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Evolutionary Game Theory (EGT)
● Application of game theory to evolving populations

Spatial Evolutionary Game
● EGT model on structured population (e.g. grid)
● Spatial EGT = (A, S, U, G, F, γ, μ)

○ A - set of M agents, S - set of strategies
○ U - payoff matrix
○ G - graph of population structure

■ N(i) - neighborhood of agent i
○ F - replicator rule (e.g. Fermi rule)

Interaction Phase
● Each agent Ai can play some strategy si ∈ S and 

receive payoff πi 

Update Phase
● Percentage of agents γ use rule F to update their 

strategies based on the payoffs received and 
neighbor’s payoffs 

● Small probability μ of mutating to a random strategy

T iterations: interaction phase, update phase

Current Approach
● Evaluate using agent-based Monte-Carlo simulations

○ Difficult to validate
○ Need to be repeated many times

● Alternative methods such as pair approximation
○ Not very accurate

Proposed Approach
● Model using Dynamic Bayesian Networks (DBN)
● Approximate the spatial evolutionary game through 

the DBN truncation by exploiting symmetry
○ Better accuracy than pair approximation with 

respect to stochastic simulations.

Experimental Setup
● Compare with average of 20 agent-based simulations 

on a 50 x 50 grid
● Four different levels of approximation:

○ BN-MF: 8 nodes (without tree approximation)
○ BN-PA: 8 nodes
○ BN-Medium: 13 nodes
○ BN-Large: 25 nodes

Prisoner’s Dilemma

Snowdrift
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Background

Problem Statement

Dynamic Bayesian Network Model Truncation Approximation Results
Truncation Neighborhood
● Choose subset of agent nodes as input neighborhood
● Construct a 2-timestep Bayesian Network (BN) that 

takes nodes in input neighborhood to target 
neighborhood using CPTs from exact model

● Target neighborhood may consist of only one or two 
nodes

Output query
● Query a selection of lower order distributions from 

target neighborhood

Input definition 
● 2-timestep BNs are not connected like DBN

○ Joint distribution of input neighborhood at next 
timestep is unknown

● We use a probability tree approximating the input 
neighborhood using distributions from previous output

● Larger approximation neighborhoods reduce error
● Error is reduced even in cases such as snowdrift 

where pair approximation does not have good 
quantitative agreement with simulation results

Exact Model
We define a Dynamic Bayesian Network (DBN) that fully 
captures our spatial evolutionary game. 

Given a spatial EGT =  (A, S, U, G, F, γ, μ), the DBN 
(X(t), D(t), P(t)) is defined as follows:

The variable set X(t) = A(t) ∪ Pay(t):
● Ai(t): Si(t), the strategy of agent Ai at each iteration t
● Payi(t): the payoff received by the agent Ai during the 

interaction phase at time t. 

The probability functions P(t) are defined:
For a payoff variable

For a strategy variable
● Pr(Ai(t+1)|parents) can be expressed as a decision 

tree. For example, with the Fermi rule:
○ update: did an update happen?
○ mut: did mutation happen?
○ rand: which neighbor was chosen?

● Example: if (update = 1) and (mut = 0):

where
 

Evaluation
● Can use DBN tools to evaluate 

○ Message passing inference
● Exact inference can be computationally expensive

○ Solution: we can exploit symmetry 
● Proposal: approximate by truncation

○ Convert from DBN to iterative 2-timestep BNs

Approximate BN ModelExact DBN ModelSpatial EGT Model
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Future Research
● Tune approximation parameters to balance accuracy 

and complexity
● Explore impact of approximate inference algorithms
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