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1. Introduction  
 

The dynamical downscaling experiments performed for the DECCMA project over south 

Asia use the PRECIS 2.1 regional climate modelling system, incorporating the 

HadRM3P Regional Climate Model (RCM). This allows for the downscaling of a number 

of the Global Climate Models (GCMs) that contributed to the Coupled Model 

Intercomparison Project phase 5 (CMIP5) (Taylor et al., 2012) to a horizontal resolution 

of 0.22° x 0.22° (~25km x ~25km). In the DECCMA project, three GCMs (HadGEM2-ES, 

CNRM-CM5, GFDL-CM3) have been downscaled over the South Asia domain shown in 

Figure 1 (Janes and Macadam, 2017). A simulation of each of these GCMs has been 

downscaled between the mid-20th century and late 21st century. This document focuses 

on the historical period of the RCM downscaling simulations. 

 

 

 
 

Figure 1: Downscaling domain for South Asia. 

 

 

This document describes an initial validation of the RCM simulations for the DECCMA 

project. A brief comparison of RCM output with observational temperature and 

precipitation datasets is presented. This is designed to inform users of the RCM output 

about some of the model biases that may be relevant to subsequent analysis of climate 

impacts. Throughout this document, we refer to differences between RCM output and 

observational data as “biases”. However, we note that both climate model imperfections 

and imperfections in observational datasets can contribute to these. 
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2. Method 
 

Our validation of RCM simulations against climate observations is similar to that of 

Caesar et al. (2015), who validated PRECIS simulations downscaling the QUMP GCM 

simulations over Bangladesh and the upstream Ganges, Brahmaputra and Meghna 

(GBM) river systems. They validated their simulations by comparing them with the 

gridded observational temperature and precipitation datasets listed in Table 1, and we 

do likewise. Note that other gridded observational temperature and precipitation datasets 

are available, but not all of these are suitable for validating RCM simulations. For 

example, the GPCP and CMAP precipitation datasets (Adler et al., 2003; Xie and Arkin, 

1997) have a much coarser spatial resolution than RCM simulations, 2.5° x 2.5°. 

 

 

Dataset Abbrev. Variables Resolution Period Reference 

Climatic 
Research Unit 
TS3.10 

CRU Temperature, 
Precipitation 0.5° x 0.5° 

1901-
2009 

Harris et al. (2014) 

University of 
Delaware 

UDEL Temperature, 
Precipitation 

0.5° x 0.5° 
1950-
1999 

Willmott & Matsuura 
(1995) 

APHRODITE 
version 
1003R1 
dataset 
(Aph.v10)  
 

APHRODITE Precipitation 

0.25° x 0.25° 
1951-
2007 

Yatagai et al. (2009) 

Global 
Precipitation 
Climatology 
Centre 

GPCC Precipitation  

0.5° x 0.5° 
1901-
present 

http://gpcc.dwd.de 

 

Table 1: Gridded observational temperature and precipitation datasets 

used for RCM simulation validation. 

 

 

Climatological mean surface air temperature and precipitation data for the 1960-1999 

period from the RCM simulations and the observed datasets were compared. To aid 

comparison, all data were regridded to the coarsest of the spatial resolution of the 

datasets (i.e. regridded onto a 0.5° x 0.5° grid). Further, sea grid cells in the RCM data 

were masked out to be consistent with the observational datasets, which have no data 

over the sea. 
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The RCM and observational data were then compared in two ways. Firstly, the annual 

cycles in monthly mean data spatially averaged over the common validation region 

(CVA) shown in Figure 2 were compared. This region covers almost the entire GBM river 

basin and the entire Mahanadi river basin, both foci of the DECCMA project. However, it 

also extends further south to include the area of maximum monsoon precipitation from 

the South Asian Monsoon (SAM), allowing the simulation of the SAM to be assessed. 

Secondly, maps of climatological mean data for the seasons March-May (MAM), June-

September (JJAS), October-November (ON) and December-January (DJF) were 

compared. For brevity, only the CRU observational datasets were used in this spatially-

explicit comparison. 

 

 

 

Figure 2: Common Validation Area (bounded by dotted lines) for 

comparison of annual cycle of RCM and observed temperature and 

precipitation. 
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3. Results 
 

3.1. Results for HadGEM2-ES-forced simulation 
 

Figure 3 compares the 1960-1999 climatological mean annual cycles in surface air 

temperature for the CVA for the HadGEM2-ES-forced RCM simulation and the CRU and 

UDEL observational datasets. The observational datasets have almost identical annual 

cycles. 

 

The RCM simulation has a cold bias in CVA-average temperature relative to the 

observations in all months of the year except May and June. This is most pronounced 

during the winter months, exceeding 4°C in December and January. The seasonal 

variation in the magnitude of the bias in CVA-average temperature means that the 

HadGEM2-ES simulation has a more extreme annual cycle than the annual cycle of the 

observations. The observed monthly mean CVA-average temperatures vary between 

approximately 16°C in January and approximately 28.5°C in May. Whereas the 

maximum monthly mean temperature for the RCM simulation is similar to that of the 

observations, the simulated minimum monthly mean temperature is approximately 11°C 

(in January). 

 

 

 

Figure 3: 1960-1999 climatological mean annual cycles in surface air 

temperature for the CVA for the HadGEM2-ES-forced RCM simulation and 

the CRU and UDEL observational datasets. 
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Figure 4: Maps of 1960-1999 climatological mean surface air temperature 

for March-May (MAM), June-September (JJAS), October-November (ON) 

and December-January (DJF) for the HadGEM2-ES-forced RCM simulation 

and the CRU observational dataset. Differences between the RCM and CRU 

datasets are also shown. 
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In the winter months, all parts of the CVA have a cold bias (see Figure 4). This appears 

to be largest in the Himalayas. It is possible that in this topographically complex region 

differences in elevation between the RCM and the observing sites contributing data to 

the observational dataset are contributing to this apparent bias. The cold bias in CVA-

average temperature is least during the months of the summer monsoon (May to 

September). In this season, warm biases extend eastwards from Pakistan along the 

Plain of Ganges and across northern Bangladesh and eastern India and the cold biases 

that remain within the CVA are smaller than in the winter (see Figure 4). 

 

Figure 5 compares the 1960-1999 climatological mean annual cycles in precipitation for 

the CVA for the HadGEM2-ES-forced RCM simulation and the CRU, UDEL, GPCC and 

APHRODITE observational datasets. All four observational datasets all show a distinct 

winter dry season followed by increasing precipitation through the onset of the summer 

monsoon in May, to the wettest months in July and August, and then a decline in 

precipitation. As for temperature, the CRU and UDEL observational datasets have 

almost identical annual cycles. However, the absolute amount of precipitation differs 

between the other observational datasets, especially during the wetter months. In these 

months, the GPCC dataset consistently shows the greatest precipitation and the 

APHRODITE dataset consistently shows the least precipitation. Such differences 

between observational datasets have been found in other studies (e.g. Herold et al., 

2016). They can arise through different networks of observing stations being used and 

different methods of interpolating data from the stations onto a spatial grid. 

 

 

 

Figure 5: 1960-1999 climatological mean annual cycles in precipitation for 

the CVA for the HadGEM2-ES-forced RCM simulation and the CRU and 

UDEL, GPCC and APHRODITE observational datasets. 
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Figure 6: Maps of 1960-1999 climatological mean precipitation for March-

May (MAM), June-September (JJAS), October-November (ON) and 

December-January (DJF) for the HadGEM2-ES-forced RCM simulation and 

the CRU observational dataset. Differences between the RCM and CRU 

datasets are also shown. 
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The HadGEM2-ES-forced RCM simulation reproduces the annual cycle in CVA-average 

precipitation but has a dry bias relative to all of the observational datasets throughout the 

summer monsoon. During the build-up and decline of the monsoon in the March-May 

and October-November seasons, dry biases of more than 2mm/day within the CVA are 

largely confined to Bangladesh and eastern India (see Figure 6). However, in the June-

September season, when the dry bias in CVA-average precipitation is largest, dry biases 

of this magnitude extend across much of India and Bangladesh, though are largest in 

Bangladesh and eastern India. Throughout the year, dry biases are partially offset by 

wet biases in the Himalayas. Wet biases in the Himalayas throughout the year appear to 

be a common feature of other HadRM3P simulations of the region (see Sections 3.2 and 

3.3 and Caesar et al., 2005). At least some of these apparent wet biases in the 

Himalayas could be due to underrepresentation of precipitation in the observational data. 

One contributory factor could be that at high altitudes “undercatch” of precipitation by 

rain gauges can be particularly pronounced due to precipitation falling as snow. Some 

studies have attempted to address this issue by applying undercatch corrections to 

observational precipitation datasets, and a greater correction is required for snow than 

for rainfall (e.g. Weedon et al., 2010).  
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3.2. Results for CNRM-CM5-forced simulation 
 
Figure 7 compares the 1960-1999 climatological mean annual cycles in surface air 

temperature for the CVA for the CNRM-CM5-forced RCM simulation and the CRU and 

UDEL observational datasets. The CNRM-CM5-forced simulation has a similar annual 

cycle, and range in monthly mean CVA-average temperatures, to the HadGEM2-ES-

forced simulation (see Figure 3), but has an additional cold bias of approximately 1°C. 

Hence the CNRM-CM5-forced simulation has a 1°C cold bias even in May and June, in 

which the HadGEM2-ES-forced simulation has minimal bias, and the largest biases in 

the CNRM-CM5-forced simulation, for December and January, exceed 5°C.  

 

The spatial patterns of cold biases for the CNRM-CM5-forced simulation (see Figure 8) 

are similar to those for the HadGEM2-ES-forced simulation (see Figure 4), with the 

largest biases being located in the Himalayas. However, the cold biases in the CNRM-

CM5-forced simulation are generally larger than the cold biases in the HadGEM2-ES-

forced simulation. Another difference between the two simulations is that in the CNRM-

CM5-forced simulation warm biases of more than 1°C are largely confined to 

Bangladesh and eastern India in the March-May season. Unlike in the HadGEM2-ES-

forced simulation, warm biases during the height of the summer monsoon (June to 

September) are minimal, which contributes to the larger cold bias in CVA-average 

temperature in the CNRM-CM5-forced simulation than in the HadGEM2-ES-forced 

simulation in this season. 

 

 

 
Figure 7: 1960-1999 climatological mean annual cycles in surface air 

temperature for the CVA for the CNRM-CM5-forced RCM simulation and the 

CRU and UDEL observational datasets.  
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Figure 8: Maps of 1960-1999 climatological mean surface air temperature 

for March-May (MAM), June-September (JJAS), October-November (ON) 

and December-January (DJF) for the CNRM-CM5-forced RCM simulation 

and the CRU observational dataset. Differences between the RCM and CRU 

datasets are also shown. 
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Figure 9 compares the 1960-1999 climatological mean annual cycles in precipitation for 

the CVA for the CNRM-CM5-forced RCM simulation and the CRU, UDEL, GPCC and 

APHRODITE observational datasets. As for the HadGEM2-ES-forced simulation, the 

CNRM-CM5-forced simulation reproduces the annual cycle in CVA-average 

precipitation. However, in contrast to the HadGEM2-ES-forced simulation, for the wetter 

months, the simulated CVA-average precipitation lies within the observational 

uncertainty described by the four observational datasets. For these months, the 

simulated CVA-average precipitation values are between those of the GPCC and 

APHRODITE datasets, and, except for in July and August, similar to those of the CRU 

and UDEL datasets. 

 

The spatial patterns of precipitation biases in the CNRM-CM5-forced simulation (see 

Figure 10) are similar to those in the HadGEM2-ES-forced simulation (see Figure 6), 

with wet biases in the Himalayas throughout the year and the largest dry biases in the 

CVA in Bangladesh and eastern India during the June-September summer monsoon 

season. However, the dry biases in this season are much less extensive than in the 

HadGEM2-ES-forced simulation, which contributes to the better match between the 

simulated and observed CVA-average precipitation values for the CNRM-CM5-forced 

simulation than for the HadGEM2-ES-forced simulation. 

 

 

 
Figure 9: 1960-1999 climatological mean annual cycles in precipitation for 

the CVA for the CNRM-CM5-forced RCM simulation and the CRU and UDEL, 

GPCC and APHRODITE observational datasets. 
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Figure 10: Maps of 1960-1999 climatological mean precipitation for March-

May (MAM), June-September (JJAS), October-November (ON) and 

December-January (DJF) for the CNRM-CM5-forced RCM simulation and 

the CRU observational dataset. Differences between the RCM and CRU 

datasets are also shown. 
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3.3. Results for GFDL-CM3-forced simulation 
 
Figure 11 compares the 1960-1999 climatological mean annual cycles in surface air 

temperature for the CVA for the GFDL-CM3-forced RCM simulation and the CRU and 

UDEL observational datasets. The GFDL-CM3-forced simulation has a more extreme 

annual cycle than the annual cycle of the observations, and the HadGEM2-ES-forced 

and CNRM-CM5-forced simulations. Whereas the observed monthly mean CVA-average 

temperatures vary between approximately 16°C in January and approximately 28.5°C in 

May, the monthly mean temperatures from the GFDL-CM3-forced simulation vary 

between approximately 10°C in January and 29°C in June. Hence there is a pronounced 

cold bias in the winter months of the year, which exceeds 6°C in January. In addition, 

June is significantly warmer, by about 1.5°C than May, the second warmest month. May 

and June have approximately the same monthly mean temperatures in the observations, 

and in the HadGEM2-ES-forced and CNRM-CM5-forced simulations. 

 

 

 
Figure 11: 1960-1999 climatological mean annual cycles in surface air 

temperature for the CVA for the GFDL-CM3-forced RCM simulation and the 

CRU and UDEL observational datasets. 
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Figure 12: Maps of 1960-1999 climatological mean surface air temperature 

for March-May (MAM), June-September (JJAS), October-November (ON) 

and December-January (DJF) for the GFDL-CM3-forced RCM simulation 

and the CRU observational dataset. Differences between the RCM and CRU 

datasets are also shown. 
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Outside the height of the summer monsoon (June-September), the spatial patterns of 

cold biases in the GFDL-CM3-forced simulation (see Figure 12) are similar to those in 

the HadGEM2-ES-forced and CNRM-CM5-forced simulations (see Figures 4 and 8), 

with the largest biases being located in the Himalayas. However, in winter, the cold 

biases in the GFDL-CM3-forced simulation are generally larger than the cold biases in 

the HadGEM2-ES-forced simulation and, to a lesser extent, those in the CNRM-CM5-

forced simulation. This results in the larger cold bias in CVA-average temperature in the 

GFDL-CM3-forced simulation than in the HadGEM2-ES-forced simulation and, to a 

lesser extent, than in the CNRM-CM5-forced simulation in this season. During June-

September, temperature biases across most of the CVA are minimal, although cold 

biases persist in the Himalayas. Hence the bias in CVA-average temperature is small for 

this season. 

 
 

 
Figure 13: 1960-1999 climatological mean annual cycles in precipitation for 

the CVA for the GFDL-CM3-forced RCM simulation and the CRU and UDEL, 

GPCC and APHRODITE observational datasets. 

 

 
Figure 13 compares the 1960-1999 climatological mean annual cycles in precipitation for 

the CVA for the GFDL-CM3-forced RCM simulation and the CRU, UDEL, GPCC and 

APHRODITE observational datasets. As for the HadGEM2-ES-forced simulation, the 

GFDL-CM3-forced simulation has an overall dry bias in CVA-average precipitation 

relative to all four observational datasets. However, unlike both the HadGEM2-ES-forced 

and CNRM-CM5-forced simulations, the maximum monthly mean precipitation is later in 

the GFDL-CM3-forced simulation than in the observations. The maximum monthly mean 

precipitation occurs in July in all four observational datasets and the HadGEM2-ES-
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forced and CNRM-CM5-forced simulations, whereas it occurs in August for the GFDL-

CM3-forced simulation. The simulated monthly mean CVA-average precipitation values 

match the observations well in September and October. It is possible that there is a dry 

bias in the simulation during the build up to the monsoon and the monsoon itself, but not 

during the monsoon decay. Alternatively, the monsoon rains could be delayed in the 

simulation relative to the observations and this effect cancels out an overall dry bias to 

give unbiased monthly mean precipitation values for September and October. A 

comparison of the simulated and observed monsoon circulation would be necessary to 

test these hypothesise. 

 

The spatial patterns of precipitation biases in the GFDL-CM3-forced simulation (see 

Figure 14) are similar to those in the HadGEM2-ES-forced simulation (see Figure 6), 

with wet biases in the Himalayas throughout the year and the largest dry biases in the 

CVA in Bangladesh and eastern India during the June to September summer monsoon 

season. However, the extent of the dry biases in India in this season is even greater 

than in the HadGEM2-ES-forced simulation. 
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Figure 14: Maps of 1960-1999 climatological mean precipitation for March-

May (MAM), June-September (JJAS), October-November (ON) and 

December-January (DJF) for the GFDL-CM3-forced RCM simulation and the 

CRU observational dataset. Differences between the RCM and CRU 

datasets are also shown. 
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4. Conclusion  
 
Table 1 summarises the comparison of the output of the DECCMA RCM simulations with 

temperature and precipitation observations presented in this report for the GBM basin 

and northern India. The analysis reveals several common features of the three 

simulations: 

 
1. The timing of warm and cool and wet and dry seasons is similar to that of 

observations, except that the maximum monthly precipitation is later in the year 

than in observations in the GFDL-CM3-forced simulation. 

 

2. All three simulations have an overall cold bias for the region throughout most or 

all of the year. This is largest in winter, when all three simulations have cold 

biases across the entire region. However, the size of the cold bias varies 

between the simulations. 

 

3. All three simulations have large local dry biases in Bangladesh and eastern India 

in the March-May season, with more extensive dry biases during the height of the 

summer monsoon (June-September). In the HadGEM2-ES-forced and GFDL-

CM3-forced simulations these result in an overall dry bias for the region as a 

whole for these seasons. 

 

4. In the Himalayas, in common with other HadRM3P simulations of the region (see 

Caesar et al., 2015), all three simulations have large cold and wet biases 

throughout the year. It is possible that these may be at least partially due to 

deficiencies in the observational datasets. 
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Simulation Temperature Precipitation 

 
 

RCM forced by 
HadGEM2-ES 

 Timing of warm and cool seasons similar to 
observations. 

  

 Overall cold bias for the region throughout the 
year, except in May-Jun, largest in winter (~4°C in 
Jan mean temperature). 

  

 Cold biases across the entire region in winter. Much 
smaller local cold biases during summer, with warm 
biases in some parts of northern India and 
Bangladesh. Large cold bias in Himalayas 
throughout the year. 

 

 More extreme variation in temperature between 
winter and summer than in observations. 

 Timing of wet and dry seasons 
similar to observations. 

 

 Overall dry bias for the region 
during wet months. 

 
 Large local dry biases in 

Bangladesh and eastern India 
throughout Mar-Nov, with dry 
biases across most of the region in 
Jun-Sep. 

 

 Wet bias in Himalayas throughout 
the year and to the west of the 
Mahanadi Delta in Jun-Sep. 

 
 

RCM forced by 
CNRM-CM5 

 Timing of warm and cool seasons similar to 
observations. 

  

 Overall cold bias for the region throughout the 
year, larger in winter than in summer  (~1°C in 
monthly mean temperature in May-Jun,  ~5°C in 
Jan mean temperature). 

  

 Cold biases across the entire region throughout the 
year, except Mar-May, in which there are warm 
biases in Bangladesh and eastern India. Large cold 
bias in Himalayas throughout the year. 

 
 More extreme variation in temperature between 

winter and summer than in observations. 

 Timing of wet and dry seasons 
similar to observations. 

 

 Little overall bias for the region 
throughout the year. 

 
 Large local dry biases in 

Bangladesh and eastern India in 
Mar-May, with more extensive dry 
biases in Jun-Sep. 

 
 Wet bias in Himalayas throughout 

the year and across central India 
in Jun-Sep. 

 
 

RCM forced by 
GFDL-CM3 

 Timing of warm and cool seasons similar to 
observations. 

  

 Overall cold bias for the region throughout the 
year, except in Jun, largest in winter (~6°C in Jan 
mean temperature). 

  

 Cold biases across the entire region in winter. Very 
small biases across most of the region during 
summer. Large cold bias in Himalayas throughout 
the year. 

 
 Much more extreme variation in temperature 

between winter and summer than in observations. 

 Maximum monthly precipitation 
later in the year than in 
observations. 

  

 Overall dry bias for the region 
during May-Aug. 

  

 Large local dry biases in 
Bangladesh and eastern India in 
Mar-May, with dry biases across 
most of the region in Jun-Sep. 

 
 Wet bias in Himalayas throughout 

the year. 

 

Table 1: Summary of a comparison of the output of the DECCMA RCM 

simulations for the GBM basin and northern India with temperature and 

precipitation observations. 



 

21 
 

This brief comparison of output from the DECCMA RCM simulations with observation is 

an initial validation of the simulations. It is designed to inform a broad range of potential 

users of the RCM output about some of the model biases that may be relevant to 

subsequent analysis of climate impacts. However, it has a number of limitations, which 

lead to recommendations for users of the simulation outputs (highlighted in bold type 

below): 

 

1. The “biases” referred to in this document are differences between the output of 

the DECCMA RCM simulations and observational data. They are not strictly 

model biases as they are not solely due to deficiencies of the climate model 

simulations. Deficiencies in the observational datasets may also contribute. This 

is most likely to be the case for the large cold and wet biases reported for the 

topographically complex Himalayas. Users of the RCM simulation outputs to 

whom these biases are relevant are encouraged to reassess model biases 

in this area after further investigating the deficiencies in the observational 

data. Note, however, that differences between RCM output and climate 

observations may be more relevant to some users of the RCM output than model 

biases relative to the behaviour of the real world (e.g. where a numerical model 

used to assess climate impacts has been calibrated using climate observations). 

 

2. The comparison with observations is confined to monthly and seasonal 

climatological means of temperature and precipitation. Other climate variables 

are known to be of interest to the DECCMA project (see Macadam, 2017 for a full 

listing of the climate variables provided to the project from the simulations), as 

are more subtle aspects of temperature and precipitation (e.g. extreme daily 

values). Users of the RCM simulation outputs are encouraged to undertake 

their own analysis focussing on biases in the particular aspects of the 

climate that are relevant to their application of the data. 

 

3. This report relates to the ability of the RCM simulations to reproduce the 

observed climate of the 1960-1999 period. However, the simulations also cover 

whole of the 21st century. Although it is reasonable to assume that the 21st 

century portions of the simulations have biases broadly similar to those reported 

here for 1960-1999, this has not been established beyond doubt. Further work 

examining the mechanisms responsible for the biases, and how they may 

change in a warming climate, would be necessary to do so. Users of the 

DECCMA RCM simulation outputs may reasonably assume that the biases 



 

22 
 

described in this report apply throughout the full mid 20th century to end of 

21st century simulation period, but should be aware that this is an 

assumption. This recommendation is consistent with the work of others that 

have attempted to statistically correct biases in RCM output for use in research 

on the impacts of future climate changes (e.g. Bennett et al., 2014). 

 
4. The realism of the simulated future climate changes simulated by the RCM 

simulations is beyond the scope of this report. It is conceivable that there could 

be links between the simulation biases for the 1960-1999 period reported here 

and the realism of simulated future climate changes. However, establishing these 

for the DECCMA RCM simulations would require more detailed analysis of the 

simulations and a comprehensive assessment of the realism of the simulated 

future changes would likely require investigation of other simulation biases, 

including those in the GCMs that have been downscaled. Given this, this report 

should not be used to make judgements on the realism of the future climate 

changes simulated by the different DECCMA RCM simulations, and the 

future climate changes simulated by the three simulations should be given 

equal weight in research on climate change impacts. 

 
5. Focussing on the interests of the DECCMA climate impacts community, this 

report has compared the DECCMA RCM simulation outputs with climate 

observations. It has not compared the RCM simulations outputs with the outputs 

of the forcing GCM simulations. It would be valuable to do so, however. In 

addition to verifying that the RCM simulations are consistent with their forcing 

GCM simulations on GCM-resolved spatial scales, it could contribute to 

assessing the value added to the GCM simulations by the finer-resolution RCM 

simulations. In the absence of further work in this area, those using the RCM 

simulation outputs for research on climate change impacts are encouraged 

to consider the outputs of each GCM-RCM combination as those of a single 

climate model entity and not seek to attribute results to the behaviour of 

either the GCM or RCM components of the model configuration. 
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