A Global Multi-Sided Market with Ascending-Price Mechanism

Rica Gonen &

Erel Segal-Halevi

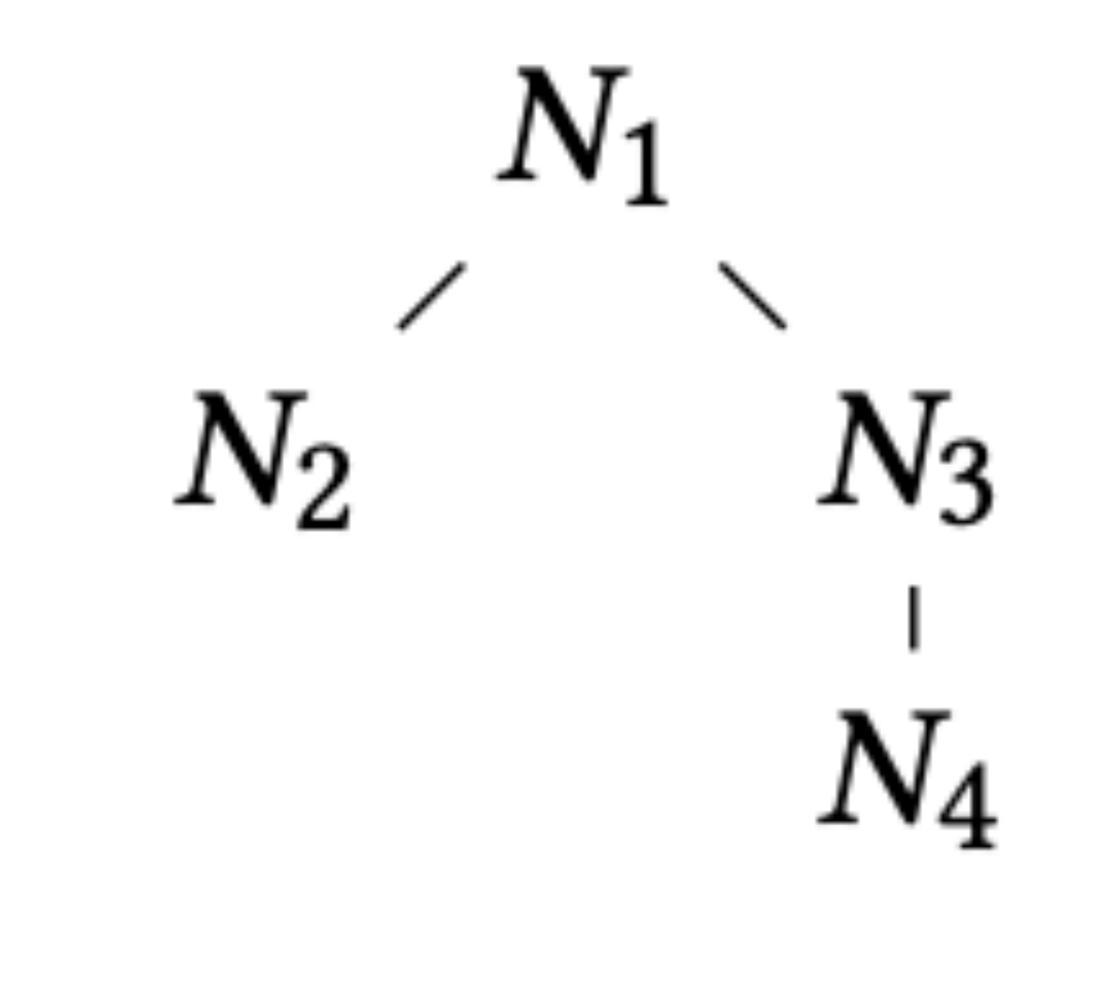
We consider multi-sided markets, with traders of different categories.

Each deal should follow a "recipe" specifying the participating traders' categories.

Our mechanism allows multiple recipes in a tree structure.

It is truthful and stronglybudget-balanced.

It attains asymptotically-



Algorithm 1 Ascending prices mechanism — recipe-tree.

Input: A market N, a set of categories G and a recipe-tree R. Output: Strongly-budget-balanced trade.

1. Initialization: Let $M_q := N_q$ for each $g \in G$.

Determine initial price-vector p:

For each non-leaf g, set $p_q := -V$; For each leaf g, set $p_q := -V \cdot (\text{MaxDepth} - \text{Depth}(g) + 1);$

- 2. Using Algorithm 2, select a set $G^* \subseteq G$ of categories.
- 3. For each $g^* \in G^*$, ask each agent in $i \in M_{g^*}$ whether $v_i > p_{g^*}$.
 - (a) If an agent $i \in M_{q*}$ answers "no", then remove *i* from M_{q*} and go back to step 2.
- (b) If all agents in M_{q*} for all $g^* \in G^*$ answer "yes", then for all $g^* \in G^*$, let $p_{g^*} := p_{g^*} + 1$.
- (c) If after the increase $\sum_{g \in G} p_g \cdot r_g = 0$ for some $\mathbf{r} \in R$, then go on to step 4; else go back to step 3.
- 4. Determine final trade using Algorithm 3.

Algorithm 2 Given a recipe-tree, find a set of prices to increase.

Input: A set of categories G,

a set of remaining traders M_q for all $g \in G$, and a recipe-tree R based on a tree T.

Output: A subset of G denoting categories whose price should be increased.

- 0. Initialization: For each category $g \in G$, let $m_q := |M_q| =$ the number of agents of N_a who are in the market.
- 1. Let g_0 be the root category. Let $c_{g_0} := \sum_{g' \text{ is a child of } g_0} m_{g'}$.
- 2. If $m_{g_0} > c_{g_0}$ [or g_0 has no children at all], then return the singleton $\{g_0\}$.
- 3. Else $(c_{g_0} \ge m_{g_0})$, for each child g' of g_0 : Recursively run Algorithm 2 on the sub-tree rooted at q'; Denote the outcome by $I_{a'}$.

Return $\bigcup_{g' \text{ is a child of } g_0} I_{g'}$.

Category	Agents' values	
N_1 : buyers	17, 14, 13, 9, 6, 2	
N ₂ : sellers	-4, -5, -8, -10	
N ₃ : A-producers	-1, -3, - 5	
N ₄ : B-producers	-1, -4, -6	

Recipe-tree:

$$R = \{(1, 1, 0, 0), (1, 0, 1, 1)\}$$

Category counts	G^*	Price-increase stops when	New prices	Price-sum
6, 4, 3, 3	2, 4	B-producer –6 exits	-V, -V - 6, -V, -6	-2V - 6
6, 4, 3, 2	2, 3	A-producer –5 exits	-V, -11, -5, -6	-V - 11
6, 4, 2, 2	2, 4	seller -10 exits	-V, -10, -5, -5	-V - 10
6, 3, 2, 2	1	buyer 2 exits	2, -10, -5, -5	-8
5, 3, 2, 2	2, 4	B-producer –4 exits	2, -9, -5, -4	-7
5, 3, 2, 1	2, 3	seller –8 exits	2, -8, -4, -4	-6
5, 2, 2, 1	1	buyer 6 exits	6, -8, -4, -4	-2
4, 2, 2, 1	2, 3	A-producer -3 exits	6, -7, -3, -4	-1
4, 2, 1, 1	1	price-sum crosses zero	7, -7, -3, -4	0