Egalitarian and Just Currency Networks

Gal Shahaf • Ehud Shapiro • Nimrod Talmon

We aim to design a monetary system that is:

- Egalitarian in terms of control over its execution. 1.
- 2. Just – value is distributed equally among the participants.

Current systems:

	Traditional currencies	Cryptocurrencies	Currency Community
Design	Centralized	Decentralized	Decentralized
Control	Central bank	Miners	Participants
# Entities in actual control	1	<5	# Participants

https://bitcoinera.app/arewedecentralizedyet/

A Currency Community:

- Agents
- Coins
- Configuration function $h: C \rightarrow V$.

 Payment correspond to the transfer of coins between the agents.

Standard distributed computation satisfies:

- Equality.
- Distributive justice.
- Fault tolerance up to 1/3 byzantine agents.

• 🥞 • •

Currency network:

Communities may inter-operate via chain-payments.

Joint egalitarian minting:

Every agent mints one coin in only one community at each timestep.

THEOREM 4.6. Assuming:

- Joint egalitarian employed by two currency communities.
- Fixed agents' preferences over the currencies.
- Preference-based coin exchange rates.
- An efficient network history.
- Myopic agents.

Then, if it holds that $\frac{|V^1 \setminus V^2|}{|V^2|} \leq \lim_t MRS_{12}(CN_t) \leq \frac{|V^1|}{|V^2 \setminus V^1|}$, then the network history is asymptotically just, and $\lim_{t \to 1} EX_{12}(CN_t) = 1$.

Figure:

Each point in the bounded area will converge to 1:1 exchange rates. $|V^1| = m_1, |V^2| = m_2.$

