Ship-GAN: Generative Modeling Based Maritime Traffic Simulator
Chaithanya Basrur, Arambam James Singh, Arunesh Sinha and Akshat Kumar; School of Information Systems, Singapore Management University
(csbasrur, arambamjs.2016, aruneshs, akshatkumar)@smu.edu.sg

Introduction
We develop a system using electronic navigation charts to generate realistic and high-fidelity vessel traffic data using Generative Adversarial Networks (GANs).
• Our proposed Ship-GAN uses a conditional Wasserstein GAN to model a vessel’s behavior.
• The generator can simulate the travel time of vessels across different maritime zones conditioned on vessels’ speeds and traffic intensity.

Maritime Traffic Domain
Electronic navigation chart of Singapore with ship Positions. The strait has been split into zones.

Motivation:
• The Straits of Malacca and Singapore provides the shortest route between Indian Ocean and South China Sea.
• Popular for oil tankers & cargos traveling through the strait.
• Complex traffic activities near port water.
• Vessel runs on a schedules, with constraints on the delay.

Maritime Data
• We train our model 2.5 million maritime vessel records of real historical data obtained from a private maritime data provider.
• The vessel data spans 1 month and contains all the ship location(and other status) update in the Singapore strait.

Challenges:
• Vessels unlike cars can never stop.
• Uncertainty in travel time durations.
• The uncertainty is due to weather conditions, tide etc.

Architecture:

Contribution:
• We develop a deep generative model-based simulation of key aspects of ship traffic.
• Based on statistical measure such as KS distance, our approach achieves better solution quality than baselines.

Experiments
Predicted travel distances for a zone(14).

Acknowledgement
This research is supported by the Ministry of Education, Singapore under its MOE Academic Research Funding Tier 2 (Award MOE2018-T2-1-179).