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ABSTRACT 23 

Climate impacts and adaptation studies often use output from impact models that require 24 

data representing future climates at a resolution greater than can be provided by Global 25 

Climate Models (GCMs). This paper describes the use of Regional Climate Model (RCM) 26 

simulations to generate high-resolution future climate information for assessing climate 27 

impacts in the Ganges-Brahmaputra-Meghna (GBM) and Mahanadi deltas as part of the 28 

DECCMA project. In this study, three different GCMs (HadGEM2-ES, CNRM-CM5 and 29 

GFDL-CM3), all using a single scenario for future greenhouse forcing of the atmosphere 30 

(RCP 8.5), were downscaled to a horizontal resolution of 25km over south Asia using the 31 

HadRM3P RCM. These three GCMs were selected based on ability to represent key climate 32 

processes over south Asia and ability to sample a range of regional climate change 33 

responses to greenhouse gas forcing.  RCM simulations of temperature, precipitation, and 34 

lower level (850 hPa) atmospheric circulation in the monsoon season (June, July, August, 35 

September – JJAS) were compared with observational datasets and their respective driving 36 

GCMs to ensure large-scale consistency.  Although there are some biases in the RCM 37 

simulations, these comparisons indicate that the RCMs are able to simulate realistically 38 

aspects of the observed climate of South Asia, such as the monsoon circulation and 39 

associated precipitation that are key for informing downstream impacts and adaptation 40 

studies. Simulated future temperature and precipitation changes on seasonal and daily 41 

timescales suggest increases in both temperature and precipitation across all three models 42 

during the monsoon season, with an increase in the amount of extremely heavy precipitation 43 

over the GBM and Mahanadi basins.  Despite different driving conditions, these results are 44 

consistent across all three RCM simulations, providing a level of confidence in the 45 

magnitudes and spatial characteristics of temperature and precipitation projections for South 46 

Asia.   47 

 48 
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1. INTRODUCTION 49 

Many delta regions of South Asia are densely populated and heavily reliant on agriculture for 50 

livelihoods and wellbeing, which is vulnerable to changes in rainfall variability potentially 51 

leading to enhanced flooding or drought.  South Asia comprises a region of complex 52 

atmospheric dynamics and regional climate processes.  Potential changes in these 53 

dynamics resulting from the warming induced by increasing greenhouse gas concentrations, 54 

combined with existing vulnerability to extreme weather events such as flooding due to low-55 

lying topography, could put the region at severe risk from future climate changes (Caesar et 56 

al., 2015).  The DECCMA project (Hill et al., this issue) aimed to assess the numerous 57 

potential impacts and adaptations to these climate changes on the populations of the 58 

Ganges-Brahmaputra-Meghna (GBM) and Mahanadi deltas. This paper describes how the 59 

climate information that underpins these assessments was generated. 60 

The climate of South Asia is characterised by high temperatures, a monsoon season with 61 

heavy rainfall, periods of high humidity and strong seasonal variations. The dominant 62 

regional climate feature is the seasonal reversal of the large-scale atmospheric circulation 63 

between summer and winter months, resulting in the rainy season known as the ‘summer’ or 64 

‘South Asian’ monsoon.  The annual climate of South Asia can typically be separated into 65 

four distinct seasons: pre-monsoon (March-April-May, denoted as MAM), monsoon (June-66 

July-August-September, denoted as JJAS), post-monsoon (October-November, denoted as 67 

ON), and winter (December-January-February, denoted as DJF).  The summer monsoon 68 

season brings the highest accumulation of precipitation seen during the year, with around 69 

70-80% of the region’s total annual precipitation falling within the JJAS season (Caesar et 70 

al., 2015; Kumar et al., 2013; Kumar et al., 2006).   71 

Studies based on observational records have not revealed a significant trend in either 72 

increases or decreases in average monsoon rainfall across India as a whole, however 73 

regional trends across meteorological subdivisions of India and Bangladesh are apparent 74 
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(Rupa Kumar et al., 2002; Dash et al., 2007; Kumar et al., 2013).  On daily timescales, some 75 

studies have observed an increase in the frequency of extreme rainfall days across much of 76 

the subcontinent, possibly due to increased moisture content and warmer sea surface 77 

temperatures in recent history (Christensen et al., 2013; Goswami et al., 2006).  Although 78 

single extreme rainfall events such as the severe flooding event in July 2005 across Mumbai 79 

cannot be directly attributed to climate change (Kumar et al., 2013), many studies around 80 

the world are demonstrating how climate change is increasing the risk of such extreme 81 

events happening (e.g. Pall et al., 2011; Schaller et al., 2016; Philip et al., 2018).   82 

A number of previous modelling studies, making use of both global climate model (GCM) 83 

and regional climate model (RCM) information for South Asia, have been performed to 84 

assess future impacts of climate change for this vulnerable region (Bhaskaran et al., 1996; 85 

Ueda et al., 2006; Kumar et al., 2006; Islam et al., 2008; Krishna Kumar et al., 2011; Sabade 86 

et al., 2011; Kumar et al., 2013; Bal et al., 2015; Caesar et al., 2015).  There is a strong 87 

consensus amongst climate projection studies for increases in temperatures across much of 88 

South Asia by the end of the 21st century, with a spread in the magnitudes dependent on 89 

greenhouse gas emission scenario and employed methodology (Caesar et al., 2015; Kumar 90 

et al., 2013; Christensen et al., 2013; Kumar et al., 2006).  Similarly, a number of studies 91 

project an increase in annual precipitation for South Asia, and particularly Bangladesh, with 92 

the intensity of heavy precipitation events projected to increase across the country (Caesar 93 

et al, 2015; Sabade et al., 2011; Ueda et al., 2006).  Current climate model capabilities in the 94 

realism of their simulation of summer monsoon characteristics are varied. Previous 95 

modelling studies suggest both a potential increase and decrease in the associated strength 96 

of the summer monsoon circulation in the 21st century, highlighting the complexity of 97 

modelling the dominant climate processes within this region (Janes & Bush, 2012; Kripalani 98 

et al., 2007; Tanaka et al., 2005).  To date, climate change studies focused on South Asia 99 

are somewhat limited, and many are based on results from a singular modelling experiment. 100 

One study (Kumar et al., 2013) takes a multi model approach to better explore climate 101 
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variability and change in South Asian climate dynamics, rather than relying on output from a 102 

singular future climate scenario. Taking an ensemble approach (Kumar et al., 2013; Jacob et 103 

al., 2007; Reichler and Kim, 2008), whereby results from multiple modelling activities is 104 

considered for analysis, provides a range of plausible climate changes. These are then 105 

relevant to undertaking a comprehensive assessment of risks and responses to climate 106 

change which is not possible when results are drawn from single scenario of future climate.   107 

This study aims to help address this knowledge gap, and describes the use of an ensemble 108 

of three RCM simulations to generate high-resolution climate datasets over South Asia for 109 

assessing climate impacts in the GBM and Mahanadi deltas.  Realistic representation of 110 

precipitation during the summer monsoon is important for producing user-relevant 111 

projections of regional climate for use in downstream impacts models due to the dominance 112 

of this season in providing much of the regional’s total annual precipitation.  For this reason, 113 

the analysis within this paper focuses mainly on the summer monsoon season of JJAS.  114 

Section 2 of the paper summarizes the use of climate models and the model selection 115 

process taken in this study to produce three RCM simulations.  Section 3 validates results 116 

from these RCM simulations against both observational datasets and their respective driving 117 

GCMs.  Sections 4 and 5 investigate potential changes in key climate characteristics under 118 

increasing greenhouse gas emissions, followed by a summary of discussions and 119 

conclusions based on the results outlined here.  120 

 121 

2. MODEL SELECTION AND DOWNSCALING 122 

 123 

2.1 DOWNSCALING GLOBAL CLIMATE MODELS 124 

The most recent assessment report of the Intergovernmental Panel on Climate Change 125 

(IPCC) used ensembles of GCM simulations from the Coupled Model Intercomparison 126 
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Project phase 5 (CMIP5) (Taylor et al., 2012) to provide projections of future climate 127 

conditions for regions of the world, including South Asia (IPCC, 2013; IPCC, 2014).  GCMs 128 

are an invaluable tool for assessing potential climate change resulting from increased 129 

greenhouse gas emissions, and are useful for assessing potential changes in large-scale 130 

global phenomena such as the summer monsoon over South Asia. While suitable as a basis 131 

for an overall narrative for future regional climate changes, these coarse-resolution 132 

simulations do not provide information at high enough resolution to guide detailed 133 

assessment of the impacts of climate change through the use of downstream impacts 134 

models (e.g. hydrological and agricultural models).   135 

To overcome the limitations of the coarse resolution GCMs, which typically have grid cells 136 

hundreds of kilometres across, high-resolution physically-consistent datasets for a large 137 

range of relevant climate variables can be generated through ‘dynamical downscaling’, 138 

whereby GCM output is used to drive a high-resolution RCM. RCMs are better able to 139 

represent local topography, coastlines, land use and regional atmospheric processes than 140 

coarse-resolution GCMs. They can add significant detail to the information obtained from 141 

GCMs, in particular for regional climate impacts studies and analyses of extreme events (Bal 142 

et al., 2015; Caesar et al., 2015; Kumar et al., 2013; Krishna Kumar et al., 2011).   143 

 144 

2.2 SELECTION OF GCMS FOR DOWNSCALING 145 

The CMIP5 GCMs provide simulations of the future climate forced with different scenarios 146 

for “radiative forcing”, or the energy imbalance of the climate system due changing 147 

greenhouse gas and aerosol concentrations in the atmosphere.  These scenarios are known 148 

as Representative Concentration Pathways (RCPs) (Moss et al., 2010; van Vuuren et  al., 149 

2014). The CMIP5 dataset includes simulations of four different RCPs using over 40 GCMs 150 

(although simulations are not available for every RCP/GCM combination) and is considered 151 
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to provide reasonable sampling of uncertainties in future climate conditions on large spatial 152 

scales. Ideally, we would consider a large number of climate datasets to fully sample 153 

uncertainties in future climate changes and resulting impacts. However, limited resources for 154 

running both RCM simulations and downstream impact model simulations meant that this 155 

was impractical. Therefore, a single RCP scenario (RCP 8.5) was selected for consideration 156 

in the DECCMA project (Kebede et al., 2018).  This allowed us to focus on sampling the 157 

range of uncertainty arising from the use of different climate models. RCP 8.5 is a scenario 158 

depicting the highest greenhouse gas emissions, assuming high energy demand due to 159 

large population increases and slow rates of development and adaptation (Riahi et al., 160 

2011).  It is therefore expected to give a strong, discernible climate change signal in 161 

modelling results. Given that climate and impacts modelling constraints restricted us to 162 

running only three downscaled simulations, we focused on sampling uncertainty in the 163 

GCMs as the main source of modelling uncertainty at regional scales (Deque et al. 2005, 164 

Kendon et al., 2010) and thus used a single RCM (HadRM3P) for the downscaling activities 165 

performed here.  HadRM3P has been tested and verified for accurate performance for a 166 

variety of regions around the world (Mearns et al., 2013; James et al., 2014; Massey et al., 167 

2014; Bal et al., 2015; Centella-Artola et al., 2015; Williams et al., 2015). 168 

In selecting CMIP5 models for downscaling with HadRM3P we followed the approach of 169 

McSweeney et al. (2015) and built on its application in a recent collaborative project with the 170 

Met Service Singapore (see Table 1, Marzin et al., 2015).  This approach advises selecting 171 

GCMs for downscaling based on two criteria: 172 

1. All selected GCMs should have a satisfactory simulation of relevant aspects of the 173 

recent climate of the region of interest. 174 

2. Future climate changes in the region of interest simulated by the ensemble of 175 

selected GCMs should span the range of future climate changes spanned by the full 176 

ensemble of satisfactory GCMs. 177 
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HadGEM2-ES Met Office Hadley Centre 

ACCESS1-0 Commonwealth Scientific and Industrial 
Research Organization and Bureau of 
Meteorology  

 BCC-CSM-1-1-M Beijing Climate Center  

CanESM2  Canadian Centre for Climate Modelling and 
Analysis 

CMCC-CM   Centro Euro-Mediterraneo per I 
Cambiamenti Climatici 

CNRM-CM5 Centre National de Recherches 
Meteorologiques 

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial 
Research Organisation in collaboration with 
the Queensland Climate Change Centre of 
Excellence 

GFDL-CM3   Geophysical Fluid Dynamics Laboratory 

GFDL-ESM2G   Geophysical Fluid Dynamics Laboratory 

IPSL-CM5A-LR Institut Pierre-Simon Laplace 

Table 1. Model names and institution details for the 10 CMIP5 GCMs considered for 178 
downscaling in this study. 179 

 180 

In addressing the first criterion, a number of models were immediately eliminated from the 181 

selection due to either a) a lack of robust monsoon dynamics as described in McSweeney et 182 

al. (2015), or b) incorrect climate characteristics or responses identified in a previous project 183 

(Marzin et al., 2015). No additional GCM assessments specific to the South Asia region was 184 

performed as these were part of the work undertaken by McSweeney et al. (2015) and the 185 

Met Service Singapore project, and so applicable to our region of interest. 186 

To address the second criterion, we examined climate changes between the 1961-1990 time 187 

period and the 2070-2099 time period in the RCP 8.5 simulations of the different CMIP5 188 

GCMs. Future changes in annual and seasonal mean temperature and precipitation were 189 

calculated over a region covering the Mahanadi and GBM basins (15-30˚N, 80-95˚E).  These 190 

results were subsequently used to select GCMs that spanned as much as possible of the 191 

range of future climate changes simulated by the full CMIP5 ensemble, for both the annual 192 
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and seasonal timescales (Fig 1). Through assessing the spread of models on both annual 193 

and seasonal timescales, we were able to identify three models which sufficiently span the 194 

range of plausible future changes within the full set of GCMs available for downscaling.  We 195 

then cross-referenced these GCMs with the findings of McSweeney et al. (2015), to ensure 196 

adequate performance over larger monsoon regions. The three GCMs chosen for 197 

downscaling within the DECCMA project were HadGEM2-ES, CNRM-CM5, and GFDL-CM3.  198 

Each of these global models has slightly different grid resolutions: 1.25° latitude X 1.875° 199 

longitude for HadGEM2-ES, 1.4° latitude X 1.4° longitude for CNRM-CM5, and 2.0° latitude 200 

X 2.5° longitude for GFDL-CM3. 201 
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 202 

 203 

Figure 1: CMIP5-simulated future climate changes for RCP 8.5 for a region covering the 204 

Mahanadi and GBM basins (15-30˚N, 80-95˚E). Changes in annual mean temperature and 205 

precipitation between 1961-1990 and the 2080s are shown in the top panel.  Subsequent 206 

panels show the same analysis for seasonal means (DJF = December, January, February; 207 

MAM = March, April, May; JJA = June, July, August; SON = September, October, 208 

November). Grey numbers represent GCMs that could not be downscaled due to a lack of 209 

output suitable for input to an RCM. Orange numbers indicate the three GCMs that were 210 

selected for downscaling in the DECCMA project.  211 

 212 



11 
 

Seasons outside of the monsoon season may be of interest to those assessing climate 213 

change impacts and are important to the regional climate dynamics of the region. Note, 214 

however, that it was not possible to sample the full range of changes in annual and seasonal 215 

mean temperature and precipitation with just these three GCMs selected. Most obviously, 216 

the selected GCMs do not span much of the uncertainty in CMIP5-simulated future changes 217 

in seasonal mean precipitation for the March, April, May (MAM) season (Fig 1). In this 218 

season, all three selected GCMs simulate future increases in seasonal mean precipitation of 219 

0.5mm/day or less. However, some CMIP5 GCMs simulate future decreases in seasonal 220 

mean precipitation for this season and some simulate increases of greater than 0.5mm/day. 221 

Thus, one consequence of the limited number of GCMs used in this study is to exclude 222 

those simulating the most extreme future climate changes. 223 

  224 

2.3 REGIONAL CLIMATE MODELS 225 

Coarse resolution output from three different GCMs selected above was used as lateral 226 

boundary and sea-surface conditions to drive the Met Office Hadley Centre RCM, HadRM3P 227 

(Jones et al., 2004; Massey et al., 2014).  This is a high-resolution limited area model, which 228 

underlies the Providing Regional Climates for Impacts Studies (PRECIS) regional modelling 229 

system.   The RCM simulations undertaken here using HadRM3P are at a resolution of 0.22° 230 

X 0.22° (approximately 25 km), with 19 vertical levels and 4 soil levels.  The chosen model 231 

domain covers South Asia, allowing for the development of full mesoscale circulation 232 

patterns that influence the monsoon system (Fig 2).  A considerable amount of research has 233 

been done to assess the appropriate domain choice for capturing monsoon dynamics over 234 

India (Bhaskaran et al., 2012). In addition, the choice of this domain will allow the information 235 

produced within the DECCMA project to be applicable to a number of current and future 236 

research and collaboration opportunities in the region. 237 
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 238 

Figure 2: Downscaling domain for South Asia, depicting the model elevation (m).  Red 239 

dashed box indicated the common validation area (CVA) used for comparison of annual 240 

cycles in RCMs and observed temperature and precipitation.  The CVA contains the 241 

following latitude and longitude ranges: 15-30° N, 70-95° E. 242 

 243 

 244 

3. VALIDATION OF RCM SIMULATIONS 245 

RCM simulations were validated against climate observations following methods by Caesar 246 

et al. (2015).  Model outputs were compared to fine-resolution gridded temperature, 247 

precipitation, and lower level wind observations and reanalyses (a full list of datasets used in 248 

this study can be found in Table 2). Note that other gridded observational temperature and 249 

precipitation datasets are available, but not all of these are suitable for validating RCM 250 

simulations. For example, the GPCP and CMAP precipitation datasets (Adler et al., 2003; 251 
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Xie and Arkin, 1997) have a much coarser spatial resolution (2.5° x 2.5°) than the RCM 252 

simulations. 253 

Dataset Abbrev. Variables Resolution Period Reference 
Climatic 
Research Unit 
TS3.10 

CRU Temperature, 
Precipitation 0.5° x 0.5° 

1901-
2009 

Harris et al. (2014) 

University of 
Delaware 

UDEL Precipitation 
0.5° x 0.5° 

1950-
1999 

Willmott & Matsuura 
(1995) 

APHRODITE 
version 
1003R1 
dataset 
(Aph.v10)  
 

APHRODITE Precipitation 

0.25° x 0.25° 
1951-
2007 

Yatagai et al. (2012) 

Global 
Precipitation 
Climatology 
Centre 

GPCC Precipitation  

0.5° x 0.5° 
1901-
present 

Schneider et al. 
(2015) 

Global 
Historical 
Climatology 
Network – 
Climate 
Anomaly 
Monitoring 
System 

GHCN-
CAMS 

Temperature 

0.5° x 0.5° 
1948-
present 

Fan and van den 
Dool (2008) 

ERA-Interim 
ERAI Winds 

0.75° x 0.75° 
1979-
present 

Dee et al. (2011) 

 254 
Table 2: Gridded observational temperature and precipitation datasets used for RCM 255 

simulation validation. 256 

 257 

In this study, climatological mean surface air temperature and precipitation data averaged 258 

over the 1971-2000 (30-year) period from the RCM simulations were compared with 259 

observed datasets averaged over the same time period. For the comparison of lower-level 260 

winds (crucial to ensuring the realistic simulation of monsoon dynamics), climatological 261 

mean data for the 1979-2000 (22-year) period was used due to limited timescales available 262 

within the ERAInterim dataset. To promote a fair comparison, all data were regridded to the 263 

coarsest of the spatial resolution of the datasets (i.e. regridded onto a 0.5° x 0.5° grid for 264 

temperature and precipitation, and 0.75° x 0.75° for lower-level winds).  Sea grid cells in the 265 

RCM data were masked out to be consistent with the observational temperature and 266 

precipitation datasets, which have no data over oceanic points.  267 
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The RCM and observational data were then compared in two ways. Firstly, annual cycles 268 

based on monthly mean data averaged over a common validation region (CVA) shown in 269 

Figure 2 were calculated. This region covers much of the GBM river basin and the entire 270 

Mahanadi river basin, both foci of the DECCMA project. However, it also extends further 271 

south to include the area of maximum monsoon precipitation from the summer monsoon, 272 

allowing for the assessment of typical monsoon characteristics. Secondly, maps of 273 

climatological mean data for June-September (JJAS) season were compared, as this season 274 

is the dominant provider of the region’s total annual precipitation. For brevity, only one 275 

observational dataset was used in each of these spatially-explicit comparisons: CRU for 276 

temperature, GPCC for precipitation, and ERA-Interim for winds. 277 

Additionally, the RCM data were compared against corresponding data from their respective 278 

forcing GCM simulations, both averaged over the 1971-2000 time period. As with 279 

observational data, the RCM data were regridded to the coarser resolution of the GCM data 280 

and then compared using maps of the June-September (JJAS) season. This methodology 281 

helps us to verify that, on larger spatial scales, the RCM simulations are consistent with their 282 

forcing GCM simulations. 283 

 284 

3.1 Temperature 285 

Figure 3 compares the 1971-2000 climatological mean annual cycles in surface air 286 

temperature for the CVA region, for each of the three RCM simulations as well as the CRU 287 

and GHCN-CAMS observational datasets. The CRU dataset is marginally warmer than the 288 

GHCN-CAMS dataset, particularly during the monsoon season. These differences could be 289 

down to the number of stations used in the gridding process, interpolation methods invoked, 290 

or in the application of any elevation corrections. 291 
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 292 

Figure 3: 1971-2000 climatological mean annual cycles in surface air temperature for each 293 

of the three RCM simulations and the CRU and GHCN-CAMS observational datasets. 294 
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All three models are able to simulate fluctuating temperatures across an annual cycle, with 295 

varying amplitudes across the ensemble (Fig 3). During the months of April-September, the 296 

HadGEM2-ES-forced simulation and the GFDL-CM3-forced simulation are both able to 297 

realistically capture summer temperature patterns.  The CNRM-CM5-forced simulation has 298 

an additional slight cold bias of approximately 1°C in these summer months.  All three 299 

models show a pronounced cold bias during the winter months, ranging from approximately 300 

3-4°C for the HadGEM2-ES-forced simulation to 5-6°C for the GFDL-CM3-forced simulation.  301 

To better characterise the nature of the cold biases in temperature described above, spatial 302 

comparisons between the three models and the CRU observational dataset are shown in 303 

Figure 4.  In the monsoon season (JJAS), all three RCM simulations depict a small cold bias 304 

for most of the region, with maximum biases occurring over the Himalayas (Fig 4).  Over 305 

central India and Bangladesh, both the HadGEM2-ES-forced simulation and the CNRM-306 

CM5-forced simulation show slight cold bias, whereas temperature biases in the GFDL-307 

CM3-forced simulation are minimal for this region.  Across the whole domain, it is clear that 308 

the cold biases in the CNRM-CM5-forced simulation are generally larger than in the other 309 

two simulations (consistent with Fig 3.), with no warm biases anywhere in the region. It is 310 

possible that in this topographically complex region, differences in elevation between the 311 

RCM and the observing sites contributing data to the observational dataset are leading to 312 

this apparent bias, which is more pronounced during the winter months (Fig 3). In 313 

mountainous regions, observational stations are often located at lower elevations within 314 

accessible valleys, which can lead to warm biases within gridded observational datasets as 315 

conditions at higher elevations are not accurately captured.  This results in an apparent cold 316 

bias within RCM simulations, particularly in the winter months, and has been found in a 317 

number of previous studies using a range of RCMs over South Asia (Rupa Kumar et al., 318 

2006; Islam et al., 2009; Gu et al., 2012).  For the purpose of this validation, which focuses 319 

solely on the monsoon season of JJAS, no correction for height differences between model 320 

results and observational datasets has been applied.   321 
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 322 

 323 
   324 

Figure 4: 1971-2000 climatological mean surface air temperature for JJAS for each of the 325 

RCM simulations and the CRU observational dataset. Differences between the RCM and 326 

CRU datasets are also shown. 327 

 328 
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When comparing the driving GCM data to observations, large cold biases over the 329 

Himalayas are also present, but to a lesser extent for the HadGEM2-ES GCM than for the 330 

other two GCMs (not shown). RCM biases over the rest of the region do not appear to be 331 

directly inherited from their forcing GCMs, and are therefore likely to be a product of the 332 

RCM itself.  However, a component of the biases between the RCM simulations and the 333 

gridded observational datasets may be due to the formulation of the observational datasets, 334 

which in themselves are inherently uncertain over regions of complex topography. 335 

Comparing regridded RCM output to results from the driving GCM (Fig 5) suggests that both 336 

the HadGEM2-ES-forced RCM simulation and the CNRM-CM5-forced simulation are slightly 337 

colder in most of the region, including in the ocean, than their respective driving GCMs. This 338 

difference in temperature is largest in the Himalayas, which could again be related to 339 

differences in topography across the RCM and GCM implementation. A region of warmer 340 

temperatures extends eastwards from Pakistan across northern India and Bangladesh, 341 

consistent with the comparison of HadGEM2-ES-forced RCM results with observations.  342 

Conversely, the GFDL-CM3-forced RCM simulation has a small region of warmer 343 

temperatures compared to its forcing GCM, even extending into the Himalayas. These 344 

results suggest general large-scale RCM-GCM consistency, but further confirms that biases 345 

in the RCM results shown here are not entirely inherited from their driving GCMs. 346 
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 347 

Figure 5: 1971-2000 climatological mean surface air temperature for JJAS for each of the 348 

RCM simulations and for their corresponding forcing GCM. Differences between the RCM 349 

and GCM datasets are also shown. 350 

 351 

 352 
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3.2 Precipitation 353 

Figure 6 compares the 1971-2000 climatological mean annual cycles in precipitation 354 

averaged over the CVA region depicted in Figure 2, for each of the three RCM simulations 355 

and the CRU, UDEL, GPCC and APHRODITE observational datasets. All four observational 356 

datasets show a distinct winter dry season followed by increasing precipitation through the 357 

onset of the summer monsoon in May with the wettest months in July and August, followed 358 

by a decline in precipitation in October and November. The absolute amount of precipitation 359 

differs between the observational datasets, especially during the wetter months, which 360 

illuminates the high level of uncertainty across observational datasets in this region and the 361 

difficulty in using gridded observational datasets to validate RCM information. In these 362 

months, the GPCC dataset consistently shows the greatest precipitation and the 363 

APHRODITE dataset consistently shows the least precipitation. Such differences between 364 

observational datasets have been found in other studies (Prakash et al., 2014; Herold et al., 365 

2016), and can arise through different networks of observing stations being used and 366 

different methods of interpolating data from the stations onto a spatial grid. 367 
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 368 

Figure 6: 1971-2000 climatological mean annual cycles in precipitation (mm/day) for each 369 

of the three RCM simulations and the CRU, UDEL, GPCC, and APHRODITE observational 370 

datasets. 371 
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The HadGEM2-ES-forced RCM simulation reproduces the annual cycle in regionally-372 

averaged precipitation, but has a significant dry bias relative to all of the observational 373 

datasets throughout the summer monsoon season.  Likewise, the GFDL-CM3-forced 374 

simulation has an overall dry bias in CVA-average precipitation relative to all four 375 

observational datasets. However, the maximum monthly mean precipitation is later in the 376 

GFDL-CM3-forced simulation than in the observations, occurring in August rather than in 377 

July. The simulated monthly mean CVA-average precipitation values match the observations 378 

well in September and October. It is possible that there is a dry bias in the simulation during 379 

the build up to the monsoon and the monsoon itself, but not during the monsoon decay. 380 

Alternatively, the monsoon rains could be delayed in the simulation relative to the 381 

observations. A comparison of the simulated and observed monsoon circulation and 382 

associated onset and cessation would be necessary to test these hypotheses. Unfortunately, 383 

fell outside the scope of the DECCMA project, but is currently being investigated in follow-on 384 

work. 385 

As in the HadGEM2-ES-forced and GFDL-CM3 forced simulations, the CNRM-CM5-forced 386 

simulation reproduces the annual cycle in CVA-average precipitation. However, in contrast 387 

to the other two models, the simulated precipitation in the monsoon season lies within the 388 

observational uncertainty described by the four observational datasets.  389 

In spatial maps of climatological monsoon precipitation (Fig 7), the regional extent of 390 

precipitation biases is similar across all three models, with a few regions of noteworthy 391 

differences.  The HadGEM2-ES forced simulation depicts dry biases of more than 2mm/day 392 

extending across much of India and Bangladesh. The areas of dry biases correlate well with 393 

areas of warm biases in Figure 4, suggesting the latter result from reduced evaporative 394 

cooling and/or enhanced solar radiation respective from lower precipitation and associated 395 

cloud clover.  Dry biases in the HadGEM2-ES simulation are partially offset by wet biases in 396 

the Himalayas.  The spatial patterns of precipitation biases in the GFDL-CM3-forced depict a 397 



23 
 

slightly larger extent of dry biases over India, particularly in the Mahanadi basin region.  Dry 398 

precipitation biases in the CNRM-CM5-forced simulation are much less extensive than the 399 

other two models, which contributes to the better match between the simulated and 400 

observed regionally-average precipitation values for the CNRM-CM5-forced simulation (Fig 401 

6).  Overall, all three models have lesser spatial biases compared to observations than their 402 

respective forcing GCMs (not shown).  403 

 404 
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 405 

 406 

Figure 7: 1971-2000 climatological mean precipitation for JJAS for each of the RCM 407 

simulations and the GPCC observational dataset. Differences between the RCM and GPCC 408 

datasets are also shown. 409 
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When comparing to results from the driving GCMs (Fig 8), the HadGEM2-ES-forced RCM 410 

simulation has two notable anomalies relative to the original HadGEM2-ES GCM: a large dry 411 

region in northeast India extending across Bangladesh and a strong wet anomaly in central 412 

India (bringing it closer to observations) and over the Bay of Bengal.  The GFDL-CM3-forced 413 

RCM simulation also has a wet anomaly over the Bay of Bengal relative to its original GCM, 414 

but contains a much more widespread dry anomaly over most of India and into parts of the 415 

Himalayas, Tibetan Plateau and off the southeast coast into Sri Lanka.  The CNRM-CM5 416 

forced RCM simulation is wetter than the driving GCM across most of the region including in 417 

central India and Bangladesh (again bringing it closer to observations) with the largest 418 

differences in the Bay of Bengal and the Arabian Sea. There is also a large dry anomaly off 419 

the east coast of Sri Lanka.  All three RCMs are depicting enhanced precipitation over the 420 

Bay of Bengal with respect to their driving GCMs, which could be due to the finer model 421 

resolution and increased capability in capturing precipitation over complex topography. 422 
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 423 

Figure 8: 1971-2000 climatological mean precipitation for JJAS for each of the RCM 424 

simulations and for their corresponding forcing GCM. Differences between the RCM and 425 

GCM datasets are also shown. 426 

 427 

 428 

 429 
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3.3 Lower-Level Winds (850hPa) 430 

Figure 9 shows the spatial pattern in biases in lower-level (850 hPa) winds between each of 431 

the three RCM simulations and the ERA-Interim gridded dataset during the monsoon 432 

season, averaged over 1979 to 2000. The RCMs reproduce the monsoon circulation well, 433 

with the characteristic strong, moisture-laden westerly winds coming in from over the 434 

Arabian Sea present in all three simulations. The HadGEM2-ES-forced simulation has a 435 

positive bias of 4-6 m/s for westerly winds over Central India and extending eastward into 436 

the Bay of Bengal, Myanmar and Thailand. The GFDL-CM3-forced simulation has little to no 437 

spatial bias for lower-level winds, the most notable being a small positive bias over the Bay 438 

of the Bengal. The CNRM-CM5-forced simulation has a positive bias over central India and 439 

the Bay of Bengal. However, unlike the other two simulations, it has a negative bias of 440 

around 4 m/s off the south coast of India over Sri Lanka and the Indian Ocean.  Biases in 441 

lower-level wind strength, particularly over central India, could help to explain the wet biases 442 

seen in these regions for two of the three RCM models (HadGEM2-ES-forced and CNRM-443 

CM5-forced, see Fig 7), as stronger monsoon circulation could lead to increased 444 

convergence and associated monsoon precipitation over land. 445 
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 446 

Figure 9: 1979-2000 climatological mean lower-level wind speeds (m/s) for JJAS for each of 447 

the RCM simulations and the ERA-Interim observational dataset. Differences between the 448 

RCM and ERA-Interim datasets are also shown. 449 

 450 
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To assess consistency with their driving GCMs, Figure 10 shows the spatial pattern in 451 

differences in lower-level winds between each of the three RCM simulations and their 452 

original forcing GCMs for the monsoon season, averaged over 1971 to 2000. White grid 453 

points on the spatial maps in Fig 10, predominantly located in the Himalayas, represent grid 454 

points for which the 850hPa pressure level intersects with the model topography, and were 455 

therefore omitted from subsequent analysis.  The HadGEM2-ES-forced  and GFDL-CM3-456 

forced RCM simulations have minimal differences compared to the original GCM. The 457 

CNRM-CM5-forced RCM has more significant differences compared to its original GCM than 458 

seen in the other two RCMs, including a positive anomaly of around 4-6m/s starting over the 459 

Arabian sea and extending eastwards over India and into the Bay of Bengal. It also has a 460 

negative anomaly of around 4m/s off the south coast of India, across Sri Lanka and 461 

extending into the southern Bay of Bengal. This analysis indicates that the RCMs have 462 

large-scale consistency with their driving GCMs, particularly in the simulation of monsoon 463 

atmospheric dynamics. 464 
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 465 

Figure 10: 1971-2000 climatological mean lower-level winds (m/s) for JJAS for each of the 466 

RCM simulations and for their corresponding forcing GCM. Differences between the RCM 467 

and GCM datasets are also shown 468 

 469 

In summary, the validation undertaken in Section 3 confirms that the regional climate 470 

information produced by the three RCMs in this study, particularly focused on the monsoon 471 
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season of JJAS, are reasonably aligned with observational datasets in their magnitude and 472 

spatial depiction of key characteristics inherent in the climate of South Asia. They are 473 

therefore ‘fit for purpose’, and suitable for use in downstream impacts modelling and 474 

adaptation work, both within the DECCMA project and more broadly in future impacts 475 

assessments for South Asia.  A summary of key biases within the RCM simulations can be 476 

found in Table 3.  While there are biases in RCM output with respect to observations, these 477 

biases are an expected occurrence when implementing RCMs over this complex region of 478 

interest, and do not affect the integrity of the information produced. 479 

Simulation Temperature Precipitation 

 
 

RCM forced by 
HadGEM2-ES 

 Timing of warm and cool seasons similar to 
observations. 

  

 Overall cold bias for the region throughout the year, 
except in May-Jun, largest in winter (~4°C in Jan mean 
temperature). 

  

 Cold biases across the entire region in winter. Much 
smaller local cold biases during summer, with warm 
biases in some parts of northern India and 
Bangladesh. Large cold bias in Himalayas throughout 
the year. 

 

 More extreme variation in temperature between 
winter and summer than in observations. 

 Timing of wet and dry seasons 
similar to observations. 

 

 Overall dry bias for the region 
during wet months. 

 

 Large local dry biases in Bangladesh 
and eastern India throughout Mar-
Nov, with dry biases across most of 
the region in Jun-Sep. 

 

 Wet bias in Himalayas throughout 
the year and to the west of the 
Mahanadi Delta in Jun-Sep. 

 
 

RCM forced by 
CNRM-CM5 

 Timing of warm and cool seasons similar to 
observations. 

  

 Overall cold bias for the region throughout the year, 
larger in winter than in summer  (~1°C in monthly 
mean temperature in May-Jun,  ~5°C in Jan mean 
temperature). 

  

 Cold biases across the entire region throughout the 
year, except Mar-May, in which there are warm 
biases in Bangladesh and eastern India. Large cold 
bias in Himalayas throughout the year. 

 

 More extreme variation in temperature between 
winter and summer than in observations. 

 Timing of wet and dry seasons 
similar to observations. 

 

 Little overall bias for the region 
throughout the year. 

 

 Large local dry biases in Bangladesh 
and eastern India in Mar-May, with 
more extensive dry biases in Jun-
Sep. 

 

 Wet bias in Himalayas throughout 
the year and across central India in 
Jun-Sep. 

 
 

RCM forced by 
GFDL-CM3 

 Timing of warm and cool seasons similar to 
observations. 

  

 Overall cold bias for the region throughout the year, 
except in Jun, largest in winter (~6°C in Jan mean 
temperature). 

 Maximum monthly precipitation 
later in the year than in 
observations. 

  

 Overall dry bias for the region 
during May-Aug. 
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 Cold biases across the entire region in winter. Very 
small biases across most of the region during 
summer. Large cold bias in Himalayas throughout the 
year. 

 

 Much more extreme variation in temperature 
between winter and summer than in observations. 

  

 Large local dry biases in Bangladesh 
and eastern India in Mar-May, with 
dry biases across most of the region 
in Jun-Sep. 

 

 Wet bias in Himalayas throughout 
the year. 

 480 

Table 3: Summary of comparisons of RCM simulations with temperature and precipitation 481 

observations, focused on the GCM basin and northern India. 482 

 483 

 484 

4. CLIMATE PROJECTIONS 485 

To assess potential changes in future climate over South Asia, differences between a future 486 

time period (2070-2099) and a historical baseline period (1971-2000) were compared for key 487 

climate variables.  Projected changes were calculated with respect to a particular model’s 488 

own present day climate, thereby reducing the influence of biases in the analysis, as it is 489 

assumed these model biases would still be present in the future time period.  490 

 491 

4.1 Temperature 492 

Figure 11 compares the simulated 2070-2099 climatological mean surface air temperatures 493 

under the RCP 8.5 scenario to the simulated mean surface air temperature for 1971-2000, 494 

for each of the three RCM simulations during the monsoon season. All three RCM 495 

simulations project strong increases in surface temperatures.  496 
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 497 

Figure 11: 30-year averaged surface air temperature (°C) during the JJAS season for each 498 

of the RCM simulations, spanning 1971-2000 (left column), 2070-2099 (middle column), 499 

and the anomaly between the future and present time period (right column).  500 

 501 

The HadGEM2-ES-forced simulation projects increases of 3-5° C for most of the region. The 502 

greatest increases are in the Himalayas, Pakistan and Eastern Afghanistan.  The GFDL-503 
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CM3-forced simulation is the warmest of the three RCM future simulations, especially in the 504 

Himalayas/Tibetan Plateau where it projects warming of between 6 and 8°C. For the rest of 505 

the region warming is projected to be around 4 to 5°C.  The CNRM-CM5-forced simulation 506 

gives the least warming of the three RCM future simulations, with warming at only 2-4°C 507 

across most of the region. Particularly in the Himalayas, elevation-dependent warming (i.e. 508 

where warming is stronger as elevation increases) is a plausible future feedback mechanism 509 

under increased global warming, and could lead significant loss of glacial mass balance in 510 

the future (Janes & Bush, 2012; Hewitt, 2005; Thomson et al., 2000; Giorgi et al., 1997).   511 

 512 

4.2 Precipitation 513 

Figure 12 compares the same time periods as above, but for precipitation during the 514 

monsoon season. All three RCM simulations project increases in precipitation and broadly 515 

agree in the spatial pattern of the increases, particularly over central India, but vary in their 516 

magnitude.  The HadGEM2-ES-forced simulation projects increases across the whole 517 

region, with the greatest increases of 5-8mm/day along the Western Ghats, in Central India, 518 

and over the Bay of Bengal and the Arabian Sea (all areas of intense monsoon rainfall in the 519 

present-day climate, playing a large role in the dynamics of the GBM basin).  The GFDL-520 

CM3-forced simulation is similar to the HadGEM2-ES RCM, but with greater increases over 521 

the Himalayan foothills and slightly lesser increases over the rest of the region.  The CNRM-522 

CM5-forced experiment projects the smallest increase of the three RCMs, generally in the 523 

range of 2-4mm/day, and the large increases seen over the Bay of Bengal and the 524 

Himalayan foothills seen in the other projections are not present.  While the magnitudes of 525 

increases in monsoon precipitation vary across the RCM models, there is remarkable 526 

agreement in the spatial characteristics of these precipitation increases across all three 527 

models, which provides a level of confidence that this response is in fact a plausible future 528 

climate scenario. 529 
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 530 

Figure 12: 30-year averaged precipitation (mm/day) during the JJAS season for each of the 531 

RCM simulations, spanning 1971-2000 (left column), 2070-2099 (middle column), and the 532 

anomaly between the future and present time period (right column).  533 

 534 

 535 
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4.3 Lower-Level Winds (850 hPa) 536 

The spatial extent and magnitude of the precipitation increases projected here are possibly 537 

related to a slight strengthening of the monsoon dynamics (Fig 13).  As with precipitation, the 538 

agreement across all three models for an increase in monsoon circulation strength (albeit 539 

with varying magnitudes), provides confidence in the projected large-scale changes in 540 

atmospheric dynamics as a plausible future climate scenario. The largest precipitation 541 

increases, over central India in particular, come from the GFDL-CM3-forced simulation, 542 

which also projects the greatest strengthening of the lower-level monsoon jet in the Arabian 543 

Sea.  On the contrary, the smallest precipitation increases are seen in the CNRM-CM5-544 

forced simulation, which projects less strengthening of this jet. 545 
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 546 

Figure 13: 30-year averaged 850 hPa winds (m/s) during the JJAS season for each of the 547 

RCM simulations, spanning 1971-2000 (left column), 2070-2099 (middle column), and the 548 

anomaly between the future and present time period (right column).  549 

 550 

The seasonally-averaged projections summarised in Section 4 could lead to severe impacts 551 

for vulnerable societies located in this monsoon region.  With current monsoon heavy 552 

precipitation events already resulting in wide-spread flooding and loss of livelihood (for 553 
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example, the 2017 summer monsoon floods in India, Nepal and Bangladesh), an increased 554 

intensity of monsoon-associated rainfall could further exacerbate this risk and, without 555 

effective adaptation, could lead to large-scale humanitarian crises (Overpeck & Cole, 2007; 556 

O’Brien et al, 2004). 557 

 558 

5. EXTREME TEMPERATURE AND PRECIPITATION ANALYSIS 559 

Conditions of extremely hot temperatures have recently been shown to have detrimental 560 

impact not just to the economy through lowered crop yields, but to the health and well-being 561 

of society as a whole (Lobell et al., 2012; Burgess et al., 2017; Carleton 2017).  To assess 562 

potential changes in days experiencing extremely hot temperatures within our three RCM 563 

simulations, we calculated the TX>35 index, as defined by the Expert Team on Climate 564 

Change Detection and Indices (ETCCDI).  This index is defined as the number of days in a 565 

year that exhibit daily maximum temperatures exceeding 35°C.  We calculated the number 566 

of days exceeding 35°C for each grid point in our CVA region, then produced climatological 567 

averages of these results for the present (1971-2000) and future (2070-2099) time periods. 568 

Figure 14 depicts a clear increase in the average number of days exceeding 35°C for all 569 

three models, with the largest increases being on the order of 100 days in the GFDL-CM3-570 

forced simulation.  Much of these increases are located in regions of intense agricultural 571 

activity, such as central and northeast India and central Bangladesh.  In addition, increases 572 

in the number of extremely hot days in the Himalayan foothills as seen in both the 573 

HadGEM2-ES and GFDL-CM3-forced simulations could directly impact river runoff levels, 574 

and lead to subsequent governance issues around water and resource management for the 575 

densely-populated delta region. 576 
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 577 

Figure 14: Maps of the TX>35 temperature index (number of days in a year) for each of the 578 

RCM simulations (one model per row), across the baseline period of 1971-2000 (left hand 579 

column), a future time slice of 2070-2099 (middle column), and the anomaly of future 580 

minus present day (right hand column).  581 

 582 

As noted above, changes in extreme daily rainfall characteristics could have detrimental 583 

impacts on lives, livelihoods and various economic sectors and across South Asia, such as 584 

safety and well-being of citizens, water resource management and agricultural productivity.  585 
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There are numerous indices describing slightly different aspects of extreme precipitation.  To 586 

perform an initial investigation of potential changes in extreme daily precipitation, we used 587 

the R95pTOT precipitation index, as defined by the Expert Team on Climate Change 588 

Detection and Indices (ETCCDI).  In this case, R95pTOT was defined as the annual total 589 

rainfall which occurs on wet days (when rainfall is > 1 mm/day) that exceed the value of the 590 

95th percentile of rainfall in a baseline period.  For each grid point across our CVA region, a 591 

95th percentile value was calculated for wet days in the 1971-2000 period.  Then, for a future 592 

time period of 2070-2099, we found the annual total rainfall based on days which exceed this 593 

baseline threshold at each grid point for each model respectively, such that any projected 594 

changes would be with respect to a particular model’s own present-day climate.  The choice 595 

of performing this analysis over the full annual cycle rather than just the JJAS season was to 596 

incorporate potential changes in the timing of the monsoon, such that any extreme 597 

precipitation days occurring outside the months of JJAS would be accurately captured.  A 598 

potential change in timing of the monsoon is a topic that has not been thoroughly 599 

investigated in this study, but which could occur under increasing greenhouse gas emissions 600 

(Ashfaq et al., 2009).  The results of this index are shown in Figure 14, which depicts a clear 601 

increase in the annual total amount of extremely heavy precipitation across much of the CVA 602 

region, particularly over Bangladesh, a signal which is consistent across all three 603 

downscaling experiments.  An increase in extreme daily precipitation could lead to an 604 

increased risk of severe flash-flooding events in a changing climate. 605 
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 606 

Figure 15: Maps of the R95pTOT rainfall index (number of days in a year) for each of the 607 

RCM simulations (one model per row), across the baseline period of 1971-2000 (left hand 608 

column), a future time slice of 2070-2099 (middle column), and the anomaly of future 609 

minus present day (right hand column).  610 

 611 

6. IN THE CONTEXT OF CMIP5 612 

RCM projections found in this study lie within the range of future climate projections 613 

simulated by 35 members of the full CMIP5 GCM ensemble for both temperature and 614 

precipitation during the monsoon season (Fig 15).  These 35 members represent the full 615 

CMIP5 ensemble available at the time of analysis.  In the case of temperature, the use of an 616 



42 
 

RCM seems to constrain future projections to span a smaller range than what would have 617 

been found by using the driving GCM data alone.  On the other hand, precipitation 618 

projections using an RCM are seen to span a larger range than the driving GCM data.  This 619 

could be due to better representation of local topography, and orographic influence on 620 

precipitation during the monsoon season.  It is worth noting that each of the 35 available 621 

CMIP5 models at the time of analysis have been treated with equal weighting.  This includes 622 

models that may not accurately represent monsoon dynamics and associated precipitation.  623 

RCM projections in temperature and precipitation both sit within the range of projections 624 

seen in the available CMIP5 ensemble, providing further confidence that the results 625 

presented here are not outside the realm of a plausible future climate. 626 

 627 

Figure 16: Comparing RCM and GCM anomalies (2070-2099 minus 1971-2000) of 628 

temperature and rainfall during the JJAS season to that of the full CMIP5 ensemble under 629 

the RCP 8.5 emission scenario.  Data have been averaged over the CVA domain in Fig 2. 35 630 
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CMIP5 models were available at time of analysis. The lower and upper limit of the boxes 631 

depict the 25th and 75th percentile, respectively.  The whiskers represent the minimum and 632 

maximum values found within the 35 member ensemble. 633 

 634 

7. DISCUSSION 635 

There are a number of limitations and uncertainties within the gridded observational datasets 636 

used here.  Gridded datasets provide improved spatial coverage in areas where spatial and 637 

temporal observational stations are sparse (Tozer et al., 2012).  They are created through 638 

interpolation of station anomalies using a variety of methods, which introduces systematic 639 

uncertainties across multiple observational datasets.  These datasets are often ‘smoothed’ 640 

interpretations of observed point data, and may not capture the spatial and temporal 641 

variability of temperature or precipitation in a given region.  The sparse station network in 642 

South Asia, combined with the presence of complex topography, make it difficult to 643 

accurately capture the region’s climate variability in a gridded dataset.  For example, it has 644 

been shown that, due to a lack of stations in the Himalaya and methods of interpolation used 645 

in its creation, the APHRODITE rainfall dataset frequently underestimates the amount of 646 

daily rainfall in areas of extreme rainfall and complex topography (Ono & Kazama, 2011; Ali 647 

et al., 2012; Menegoz et al., 2013).  For South Asia in general, a number of gridded 648 

precipitation datasets were compared with station observations gathered by the India 649 

Meteorological Department (IMD), all of which showed a large amount of uncertainty across 650 

each of the gridded datasets, particularly over Northeast India (Prakash et al., 2014).  The 651 

use of reanalyses products, such as ERA-Interim, poses an additional challenge as 652 

dynamical variables are produced using a model driven by gridded observations, thereby 653 

further systematic uncertainties related to model parameterization and set-up.  Here, we 654 

attempt to limit uncertainties within observational datasets by using multiple sources of 655 

information, each employing slightly different methodologies.  Given the sparse network of 656 
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observational stations in this vulnerable part of the world, gridded and reanalyses datasets 657 

are a useful and valid tool for understanding current climate variability in South Asia. 658 

Our study focuses solely on the monsoon season of JJAS, as it is during this season when 659 

the region receives 70-80% of its total annual rainfall (Caesar et al., 2015; Kumar et al., 660 

2013; Kumar et al., 2006).  Results from three RCM simulations over South Asia at a spatial 661 

resolution of 25 km have been validated against a range of gridded observational datasets.  662 

All three models depict a cold bias over much of the subcontinent, with the strongest cold 663 

biases over the Himalayas.   As above, this could be due to differences in topography 664 

between the model results and observational datasets used for comparison, as well as 665 

interpolation methods used to created gridded observational datasets.  For precipitation, all 666 

three models are slightly too dry during the monsoon season, but too wet in the highest 667 

reaches of the Himalayas.  This is a known feature of RCM experiments performed in this 668 

region, and could be due to how the convective systems and moisture flux into this 669 

particularly region is represented (Caesar et al., 2015; Islam et al., 2008).  Wet biases in the 670 

Himalayas appear to be a common feature of other RCM simulations of the region 671 

(Bhaskaran et al., 1996; Ratnam and Kumar, 2005; Das et al., 2006; Saeed et al., 2009), 672 

including HadRM3P (Caesar et al., 2015). Some of these apparent wet biases in the 673 

Himalayas could be due to underrepresentation of precipitation in the observational data. 674 

One contributory factor could be that at high altitudes, “undercatch” of precipitation by rain 675 

gauges can be particularly pronounced due to precipitation falling as snow. Some studies 676 

have attempted to address this issue by applying undercatch corrections to observational 677 

precipitation datasets, and a greater correction is required for snow than for rainfall (e.g. 678 

Weedon et al., 2010).     679 

All three RCM experiments, based on the RCP 8.5 emission scenario, depict an increase in 680 

seasonally averaged temperature during the monsoon season of JJAS during the 2070-2099 681 

period, ranging from 3-5 °C over central India.  All three experiments also indicate an 682 
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increase in average monsoon precipitation by the end of the century, ranging from 10-40% 683 

over central India.  While the magnitudes of projected changes vary across the three 684 

experiments, spatial patterns remain consistent.  This consistency in projections across all 685 

three experiments, particularly with regards to the spatial patterns of projected precipitation 686 

and atmospheric circulation over the subcontinent, provides a level of confidence in the 687 

plausibility of our model projections.  A strengthening of monsoon circulation and associated 688 

rainfall could lead to detrimental effects in a regional already vulnerable to the impacts of 689 

widespread flooding during the monsoon season.  690 

On daily timescales, the total amount of annual precipitation during extremely heavy 691 

precipitation days is projected to increase in all three models, potentially leading to an 692 

increased risk of severe flooding events in the future.  These results are consistent with 693 

many previous studies invoking RCM simulations over the Indian subcontinent (Ueda et al., 694 

2006; Krishna Kumar et al., 2011; Kumar et al., 2013). 695 

The RCM simulations undertaken here are similar to those performed by Caesar et al. 696 

(2015), the results of which fed into a similar impacts and adaptation project.  However, 697 

there are key differences between the methods invoked by Caesar et al. (2015) and the 698 

methods invoked here.  The key contrast between the work performed here and that in 699 

Caesar et al (2015) is the use of new, state-of-the-art GCMs within the CMIP5 ensemble for 700 

downscaling over South Asia.  In addition, the single emission scenario used in Caesar et al. 701 

(2015) was the A1B SRES scenario (Nakicenovic et al., 2000).  Here, we are implementing a 702 

newer approach to modelling emissions based on the RCP emission scenarios (Moss et al., 703 

2010). 704 

There are a number of limitations associated with the research undertaken here, which will 705 

have implications for subsequent impact modelling activities.  Firstly, due to computational 706 

restrictions and modelling capabilities, we have been limited in our selection of driving GCMs 707 

to only three models within a small subset of the CMIP5 ensemble.  While the three models 708 
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chosen do span a significant range of uncertainty in future climate projections, the selection 709 

of models has an element of subjectivity, and it is possible that choosing different models for 710 

downscaling could lead to slightly different results.  Uncertainty in RCM responses to 711 

identical driving conditions was not explored here, as we chose to use only one RCM for the 712 

purpose of this study.  However, it is again possible that running multiple RCMs, driven by 713 

multiple GCMs, would enhance our ability to provide a more comprehensive range of 714 

plausible high resolution projections of climate change over South Asia.  This would allow 715 

downstream impacts assessments to better inform the range of risks from climate change 716 

and how to respond to these.  This study was also limited in its scope for assessing changes 717 

in extreme climate conditions, such as daily temperature ranges (DTR), consecutive wet/dry 718 

days, and monsoon onset/cessation, all of which can have direct and long-lasting impact to 719 

many sectors in this vulnerable region.  These topics are currently being investigated in 720 

follow-on research. 721 

RCM output will contain biases as shown here, some of which will be inherited from the 722 

driving GCM and some of which will arise due to characteristics within the RCM itself. 723 

Intended users of the RCM outputs must understand the implications of these for their work. 724 

How biases are addressed will depend heavily on how the RCM outputs will be used.  725 

Climate impact studies can give more plausible results if RCM outputs are statistically 726 

corrected towards observations to reduce the effects of biases (e.g. Macadam et al., 2016). 727 

However, this is not always possible for biases in all relevant aspects of climate, especially 728 

where reliable observations for relevant climate variables are not available. Furthermore, 729 

“bias correction” can affect RCM outputs in undesirable ways, such as by modifying climate 730 

change signals or the relationships between different climate variables (e.g. Haerter et al., 731 

2011). An alternative approach is to treat the biases as a contribution to uncertainty (Ehret et 732 

al. 2012) and interpret the results of downstream impact modelling accordingly. 733 

 734 
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8. CONCLUSIONS 735 

Results from the RCM simulations performed here match reasonably well with observational 736 

datasets over South Asia, but with notable cold biases (particularly over the Himalayas) and 737 

slight dry biases over much of the subcontinent.  These biases are an expected outcome of 738 

downscaling experiments in this region, and do not negatively impact the usability of 739 

information produced here.  Simulated changes in temperature and precipitation during the 740 

monsoon season presented in this study indicate a high level of consensus for increases in 741 

both temperature and precipitation during the monsoon season by the end of the 21st 742 

century.  These results fall within the plausible range of future climate scenarios predicted by 743 

the CMIP5 GCM ensemble, further providing confidence in their use for downstream impacts 744 

modelling and adaptation studies.  On daily timescales, increases in extreme daily 745 

precipitation may occur on a smaller number of days in the future, increasing the risk of 746 

severe flooding events in a changing climate. 747 

Further work is possible on a number of topics raised within this paper.  A further set of 748 

models, using multiple RCP emission scenarios, could be downscaled using an RCM in 749 

order to expand the range of plausible future climate scenarios at high-resolutions over 750 

South Asia.  Subsequent analyses of the model results shown here should focus on potential 751 

changes in the timing of the monsoon, as well as large-scale atmospheric processes that 752 

can be attributed to local-scale changes in monsoon rainfall. 753 

This study provides an example of good practice in generating future climate data that are 754 

suitable for downstream impacts modelling and adaptation studies.  Three RCM simulations 755 

were performed in this study, each using different driving GCM conditions using the RCP 8.5 756 

greenhouse gas emissions scenario, producing a small ensemble of high-resolution regional 757 

climate information at 25km resolution.  Although the climate datasets produced have 758 

limitations, they provide a firm basis for the assessment of impacts of climate change on the 759 

GBM and Mahanadi deltas.. 760 
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