A Gendered Perspective on Household Sensitivity to **Environmental Hazards in the Volta Delta, Ghana**

Atiglo, D. Yaw¹; Abu, Mumuni¹; Codjoe, Samuel N. A¹ & Addoquaye-Tagoe, Cynthia²

¹Regional Institute for Population Studies (RIPS) ²Institute for Statistical, Social and Economic Research (ISSER), University of Ghana, Legon

Introduction

- Gendered resource allocation constrains access to livelihood assets and adaptation strategies or decision-making for women (Codjoe et al. 2011; Carr & Fisher, 2015).
- Vulnerability to environmental hazards is thus differentiated by gender (Codjoe et al., 2011; Shackleton et al., 2014). Studies that explore gender-differentiated sensitivity to hazards in deltas are scant.
- The effect of gendered resource access is assessed with household adult sex composition (Shackleton et al., 2014).
- Sensitivity, a component of vulnerability, is measured by the impact of a hazard on the economic, environmental and human capital asset of a household.

Objective

We examine gender-differentiated sensitivity of households (HH) to flooding and droughts in the Volta Delta

Hypotheses

Households with male adults are less sensitive to environmental hazards than those with only female-adults

Table 1. Odds Ratios (OR) of Household Sensitivity to Flooding and **Drought by Gender Composition (n=1,364)** - All households

Household (HH) Characteristic	Flooding OR (s.e)	Drought OR (s.e)
Household Gender Category	Model 1	Model 2
Female Adults Only (r)		
Male Adults Only	2.083 (.309)*	1.275 (.311)
Female head + male adults	2.454 (.255)***	1.209 (.252)
Male head + female adults	2.014 (.248)**	1.568 (.242)*
Household size	1.059 (.027)*	1.085 (.028)**
District of residence (r –Ada East) ^F		
Ada West	.178 (.272)***	.772 (.352)
Ningo-Prampram	.183(.310)***	1.004 (.311)
South Tongu	.472 (.293)*	2.400 (.298)**
Keta	.778 (.207)	4.619 (.226)***

Methodology

Data: 2016 DECCMA Survey on 1364 households in 9 districts **Analysis:** Logistic regression models

Ketu South	.390 (.254)***	1.826 (.263) *
Ketu North	.503 (.277)*	9.102 (.288)***
Akatsi South	.445 (.264)**	16.732 (.390)***
Central Tongu	.133 (.377)***	4.129 (.297)***

Table 2. Odds Ratios of Household Sensitivity among only femaleheaded and only male-headed households

Household Characteristic	Flooding OR (s.e)	Drought OR (s.e)
Female headed Hhds Only	Model 3	Model 4
Female Adults Only (r)		
Female head + male adults	2.785 (.273)***	1.122 (.319)
Male headed Hhds Only	Model 5	Model 6
Male adults only (r)		
Male head + female adults	.940 (.229)	1.219 (.236)

*** p<.001; **p<.01; *p<.05 ^p<.1 (r) Reference category (s.e) Standard error All models (1-6) include other HH sociodemographic and economic variables. Detailed results are available upon request

Discussion/Conclusion

- Vulnerability to environmental change hazards is both differentiated and distinct by gender.
- Gendered vulnerabilities are hazard- and place-specific.
- Sensitivity to drought is less gender-differentiated compared with

Figure 2. Sensitivity to Flood and Drought by **Household Gender Category**

International Development Research Centre Centre de recherches pour le développement international sensitivity to floods.

- Households with no male adults are less likely to be sensitive to the impacts of flooding.
- More nuanced gender analysis must explore intersections with other household characteristics or members' characteristics.
- These findings have implications for understanding adaptive capacity and investigating adaptation options in the Volta Delta.

References

1. Codjoe, S. N. A., Atidoh, L. K., & Burkett, V. (2011). Gender and occupational perspectives on adaptation to climate extremes in the Afram Plains of Ghana. *Climatic Change*, 110(1–2), 431–454. 2. Fisher, M., & Carr, E. R. (2015). The influence of gendered roles and responsibilities on the adoption of technologies that mitigate drought risk:... Global Environmental Change, 35, 82–92.

3. Shackleton, S., Cobban, L., & Cundill, G. (2014). A gendered perspective of vulnerability to multiple stressors, including CC in rural Eastern Cape, South Africa. Agenda, 28(3), 73-89..

