Introduction

We present the first explicit-state method for analysing and ensuring safety of DRL agents for Atari games.

- We propose 42 safety properties for 31 games.
- We evaluate the safety of available Deep Reinforcement Learning (DRL)[1] agents.
- We improve safety through shielding [2] using bounded explicit-state exploration.

Background

- We consider 31 Atari games with unique dynamics given by a black-box emulator.
- Each game is a deterministic MDP (S, A, T, R).
- "no-op" non-determinism added: no inputs for the first $k \in \{0, ..., 30\}$ frames.
- Learn deterministic policy π : $S \rightarrow A$ through SOTA DRL methods.

Safety Properties

- Safety property $\phi \subseteq S$ is set of safe states.
- Satisfied if for all reachable states $s \in \phi$.
- Labelling handcrafted from graphical output.

e Properties
Description
Die from overheating
Miss all pins
Get hit by a car

- ▶ To verify ϕ for policy π run games with π for all values of k.
- ▶ This will visit every reachable state, ϕ true iff. for all states visited $s \in \phi$.

Bounded Prescience Shield (BPS)

- \blacktriangleright Modifies policy π at runtime by changing the action when $\pi(s)$ unavoidably leads to unsafe state within *n* steps.
- Computed by using the ability to roll back the emulator state, with no knowledge of the MDP.

Shielding Atari Games with Bounded Prescience

Mirco Giacobbe, Mohammadhosein Hasanbeig, Daniel Kroening, Hjalmar Wijk Computer Science Department, University of Oxford, UK

"Explicit-state verification demonstrates that DRL algorithms do not learn to satisfy even simple Safety Properties".

Results
$\begin{array}{c} 20 \\ \# \\ 20 \\ 10 \\ \end{bmatrix}$
Propertie before (v > Minima agents > No nor 4 agen
Monor Minimal Real Second Seco
I Jung Double Kung Na Sea
Effect of With E
[1] V. Mnih, I A. Graves control th pp. 529–5 [2] M. Alshie "Safe rein

ies grouped by number of satisfying agents w/o dots) and after BPS (with dots). nal properties are satisfied by random , shallow properties require no planning. n-minimal property is satisfied by more than nts.

of shielding on the average safety achieved. **3PS** all agents satisfy all shallow properties.

ces

K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, s, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., "Human-level hrough deep reinforcement learning," Nature, vol. 518, no. 7540, -533, 2015.

ekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu, nforcement learning via shielding," in AAAI. AAAI Press, 2018, pp. 2669-2678.