
Distributing Responsibilities for Exception Handling in JaCaMo
M. Baldoni1, C. Baroglio1, O. Boissier2, R. Micalizio1, S. Tedeschi1
1 Università degli Studi di Torino, Dipartimento di Informatica, Italy, firstname.lastname@unito.it
2 Laboratoire Hubert Curien UMR CNRS 5516, Institut Henri Fayol, MINES Saint-Etienne, France, Olivier.Boissier@emse.fr

Overview
We present an extension of the organizational model adopted in
JaCaMo* that explicitly encompasses the notion of exception

We show how exception handling can be grafted inside the norma-
tive system of a MAS organization to gain robustness in execution

The proposed exception handling mechanism relies on abstractions
that are seamlessly integrated with organizational concepts, like:
•Responsibilities •Goals •Norms

Robustness and Exception Handling

“The degree to which a system or component can function correctly in
the presence of invalid inputs or stressful environmental conditions.”

[ISO/IEC/IEEE 24765:2017 Systems and software engineering — Vocabulary]

One mechanism that supports robustness is exception handling
→ Equipping the system with the capabilities to tackle classes

of abnormal situations

The need of exceptions emerges from the desire ofmodularizing soft-
ware, separating concerns into components that interact

Current MAS architectures and methodologies fall short in ad-
dressing robustness in a systematic way

No mechanisms for exception handling, as is for programming lan-
guages (e.g. Java), or in the actor model (e.g. Akka)

Responsibility in Exception Handling
Two important aspects of exception handling:

1 Two parties: the former is responsible for raising an exception,
the latter responsible for handling it
2 It captures the need for some information from the former to
the latter that allows coping with the exception

SinceMAS organizations are built upon responsibilities, they are
suited to encompass an exception handling mechanism

* http://jacamo.sourceforge.net/

Key features of many organizational models:

• Functional decomposition of the organizational goal
•Normative system

Norms shape the scope of the responsibilities that agents take when
joining the organization
→ What agents should do to contribute to the achievement of the

organizational goal

Our Proposal
When joining an organization, agents are asked to take on the
responsibilities:

1 For providing information about the context where
exceptions are detected
2 If appointed, for handling such exceptions once the needed
information is available

Extending JaCaMo
Agent LevelOrganizational Level

1

1

Exception Spec

type

1 1

1

1

Notification Policy

must-notify-when

0..1

1

0..n

1

0..n

Recovery
Strategy

1 1 Catching Goal

commit/leave

Handling Policy

condition

achieve/fail

create/delete

create/delete

adopt/leave

concept mapping

subgoal

Mission
(Responsibility)

Throwing Goal

Goal

Internal Goal

Agent

subgroup

Norm

Scheme

RoleGroup

Organization

Recovery Strategyencodes when and how a given exception is to
be raised and handled within the organization

Notification Policy specifies when the exception must be raised
Throwing Goaldenotes the organizational goal of raising the

exception
Exception Specencodes the kind of information to be produced by

the agent raising the exception

Handling Policy specifies a way in which the exception must be
handled

Catching Goal captures the course of action to follow for handling
the exception and possibly remediate

Agents are held to explicitly take responsibility for throwing
and catching goals

Example: House Building

house built

site

prepared
[1 week]

floors

laid
[4 days]

walls

built
[2 weeks]

roof

built
[4 days]

windows

fitted
[2 days]

doors

fitted
[2 days]

plumbing

installed
[6 days]

electrical

system

installed
[2 days]

exterior

painted
[1 week]

interior

painted
[4 days]

notify site

problem
[1 day]

inspect site
[3 days]

notify

affected

companies

goal-failure

site preparation exception
• errorCode

notification policy handling policy

site prep contractor

engineer

house owner

1 +ob l i g a t i on (Ag , _ , done (_ , s i te_prepared , Ag) , _)
2 : .my_name (Ag)
3 <− ! s i te_prepared ;
4 goalAchieved (s i te_prepared) .
5
6 + ! s i te_prepared
7 <− prepareS i te .
8
9 −! s i te_prepared

10 <− goa l Fa i l ed (s i te_prepared) ;
11 . f a i l .
12
13 +ob l i g a t i on (Ag , _ , done (_ , not i f y _s i te _prob lem , Ag) , _)
14 : .my_name (Ag) &
15 / / the s i t e i s f looded
16 <− throwException (s i te_preparat ion_except ion ,
17 [errorCode (f lood ing)]) ;
18 goalAchieved (no t i f y _ s i t e _prob lem) .

Code of the site prep contractor agent

1 +ob l i g a t i on (Ag , _ , done (_ , i n spec t _ s i t e , Ag) , _)
2 : .my_name (Ag) &
3 exceptionArgument (_ , s i te_preparat ion_except ion ,
4 errorCode (f lood ing))
5 <− per formSi teAna lys i s (Resu l t) ;
6 f i x F l ood ing (Resu l t) ;
7 goalReleased (s i te_prepared) ;
8 goalAchieved (i n spe c t _ s i t e) .
9

10 +ob l i g a t i on (Ag , _ , done (_ , i n spec t _ s i t e , Ag) , _)
11 : .my_name (Ag) &
12 exceptionArgument (_ , s i te_preparat ion_except ion ,
13 errorCode (archaeologicalRemains))
14 <− de l im i t S i t e ;
15 carefullyRemoveRemains ;
16 resetGoal (s i te_prepared) .

Code of the engineer agent

The source code of the extension together with some
examples is available at:
http://di.unito.it/moiseexceptions

A video presentation of the demonstration is available
at: http://di.unito.it/aamas2021demo

http://jacamo.sourceforge.net/
http://di.unito.it/moiseexceptions
http://di.unito.it/aamas2021demo
http://di.unito.it/moiseexceptions

