Combining LSTMs and Symbolic Approaches for Robust Plan Recognition

Leonardo Amado¹, Ramon Fraga Pereira² and Felipe Meneguzzi¹ ¹Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

²Sapienza University of Rome, Rome, Italy

⊠leorosaamado@gmail.com⊠pereira@diag.uniroma1.it⊠felipe.meneguzzi@pucrs.br

Motivation

- Recent approaches to goal and plan recognition have imp observability, however, dealing with these problems remain
- Recent work on goal and plan recognition use machine le modeling domains.
- We develop a novel approach to solve plan recognition ta techniques to mitigate problems of low and faulty observ

Predictive Plan Recognition (PPR)

- We solve the plan recognition problem by computing a se
- We develop an algorithm capable of rebuilding the sequer the sequence of observations and filling in any gaps due
- We use an LSTM and landmark heuristics to predict the

	De
proved performance under partial and noisy ains a challenge.	• W
earning to assist planning-based approaches in	
asks by combining planning and machine learning vability.	
equence of intermediary states achieved by a plan π .	
ence of states induced by a plan by iterating through to partial observability.	Re
most likely next state.	
$\begin{array}{c} \textbf{ComputeSequence} \\ \langle \mathcal{I}, \mathcal{A}, \Omega, G, \lambda \rangle \end{array} \forall_{G \in \mathcal{G}} S_G \end{array}$	
$S_{G_1}G_1$	
Computed sequence S_G for each goal G	
$S_{G_n}G_n$	Co The
Select most likely goal/sequence	• A ge • O

ealing with noise

We create a mechanism to skip missing observations, allowing us to deal with noise.

Figure 2: Dealing with noise.

Average Precision

Figure 3: Results with missing observation.

onclusions

e main contributions of this paper are:

- novel approach for plan recognition with very high precision both in handcrafted and automatically enerated domains.
- Our approach can recognize plans even when dealing with noisy observations, achieving high precision in oisy scenarios.
- The predictor function can be replaced, working as a black-box. Any predictor function can be applied, even a entirely symbolic function.

SCHOOL OF TECHNOLOGY