Determinants of Household Sensitivity to Coastal Hazards in the Volta Delta, Ghana

Atiglo, D. Yaw¹; Codjoe, Samuel N. A¹; & Appeaning-Addo, Kwasi²

¹Regional Institute for Population Studies, ²Department of Marine and Fishery Sciences University of Ghana, Legon

Household

Characteristics

Introduction

- Climate change, local subsidence and sea-level rise interact with population dynamics to increase exposure to coastal flooding and other hazards (Hallegatte et al. 2013).
- Deltas have fragile ecosystems and are especially vulnerable to coastal hazards (Nicholls & Cazenave, 2010).
- However, exposed populations may differentially sense the impact of coastal hazards due to their geophysical, socioeconomic and demographic characteristics (Codjoe & Afuduo, 2015; Appeaning-Addo, 2013). Sensitivity refers to the extent to which a system is affected by perturbation.
- To assess vulnerability in deltas it is important to determine which characteristics are associated with sensitivity to perturbations by hazards.

Objective

This paper presents a local-scale inquiry into the geophysical, demographic and socioeconomic household characteristics associated with sensitivity to the impacts of coastal hazards.

Methods

Data 2016 DECCMA Sending Area Survey

❖ Sample size – 932 households in 5coastal districts

Analysis

Factor Analysis, GIS & Spatial analysis, Logistic regression models

Measurement

- Sensitivity: Impact of hazard on housing, economic security, food security, drinking water, health, crop / livestock loss
- * Hazards: flooding, salinity and erosion.

Map of coastal districts in Volta Delta

Results

Figure 1. Extent of Sensitivity to Coastal Hazards

Table 1. Likelihood Odds of Household Sensitivity to Flooding, Salinity and Erosion (n=932)

Flooding

OR (s.e)

Nagelkerke R²

Salinity

OR (s.e)

Nagelkerke R²

2.740 (.251)***

Erosion

OR (s.e)

Nagelkerke R²

	=.224	=.295	=.144
Geophysical			
Distance to shoreline (r=	<1km)		
1- 5km	.872 (.342)	.450 (.335)*	
>5 km	.576 (.185)**	.198 (.203)***	
District (r = Ada East)			
Ada West	.194 (.278)***	.370 (.277)***	.885 (.258)
Ningo-Prampram	.187 (.321)***	.284 (.320)***	.646 (.314)
Keta	.857 (.239)	1.873 (.256)*	.575 (.282)*
Ketu South	.345 (.290)***	1.550 (,292)	.183 (.416)***
Sociodemographic			

1.320 (.233)

Drinking water source
(r = surface water)

Pipe/Borehole

Sachet / Bottle / Other	.575 (.281)*	1.000
Toilet facility (r = Flush)		
Pit latrine	1.310 (.353)	.629 (.320)
No facility/ beach/ field	2.219 (.338)*	1.388 (.301)
KVIP	1.678	.393 (.317)**
Subjective wealth (r=Very poor)		

Subj	ectiv	e wea	aith (r	=ve	ry	boor,

Poor	.906 (.166)	.950 (.168)
Not poor	.468 (.301)*	.508 (.287)*

Gender composition (r= Female adults only)

Female head + male adult	2.859 (.300)***	1.456 (.282)
Male headed	2.171 (.287)***	1.823 (.268)*

Social capital (r = Low)

Medium	.608 (.190)**
High	.687 (.196)*

*** p<.001; **p<.01; *p<.05; (r) = Reference category s.e = Standard error Only significant variables are displayed in the table. Models include other variables.

Discussion & Conclusion

- ❖ Both socioeconomic and geophysical characteristics are essential predictors of population sensitivity to coastal hazards.
- The effects of sociodemographic characteristics on household sensitivity are hazard-specific.
- Geophysical features determine household sensitivity to all coastal hazards.
- Further analysis of total vulnerability must include adaptive capacity of delta populations sensitive to hazards.

- References

 1. Addo, K. A. (2013). Shoreline morphological changes and the human factor. Case study of Accra Ghana. Journal of Coastal Conservation, 17(1), 85-91
- 2. Codjoe, S. N. A., & Afuduo, S. (2015). Geophysical, socio-demographic characteristics and perception of flood vulnerability in Accra, Ghana. Natural Hazards, 77(2), 787-804.
- 3. Hallegatte, S; Green, C, Nicholls, RJ; Corfee-Morlot, J.. (2013). Future flood losses in major coastal cities. Nature Climate Change, 3, 802-807.
- 4. Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. science, *328*(5985), 1517-1520.

