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Introduction
• Continual learning aims to build agents that can 

learn a set of tasks sequentially, acquiring new 
knowledge from each task without forgetting the 
previous learned ones.

• We propose self-attention meta-learner (SAM) that 
build prior knowledge necessary for CL and select 
the relevant knowledge for each task from the past 
experience. 

Proposed Method Results

Contributions
Figure 2: The accuracy of each task of split CIFAR-10/100 as well as the 
average accuracy across all tasks.

Table 1: Enhancing existing CL strategies by SAM. “Standard” represents 
the original form of the methods.

Figure 1: An Overview of our proposed method (SAM).

• The network consists of a shared sub-network and specific 
sub-networks.

• The shared sub-network learns a prior generic knowledge 
using optimization-based meta-learning algorithm MAML 
[1]. It also incorporates a self-attention mechanism meta-
trained that learns to boost the relevant features to the 
input task from each layer in the shared subnetwork.

• Each task in the continual sequence builds a specific branch 
on the top of the selected relevant presentation from the 
shared subnetwork.

• The final decision module is responsible for deciding the 
predicted class from all the seen classes so far.

• We show the effectiveness of the selective transfer 
performed by SAM in increasing the performance 
and reducing forgetting by allowing for a selective 
update for the weights.

• We show the importance of  having a prior generic 
knowledge in increasing the forward transfer 
especially when the tasks are dissimilar. 

• We address the task agnostic scenario where the 
task identity is not available during inference. We 
also assume that the previous data is not available. 

Conclusion
• We propose the self-attention meta-learner (SAM) 

for the continual learning paradigm.
• We show that our approach outperforms the 

state-of-the-art methods in the class-incremental-
setting.

• We illustrate the performance boost achieved by 
the popular existing methods when they are 
integrated in our framework.
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