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Psychophysics

A key objective of Psychophysics is to Quantify Human Perception.

Human Perception is modeled using a

Psychometric Function Ψ
Ψ : I 7→ [0, 1]
Ψ(s) is the probability of the stimulus
s ∈ I to be perceived
Here is the space of stimulus is assumed

to be I = [0, 1]
Ψ is known to be non-decreasing, and
somewhat smooth

Ψ is unknown prior to the experiment

Objective : Quantify human perception.

1. General Question: How to estimate Ψ ? [1]
2. Easier Question: Given µ∗ ∈ [0, 1], how to estimate s∗ = Ψ−1(µ∗) ? [2]

The Psychometric Experiment

Observer
Choose
Intensity
s ∈ I

Get Feedback
Bernoulli (Ψ(s))

Repeat

Each (noisy) evaluation of Ψ Requires the presentation of new stimulus to the observer
If too many evaluation, problems of observer fatigue and learning. [1]

How to solve the easier question as rapidly as possible ?

The Threshold Estimation Problem

Given µ∗ ∈ [0, 1] (the desired probability) and T (the stimuli budget), find the best
possible estimator ŝ of s∗ = Ψ−1(µ∗) with at most T evaluation that minimises

RT (ŝ) = |Ψ(ŝ)− µ∗|

This is a pure exploration bandit problem !

Dichotomous Optimistic Search (DOS)

Our contribution, DOS, uses a partition tree to estimate s∗, leveraging the non-decreasing
property of Ψ.

The Partition tree repeatedly cut the

space of stimuli in half

The agent goes down the tree, choosing

the interval that contains x∗ according to
her estimations.

Key differences with Binary Search :
1. No assumptions on the global smoothness of

Ψ (Limited guarantees on the behavior of the

partition tree !)

2. Only has access to noisy observations
(Presence of uncertainty, Need repeated

samples!)

Challenge: When to move down the partition tree ?

Key Trade-Off: Confidence versus Depth

Confidence.
The more si is sampled, the more
accurate the comparison si > µ∗

Depth.
The deeper in the tree, the better

the estimator x̂

DOS Algorithm

Parameters µ∗ (objective), T (time horizon)
Initialization i← 1 (current arm), s1← 1/2 (current stimulus ), N1← 0 (number of pulls
of s1), µ̂1← 0 (empirical average of s1), t← 0 (total pulls), S = null the latest promising

arm.

Main Loop

While t ≤ T :

If |µ∗ − µ̂i(t)| > 2BT (Ni(t))
.= 3
√

log(T )
Ni(t)

. or Ni(t) > N∗
.=
⌊

T
(log T )(log2 T )

⌋
:

If Ni(t) > N∗ Then S ← i EndIf
Activate new arm: i← i + 1 and

si←

{
si−1 + (1/2i) if µ∗ > µ̂i−1
si−1 − (1/2i) if µ∗ ≤ µ̂i−1

EndIf

Sample arm si, update t, Ni, µ̂i
EndWhile

Output: si∗, where i∗ =
{
S if S 6= null,

κ otherwise.

Regret Bounds

If Ψ is Hölder Continuous in a neighbourhood of s∗, then the regret of DOS is upper bounded
by

E(RT ) ≤ O

(√
(log T )2(log log T )

T

)
.

Experiments

We empirically evaluated the performance of DOS, and another hierarchical bandit based

algorithm POO (Parallel Optimistic Optimization [3]).

We also used Staircase [4], and PsiMethod [2], two methods from Psychophysics

We used three psychometric functions : A Gaussian c.d.f. (right), a Beta c.d.f. (center), and an

arbitrary Hölder function (left)

We set µ∗ = 0.5, and T = 200, and did 100 runs for each experiment.

Results

PsiMethod outperforms other algorithms for Gaussian c.d.f. -- as it is able to leverage its

Bayesian assumptions, but performs poorly in other settings

Second, POO seems to converge, it achieves the worst performance, as its rate of

convergence is slow.

DOS provides one of the best estimation in all these settings.
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