an estimate of projected future costs was required. A 3% profit margin for the drone 
service provider is included.  UTM is UAV Traffic Management, and relates to the fees charged for managing 
airspace by UTM service providers. 

 

https://cascadeuav.com/
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The interaction between drone labour costs per hour and the operator-to-vehicle ratio set by the user 

(i.e., the number of drones that can be operated by a single operator at any one time) is best explained 

by way of an example based on the values in Table 6.  If the operator ratio is set to ten (i.e., drone 

operators, plus safety pilots and loaders as per Table 6), then operating any number of drones from 

one to ten simultaneously will cost £175.64/h at current values (£31.44/h at potential future values), 

and operating any number of drones from 11 to 20 simultaneously will cost 2x £175.64/h = £351.28/h 

at current values (2x £31.44/h = £62.88/h at potential future values).  In other words, the services of 

one drone operator are required for any number of drones from 1 to 10, two drone operators are 

required simultaneously for any number of drones from 11 to 20, three drone operators for 21 to 30 

drones, and so on. 

8 CASE STUDY RESULTS 

For case study results and the exact inputs used modelled in each of the experiments, please consult 

the following peer-reviewed literature: 

- Oakey, A., Grote, M., Smith, A., Cherrett, T., Pilko, A., Dickinson, J., AitBihiOuali, L., 2022. 

Integrating drones into NHS patient diagnostic logistics systems: Flight or fantasy? PLOS ONE 

17, e0264669. https://doi.org/10.1371/journal.pone.0264669 

- Oakey, A., Martinez-Sykora, A., Cherrett, T., 2023. Improving the efficiency of patient 

diagnostic specimen collection with the aid of a multi-modal routing algorithm. Computers & 

Operations Research 106265. https://doi.org/10.1016/j.cor.2023.106265 

- Grote M, Oakey A, Pilko A, Krol J, Blakesley A, Cherrett T, Scanlan J, Anvari B and Martinez-

Sykora A (2023) 'The Effects of Costs on Drone Uptake in Multi-Modal Logistics Systems within 

a Healthcare Setting', Transport Economics and Management (under review). 

- Oakey, A., 2023. Investigating the scope for integrating uncrewed aerial vehicles (UAVs) into 

mixed-mode fleets to support national health service (NHS) logistics operations (PhD Thesis). 

University of Southampton. https://eprints.soton.ac.uk/483801/     

https://doi.org/10.1371/journal.pone.0264669
https://doi.org/10.1016/j.cor.2023.106265
https://eprints.soton.ac.uk/483801/
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