Toward Consistent Agreement Approximation in Abstract Argumentation and Beyond

Timotheus Kampik (tkampik@cs.umu.se) Juan Carlos Nieves (jcnieves@cs.umu.se)
Department of Computing Science, Umeå University, Sweden

Motivation

Often, it is not possible to achieve full agreement among different stakeholders. Partial agreements are more realistic and sufficient (example: strategic stakeholder alignment in software development organizations). Hence, formal foundations of agreement technologies (i.e., formal argumentation dialogues) should support approximating agreements.

Research Questions

1. How can a set of agents determine to what degree they are agreeing on a topic (set of arguments)?
2. How do an agent’s subjective value preferences affect the degree of agreement on a topic?
3. How can an agent evaluate the reliability of another agent’s inference process w.r.t. the maintenance of a previous approximated agreement?

Abstract Argumentation

Consider the concepts sketched out to the right. We have the following agreement scenario:

- Our argumentation framework AF_1 is the one displayed by Figure 1.
- Our topic set is \{a, b, c\}.
- We have three agents A_0 (stage semantics), A_i (preferred), and A_3 (grounded).

Stage/preferred/grounded extensions of AF_1: \{\{a, b, c\}\}/\{\{b, c\}\}/\{\{\}\}.

The minimal/mean/median degrees of satisfaction and agreement are $\frac{1}{3}$/$\frac{2}{3}$/$\frac{1}{3}$.

The minimal/mean/median degrees of agreement is:

<table>
<thead>
<tr>
<th>Agent</th>
<th>Minimal</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Degrees of satisfaction.

Value-Based Argumentation

Consider the concepts sketched out to the right. We have the following agreement scenario:

- Our argumentation framework AF_2 is the one displayed by Figure 2.
- Instead of different semantics we have different value preference: we have preferred semantics, the values a_v, b_v, c_v, d_v and each argument arg is mapped to arg_v. The value preferences of our three agents are as follows. A_0: a_v is preferred over b_v; A_1: b_v is preferred over a_v; A_2: c_v is preferred over d_v.
- Our topic set is \{a, b, c, d\}.
- The agents’ subjective extensions are as follows. A_0: \{a, d\}; A_1: \{b, d\}; A_2: \{a, c, d\}.
- The minimal/mean/median degrees of agreement are: $\frac{1}{3}$/$\frac{2}{3}$/$\frac{1}{3}$.
- The impact of value b_v on the minimal/median/mean degrees of agreement is: $\frac{1}{3}$/$\frac{2}{3}$/$\frac{1}{3}$.

Theoretical Analysis. When normally expanding agreement scenarios, we prove suprema for changes in the degree of minimal agreement, given a semantics satisfies any relaxed monotony principle, and given some constraints to the change that is introduced by the normal expansion.

Implementation: http://s.cs.umu.se/mhfrcp

Acknowledgements

This work was partially supported by the Wallenberg Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.