A Multi-Arm Bandit Approach To Subset Selection Under Constraints

Ayush Deva, Kumar Abhishek and Sujit Gujar

We model our problem as an Integer Linear Program (ILP) where a planner needs to select a subset of agents, each with its own quality and cost, so as to maximize revenue whilst ensuring that the average quality is above a threshold.

We propose a dynamic programming based algorithm, DPSS to solve for it.

We consider a setting where the qualities of the agents are unknown to the planner beforehand and needs to estimated through sequential selection. We model this as a Multi Arm Bandit problem and leverage the popular UCB algorithm to design an abstract algorithm SS-UCB.

The algorithm takes in input the available agents, their costs, quality threshold (α), tolerance parameter (ε_{γ}) and a suitable offline subset selection algorithm, SSA.

Algorithm 2 SS-UCB

- 1: Inputs: N, α, ϵ_2, R , costs $c = \{c_i\}_{i \in N}$ 2: For each agent *i*, maintain: w_i^t , q_i^t , $(\hat{q}_i^t)^+$ 3: $\tau \leftarrow \frac{3 \ln T}{2\epsilon_n^2}$; t = 04: while $t \leq \tau$ (Explore Phase) do Play a super-arm $S^t = N$ Observe qualities $X_i^j, \forall i \in S^t$ and update w_i^t, \hat{q}_i^t 7: $t \leftarrow t + 1$ 8: while $t \leq T$ (Explore-Exploit Phase) do For each agent *i*, set $(\hat{q}_i^t)^+ = \hat{q}_i^t + \sqrt{\frac{3 \ln t}{2w_i^t}}$ 9: $S^t = \text{SSA}\left(\{(\hat{q}_i^t)^+\}_{i \in N}, c, \alpha + \epsilon_2, \mathbb{R}\right)$ 10:
- Observe qualities $X_i^j, \forall i \in S^t$ and update w_i^t, \hat{q}_i^t 11: 12:
 - $t \leftarrow t + 1$

Key Results Using DPSS as our SSA in Algorithm 2 (DPSS-UCB), we show that :

1. DPSS-UCB returns a subset which approximately satisfies the quality constraint with a high probability after τ rounds, where $\mathbf{\tau} \sim O(\ln T)$

2.. The algorithm incurs a regret of O(In T) after $\mathbf{\tau}$ rounds

Approximate but Faster Solution The time complexity of DPSS is of $O(2^n)$, which makes it difficult to scale when n is large. We propose an approximate, greedy-based, polynomial time, O(n logn), algorithm, GSS, to our ILP. Further, we empirically show that by using GSS as the SSA in Algorithm 2 (GSS-UCB), we achieve similar results to DPSS-UCB.

References

1. Shweta Jain, Sujit Gujar, Satyanath Bhat, Onno Zoeter, and Y Narahari. 2018. A guality assuring, cost optimal multi-armed bandit mechanism for expertsourcing. Artificial Intelligence 254 (2018), 44–63. 2. Wei Chen, Yajun Wang, and Yang Yuan. 2013. Combinatorial Multi-Armed Bandit:General Framework and Applications. In Proceedings of the 30th International Conference on Machine Learning (ICML), 151-159.

