Deep Interactive Bayesian RL

W Microsoft via Meta-Learning
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Context Results Method: MeLIBA

Question: Swerve | Straight
Swerve | (1,1) | (0, 8)
Straight| (8,0) | (-1,-1)

How can agents adapt to initially unknown
other agents, while maximising online return?

Solution (in principle):

Interactive Bayesian RL (IBRL) [1]. Env: Game of Chicken, 13 repetitions

Idea: Maintain belief over other agents, and Opponents: Tit-4-Tat after 1/2/3 swerves
compute optimal action under uncertainty. (1) Meta-learning belief inference:
But: IBRL is intractable for most problems. 25 T A S )
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28 e to predict future actions of other agents,
2 given current experience.

Separate latent for: permanent (m) and
temporal (m_t) aspect of other agent.

(2) Meta-learning the policy:

Condition policy on approximate belief.
Trained using standard RL alongside the VAE.

Future Work:
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- Generate distribution of other agents

(instead of hand-coding) ) \ N om)
- Move to general POMDPs (see [3]) . B Tit— (- Ny
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- Other agents that learn (during meta-training)
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