Learning Robust Helpful Behaviors in Two-Player Cooperative Atari Environments

Introduction.

- encountered during training.

Helper-Al for Cooperative Atari 2600.

Intervention-Als with Als.

Two player Space Invaders	Partner AI		
	S_1	S_2	S_3
with self	878	1,134	2,141
with <i>S</i> ₄	694	963	1,826
with Helper-AI	1,701	2,434	3,844
with Intervention-AI (0.05 cost)	1,772	2,534	3,985
with Intervention-AI (0.025 cost)	1,927	3,234	4,367

Evaluating Intervention-Als in Cooperative Space Invaders and Cooperative Fall Down:

Game score, averaged over 100 games, of pairing a partner (columns) with different agents (rows): whether paired with self, a higher-skilled agent, an *on-target* Helper-AI, or an *on*target Intervention-AI.

We see a further advantage from Intervention-Als over Helper-Als, and even though interventions incur a per-action cost. For Fall Down, especially, the Intervention-AI provides a large boost in performance.

• We study the problem of learning helpful behavior: learning to cooperate with differently-skilled and diverse partners in the context of two-player, cooperative Atari games. • We show robust performance of these Helper-Als when paired with different kinds of partners (both human and artificial agents), including partners that they have not previously

Robust Helper-Al Behavior.

	The Behavior of the Partner Agent					
	<i>S</i> ₁	S_2	S ₂ -close	S_2 -distant	<i>S</i> ₃	
Performance with self	878	1,134	1,111	1,141	2,141	4
with expert-skill agent	694	963	457	711	1,826	
with Helper-AI trained for]
different target behaviors						
$H(S_1)$	1,701	2,294	1,185	1,449	3,538	
$H(S_2)$	1,587	2,434	1,227	1,548	3,792	
$H(S_2$ -close)	1,254	1,836	1,932	1,405	2,733	
$H(S_2$ -distant)	1,414	2,197	1,210	2,375	3,838	
$H(S_3)$	1,282	2,204	1,220	1,670	3,844	
$bH(S_2)$ (a bounded helper)	1,337	2,148	1,193	1,550	3,009	1

Results for **Cooperative Space** Invaders. We modify the standard version of the game to make it cooperative.

Helpful behavior vs. expert behavior:

- Pairing an agent with an expert-skill agent consistently reduces performance relative to self-pairing.
- There is decisive and consistent performance improvement from pairing an AI with its ontarget Helper-Al.

2. Robust helpful behavior:

There is a consistent **improvement** in performance when pairing an AI with an offtarget Helper- AI than compared to the performance from self-pairing.

Robust helpful behavior, bounded helpers: 3.

The **bounded-Helper-Al**, $bH(S_2)$, provides a consistent **improvement** in performance for partner agents relative to self-pairing.

Results for *Cooperative Fall* Down. The standard version of the game is modified to incentivize cooperative play.

	Par		
	<i>S</i> ₁		
with self	46.0	7	
with S ₄	32.7	4	
with Helper-AI	63.8	9	

ptylkin@g.harvard.edu gradanovic@mpi-sws.org parkes@eecs.harvard.edu

