



# **Psychophysics**

A key objective of Psychophysics is to Quantify Human Perception.



 Human Perception is modeled using a Psychometric Function  $\Psi$ 

- $\Psi : \mathbb{I} \mapsto [0, 1]$
- $\Psi(s)$  is the probability of the stimulus  $s \in \mathbb{I}$  to be perceived
- Here is the space of stimulus is assumed to be  $\mathbb{I} = [0, 1]$
- $\Psi$  is known to be non-decreasing, and somewhat smooth
- $\Psi$  is **unknown** prior to the experiment

Objective : Quantify human perception.

- **General Question:** How to estimate  $\Psi$ ? [1]
- **Easier Question:** Given  $\mu_* \in [0, 1]$ , how to estimate  $s_* = \Psi^{-1}(\mu_*)$ ? [2]

# The Psychometric Experiment



- Each (noisy) evaluation of  $\Psi$  Requires the presentation of new stimulus to the observer
- If too many evaluation, problems of observer fatigue and learning. [1]
- How to solve the easier question as rapidly as possible ?

# The Threshold Estimation Problem

Given  $\mu_* \in [0, 1]$  (the desired probability) and T (the stimuli budget), find the best possible estimator  $\hat{s}$  of  $s_* = \Psi^{-1}(\mu_*)$  with at most T evaluation that minimises

 $\mathcal{R}_T(\widehat{s}) = |\Psi(\widehat{s}) - \mu_*|$ 

This is a pure exploration bandit problem !

# **Quantifying Human Perception with Multi-Armed Bandits**

Julien Audiffren<sup>1</sup>

<sup>1</sup>Control and Perception Laboratory, University of Fribourg, Switzerland

## **Dichotomous Optimistic Search (DOS)**

Our contribution, DOS, uses a partition tree to estimate  $s_*$ , leveraging the non-decreasing property of  $\Psi$ .



# Challenge: When to move down the partition tree?

Key Trade-Off: Confidence versus Depth

#### Confidence.

The more  $s_i$  is sampled, the more accurate the comparison  $s_i > \mu_*$ 

DOS Algorithm

**<u>Parameters</u>**  $\mu_*$  (objective), T (time horizon) **Initialization**  $i \leftarrow 1$  (current arm),  $s_1 \leftarrow 1/2$  (current stimulus),  $N_1 \leftarrow 0$  (number of pulls) of  $s_1$ ),  $\hat{\mu}_1 \leftarrow 0$  (empirical average of  $s_1$ ),  $t \leftarrow 0$  (total pulls),  $\mathcal{S} =$  null the latest promising arm. Main Loop While  $t \leq T$ : If  $|\mu_* - \hat{\mu}_i(t)| > 2\mathcal{B}_T(N_i(t)) \doteq 3\sqrt{\frac{\log(T)}{N_i(t)}}$ . or If  $N_i(t) > N_*$  Then  $\mathcal{S} \leftarrow i$  EndIf Activate new arm:  $i \leftarrow i + 1$  and  $s_i \leftarrow \begin{cases} s_{i-1} + (1/2^i) & \text{if } \mu_* > \hat{\mu}_{i-1} \\ s_{i-1} - (1/2^i) & \text{if } \mu_* \le \hat{\mu}_{i-1} \end{cases}$ Endlf Sample arm  $s_i$ , update  $t, N_i, \hat{\mu}_i$ EndWhile  $\int \mathcal{S}$  if  $\mathcal{S} \neq$  null, <u>Output:</u>  $s_{i_*}$ , where  $i_* = \left\{ \right.$ otherwise.

Get Feedback Bernoulli ( $\Psi(s)$ )

- The Partition tree repeatedly cut the space of stimuli in half
- The agent goes down the tree, choosing the interval that contains  $x_*$  according to her estimations.
- Key differences with Binary Search : 1. No assumptions on the global smoothness of  $\Psi$  (Limited guarantees on the behavior of the partition tree !)
- 2. Only has access to noisy observations (Presence of uncertainty, Need repeated samples!)

Depth.

The deeper in the tree, the better the estimator  $\hat{x}$ 

r 
$$N_i(t) > N_* \doteq \left\lfloor \frac{T}{(\log T)(\log^2 T)} \right\rfloor$$
 :

If  $\Psi$  is Hölder Continuous in a neighbourhood of  $s_*$ , then the regret of DOS is upper bounded by

 $\mathbb{E}(\mathcal{R}_T) \leq$ 

- algorithm POO (Parallel Optimistic Optimization [3]).
- arbitrary Hölder function (left)
- We set  $\mu_* = 0.5$ , and T = 200, and did 100 runs for each experiment.



# Results

- Bayesian assumptions, but performs poorly in other settings
- convergence is slow.
- DOS provides one of the best estimation in all these settings.

[1] Wichmann, F. A., & Hill, N. J. (2001). Tl psychometric function: I. Fitting, sampling, goodness of fit. Perception & psychophysic

[2]. Kontsevich, L. L., & Tyler, C. W. (1999) Bayesian adaptive estimation of psychomet and threshold. Vision research

20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2021), 3-7 May 2021, Virtual



#### **Regret Bounds**

$$\leq \mathcal{O}\left(\sqrt{\frac{(\log T)^2(\log\log T)}{T}}\right).$$

### Experiments

• We empirically evaluated the performance of DOS, and another hierarchical bandit based

• We also used Staircase [4], and PsiMethod [2], two methods from Psychophysics

• We used three psychometric functions : A Gaussian c.d.f. (right), a Beta c.d.f. (center), and an

• PsiMethod outperforms other algorithms for Gaussian c.d.f. -- as it is able to leverage its

• Second, POO seems to converge, it achieves the worst performance, as its rate of

#### References

| he<br>and<br>cs  | <b>[3]</b> Levitt, H. C. C. H. (1971). Transformed up-down methods in psychoacoustics. The Journal of the Acoustical society of America                                                       |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ).<br>tric slope | <b>[4]</b> . Valko, M., Carpentier, A., & Munos, R. (2013,<br>May). Stochastic simultaneous optimistic<br>optimization. In International Conference on<br>Machine Learning (pp. 19-27). PMLR. |