TOWARDS DECENTRALIZED SOCIAL REINFORCEMENT LEARNING VIA EGO-NETWORK EXTRAPOLATION

Mahak Goindani, Jennifer Neville, Department of Computer Science, Purdue University

Incentive Driven Policy Learning in Networks

- · Directed relations between users, e.g., Followee-Follower
 - ► One-directional information flow Follower can observe
- Information does not flow in opposite direction, unless Followee also follows the Follower
- · Partially Observable Ego-Network
 - ▶ Useri
 - Followees: A, B, C, D
 - Observed
 - Followers: X, Y, Z
 - Unobserved
- · Individual Rewards. Eg. visibility among Followers
 - Number of followers exposed
 - · Rank of user's posts in Followers' feeds
 - · Amount of time for which the user's posts stay at top
- · Depends on user's activities as well as activities of related users in local neighborhood
- Different local reward for each user based on her peers and local network structure

Social RL Objective

- Local Observation of user i o;
- ► Activities of Followees of user
- Local Reward of user $i R_i \in \mathbb{R}$
 - ► Correlation between exposures to Fake and True news among Followers of user i
 - ► Penalty or cost for a user to post more
- Objective of user i: Learn Policy $\pi_i : \mathbf{S}_{t,i} \to \mathbf{a}_{t,i}$ such that her total expected discounted local reward $\sum_{i} \gamma^{t-1} \mathbb{E}[R_{t,i}]$ is maximized

Challenges for Partially Observed Networks

- · Individual policies need to account for dependencies throughout the network
- Centralized learning and execution improve sample efficiency per user
 - Different local reward, observation of each user infeasible
- Decentralized learning
 - Does not scale for large N
 - Insufficient samples per user—sparse interaction data—large errors due to variance
- · Directed nature of user interactions
 - Strong Partial Observability
 - ▶ Relevant state information cannot be utilized as history by the user
 - ► Storing complete network trajectory information for large *N* space-prohibitive

Decentralized Ego-Network Policy Learning

- · Main Approach: Partially Centralized Learning and Decentralized
 - ► Single policy function
 - Parameter Sharing to learn this function across users
 - Only share model parameters sequentially Overcome
 - No sharing of samples/trajectories privacy-aware (limit data

- . A user i has two roles
 - ► Follower
 - ► Followee
- · Learn dependency between Followees and Followers
- Key Idea: Ego-network extrapolation:
 - ► Learn a function to estimate user i's (Follower) state from her Followees' states
 - ▶ Use the learned function to extrapolate the state of user *i*'s Followers from user i's (Followee) state
- - User i's Followees' states → User i's state
 - Many-to-one
 - User i's state → User i's Followers' states
 - One-to-many
- Less accurate estimates
- - ► Reciprocity Retweets, Likes
 - Many-to-many mapping better estimates
 - ► Dynamic peer-influence Attention between activities of each Followee-Follower pair
- · Sequential Parameter Sharing
 - · Common neural network, and agents access the network in a
 - · At a given iteration, only a single agent learns and updates the shared parameters based only on her state, observation and
- DENPL: 6 NN, 3 MHPs First MARL approach to utilize user relations in a partially observable social network — transfer knowledge from one set of users to another - estimate hidden state

- DENPL achieves similar performance as Fully Centralized learning, along with overcoming the lilmitations of Fully Centralized Learning
- Sequential Parameter Sharing
 - ► Increased effective number of samples per user Overcome sparsity
- ► No samples, only parameters shared privacy-aware (limit data sharing)
- · Ego-Network Extrapolation
 - ► Effectively extrapolate dependencies learned from Followees to Followers
 - Pairwise user interactions, peer-influence as attention
 - ► Learn policies equivalent to centralized learning without sharing trajectory information for partially observable environments

Additional Publications

- Goindani, M., & Neville, J. Social Reinforcement Learning to Combat Fake News Spread. UAI 2019
- Goindani, M., & Neville, J. Cluster-based Social Reinforcement Learning. AAMAS 2020
- Goindani, M. Social Reinforcement Learning. Ph.D. Thesis. December 2020

Real-world Twitter Datasets - Tweet, Retweet and Like Events. Multivariate Hawkes Proces to characterize user activities. Policy Learning via Ego-network Extrapolation and transferring the knowledge from the Followees to Followers

Performance: Reward along with fraction of Followers exposed to fake news that become exposed to true news Relative Performance: Difference between performance after applying the learned policy and that without applying a policy