Optimal Crowdfunding Design

- n potential consumers
- Pre-buy price τ for a product
- Threshold N

Mechanism Design Problem

Standard Scheme: One Price-Threshold Pair

- Each consumer i has private value $v_{i} \in\left\{v_{L}, v_{H}\right\}$

$$
\text { - with probability } p, v_{i}=v_{H} \text {, with probability } 1-p \text {, }
$$

$v_{i}=v_{L}$

- Each consumer chooses action:

$$
-a_{i}=1 \text { : contributes to the product }
$$

- Each consumer's utility:

$$
u_{i}\left(a_{i}, a_{-i}\right)= \begin{cases}v_{i}-\tau, & \text { if } a_{i}=1, \sum_{j=1}^{n} a_{j} \geq N \\ 0, & \text { otherwise }\end{cases}
$$

- Bayesian Nash Equilibrium (BNE):

$$
\begin{gathered}
E_{v_{-i} \sim p}\left[u_{i}\left(a_{i}\left(v_{i}\right), a_{-i}\left(v_{-i}\right)\right)\right] \geq E_{v_{-i \sim p}}\left[u_{i}\left(a_{i}^{\prime}\left(v_{i}\right), a_{-i}\left(v_{-i}\right)\right)\right], \\
\forall i, v_{i}, a_{i}^{\prime}
\end{gathered}
$$

- Non-trivial equilibrium:

$$
E_{v_{i} \sim p}\left[\sum_{i=1}^{n} a_{i}\left(v_{i}\right)\right] \geq N
$$

- Seller: maximize expected profit by choosing optimal pair (N, τ) Results:
- Unique symmetric BNE
- Maximized expected profit:

$$
R^{*}=\max \left\{R\left(1, v_{H}\right), R\left(1, v_{L}\right)\right\}
$$

where

$$
\begin{aligned}
R\left(1, v_{H}\right)= & (A-\gamma B)(1-p)^{n}+\sum_{k=1}^{n}\left(A-\gamma \max \left\{B-k\left(v_{H}-\tau_{0}\right), 0\right\}\right. \\
& \left.+\max \left\{k\left(v_{H}-\tau_{0}\right)-B, 0\right\}\right)\binom{k}{n}(1-p)^{n-k} p^{k} \\
R\left(1, v_{L}\right)= & A-\gamma \max \left\{B-n\left(v_{L}-\tau_{0}\right), 0\right\}+\max \left\{n\left(v_{L}-\tau_{0}\right)-B, 0\right\}
\end{aligned}
$$

- A: future profit ; γ : interest rate for outside option ; B : initial cost
to start production ; τ_{0} : marginal cost for each product

Crowdfunding Campaign

\Rightarrow When the number of consumers who commit to pre-buy exceeds the threshold, the crowdfunding succeeds and the seller gets the pre-buy payments.

Variation 1: Bulk Discount

Two Price-Threshold Pair

- Additional threshold $N_{2}\left(1 \leq N \leq N_{2}\right)$ for the discounted price $\tau_{2}\left(\tau_{2} \leq \tau\right)$
- Each consumer's utility:

$$
u_{i}\left(a_{i}, a_{-i}\right)= \begin{cases}v_{i}-\tau, & \text { if } a_{i}=1, N \leq \sum_{j=1}^{n} a_{j}<N_{2} \\ v_{i}-\tau_{2}, & \text { if } a_{i}=1, \sum_{j=1}^{n} a_{j} \geq N_{2} \\ 0, & \text { otherwise }\end{cases}
$$

- Seller: maximize expected profit by choosing optimal pair (N, τ, N_{2}, τ_{2})

Results:

- Unique symmetric BNE

Depending on the relationship among $\mathrm{v}_{L}, v_{H}, \tau, \tau_{2}$

- Maximized expected profit:

$$
R^{*}=\max \left\{R\left(1, v_{H}, 1, v_{H}\right), R\left(1, v_{L}, 1, v_{L}\right)\right\}
$$

where

$$
R\left(1, v_{H}, 1, v_{H}\right)=R\left(1, v_{H}\right), R\left(1, v_{L}, 1, v_{L}\right)=R\left(1, v_{L}\right)
$$

- Setting an additional pair of threshold and price does NOT help increase the seller's expected profit!

In reality:

- No exact number of consumers, but a rough estimation
- Relatively large τ and small N to guarantee a successful crowdfunding and some amount of money
- Discounted price $\left(\tau_{2}\right)$ with a larger threshold $\left(N_{2}\right)$ for possibly large amount of money
$\Rightarrow \quad$ Raising funding for developing and producing new products

Variation 2: Product Differentiation

Two Threshold

- Additional threshold $N_{1}\left(1 \leq N_{1} \leq N\right)$ for simplified version
- Each consumer i 's value $v_{i 1} \in\left\{v_{l}, v_{h}\right\}$ for simplified version

$$
\text { - } v_{l}<v_{L}<v_{h}<v_{H} \text { also follows binary distribution } p
$$

- Each consumer's utility:

- Seller: maximize expected profit by choosing optimal pair $\left(N_{1}, N, \tau\right)$

Results:

- Unique symmetric BNE
- Depending on the relationship among $\mathrm{v}_{L}, v_{H}, \tau$
- Lemma: for any integer \widehat{N} satisfying $N \leq \widehat{N} \leq n+1$,

$$
\arg \max _{N_{1} \leq N \leq \mathbb{N}} R\left(N_{1}, N, \tau\right)=N_{1} \operatorname{or} \widehat{N}
$$

- To maximize the profit, the seller should ONLY provide the standard version, or ONLY provide the simplified version!
- Additional threshold is NOT the cause for possible increase in profit!
In reality:
- Simplified version requires less initial and marginal cost.
- Also considered to guarantee a successful crowdfunding and some amount of money

