

Marta Garnelo, Wojciech Marian Czarnecki, Siqi Liu, Dhruva Tirumala, Junhyuk Oh, Gauthier Gidel, Hado van Hasselt, David Balduzzi

MOTIVATION

Strategic diversity of populations is important on three levels of agent training:

(e.g. play worse).

Rectified

Nash

Play worse

PW +self

PICK YOUR BATTLES: INTERACTION GRAPHS AS POPULATION-LEVEL OBJECTIVES FOR STRATEGIC DIVERSITY

ENVIRONMENTS

GMM ROCK-PAPER-SCISSORS

STARCRAFT II

Focusing on agents that are **better than you** makes you less exploitable and focusing on those that are worse than you makes you a better exploiter.

diversity.

When moving to significantly **more complex** environments some fundamental insights hold, but some do not.

Method	Performance	Coverage	Diversity
All-to-all	47%	89%	39%
Hier. Cycle	46%	74%	29%
Cycle	30%	74%	12%
Rect. Nash	43%	63%	3%
Self-play	44%	53%	0%

CONCLUSION

The **type of graph** has an effect on the diversity and he agents in a population. Graphs with **cycles** encourage

Individual **convergence** is not as important as population level convergence for diversity and coverage.

• In multi-agent training there is **not a fixed objective.** • It is necessary to **design algorithms** to search the strategy space effectively.

• We explore **population-level** learning algorithms where objectives of agents are specified by interaction graphs.