Multiagent Task Allocation and Planning with Multi-Objective Requirements

Tasks as Linear Temporal logic
$$\varphi ::= a \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid X \varphi \mid \varphi_1 U \varphi_2$$
E.g. "Eventually visit location 3"

Agents as Markov Decision Processes Represent co-safe task j as DFA automata A_j:

$$MDP_{k} = (S, S_{0}, A, P, L) \otimes \left(\bigotimes_{j=1}^{m} A_{j} = (Q, q_{0}, \Sigma, \delta, Q_{j,F})\right)$$

Goal: Allocate multiple tasks to multiple agents.

Method: Introduce a *team* MDP model to solve task allocation and planning as a reachability problem.

Switch transitions pass control to next agent

$$M_1 \otimes A_{\Phi} \cup M_2 \otimes A_{\Phi} \cup \cdots \cup M_n \otimes A_{\Phi}$$

This is powerful because taking the union of MDP product models exponentially reduces the state space.

We then introduce an algorithm to exploit the team structure.

Result: Comparison with conventional model.

#Agents	Team MDP				MAMDP	
	t	S	P	t	S	P
3	9	4320	9504	9	26091	259853
4	12	7488	21488	77	260901	$3.3 imes 10^6$
5	17	9360	34992	627	2.1×10^{6}	2.9×10^{7}
6	23	11232	50976	7585	2×10^7	3.6×10^{8}
7	30	13104	69120	-	-	-

Manipulating task-agent graph structures significantly reduces computation time for multi-objective task allocation and planning in multiagent systems, scaling linearly in the number of agents.

Natural restriction

- On tasks: (i) An agents can process one task at any given time.
 - (ii) There is only one action relevant to a task progress in any reachable state.
 - (iii) After a task is completed the MDP returns back to its initial state.

*MAMDP – Multiagent Markov Decision Process