

Abstract

This paper focuses on the *multi-agent credit assignment* problem. We propose a novel multi-agent reinforcement learning algorithm called *meta imitation counterfactual* regret advantage (MICRA) and a three-phase framework for training, adaptation, and execution of MICRA. The key features are: (1) a counterfactual regret advantage is proposed to optimize the target agents' policy; (2) a meta-imitator is designed to infer the external agents' policies. Results show that MICRA outperforms state-of-the-art algorithms.

Background: Stochastic Game

- A stochastic game is defined as a 7-tuple
- $\mathcal{G} = \langle S, N, A, T, R, O, \Omega \rangle$, where:
- \blacktriangleright S is a set of states. s^t is the state at time t;
- \blacktriangleright $N = \{1, ..., n\}$ is a set of *n* agents;
- \blacktriangleright $A = A_1 \times ... \times A_n$ is a set of joint actions, where A_i is the agent *i*'s action set. $\vec{a}^t = [a_1^t, ..., a_n^t]$ is the joint action at time t;
- \blacktriangleright T : S × A × S \rightarrow [0, 1] is the transition probability function;
- \triangleright $O = O_1 \times ... \times O_n$ is a set of joint observations, where O_i is the agent *i*'s observation set. Joint observation at time t is $\vec{o}^t = [o_1^t, ..., o_n^t]$;
- $\blacktriangleright \Omega: S \times A \rightarrow O$ is the observation function;
- ▶ $R = \{R_1, ..., R_n\}$ is the reward function set, where $R_i : S \times A \rightarrow \mathbb{R}$ is the reward function for agent *i*.

Background: Meta Learning

The objective of meta learning can be described as follows:

$$\min_{\theta} \mathbb{E}_{\mathcal{T}_i \sim \mathcal{T}} \left[\sum_{t=1}^{\mathcal{T}_i} \mathcal{L}_i(\mathbf{x}^t, \mathbf{a}^t) \right]$$

where $\mathbf{x}^{t+1} \sim P_i(\cdot | \mathbf{x}^t, \mathbf{a}^t), \mathbf{a}^t \sim f(\cdot | \mathbf{x}^0, \mathbf{x}^1, ..., \mathbf{x}^t; \theta)$ Meta-learning has been widely used in supervised learning, and single-agent reinforcement learning.

Mingyue Zhang¹, Zhi Jin¹, Yang Xu², Zehan Shen³, Kun Liu¹, Keyu Pan²

¹ Key Lab of High Confidence Software Technologies Ministry of Education, Peking University ² School of Computer Science and Engineering, University of Electronic Science and Technology of China ³ Department of Computer Science and Technology, Nanjing University

Framework

The proposed three-phase framework integrates the CTDE (Lowe, 17) paradigm with the meta-learning process (Finn, 17).

Algorithm: Counterfactual Regret Advantage

(1) A centralized critic evaluates a *regret* value for an agent with the assumption that other agents follow the current policies; (2) Multiple actors independently update their individual policies minimizing the regret value.

Immediate counterfactual regret advantage: $A_{\tau} := \tau(s, \vec{a}) = v_{-\tau(s)}(s) - v_{-\tau}(s)$

$$= \sum_{\vec{a}_{\tau-i},\vec{a}_{\epsilon}} \pi_{\tau-i}^{T} (\vec{a}_{\tau-i}|s) \pi_{\epsilon}^{T} (\vec{a}_{\epsilon}|s) Q(s, [a_{i}, \vec{a}_{\tau-i}, \vec{a}_{\epsilon}])$$

$$- \sum_{\vec{a}_{\tau-i},\vec{a}_{\epsilon}} \pi_{\tau}^{T} (\vec{a}_{\tau}|s) \pi_{\epsilon}^{T} (\vec{a}_{\epsilon}|s) Q(s, [\vec{a}_{\tau}, \vec{a}_{\epsilon}])$$

CRA based policy gradient:

(1)

$$g_{\mathrm{cr},i} = \mathbb{E}_{s^t \sim D, \vec{a}^t \sim \pi} \left[\sum_{t=0}^{H} \nabla_{\theta_i^a} \log(\pi_i(a_i^t | o_i^t; \theta_i^a)) \mathcal{A}_{i,\pi}^{\gamma}(s^t, \vec{a}^t) \right]$$
(3)

Algorithm: Meta Imitation Learning

The objective of MI is: $\min_{\boldsymbol{\theta}} \sum L_{\mathcal{H}_i}^{im}(\delta(\cdot; \theta_i'))$ (4) s.t. $\theta'_i = \theta_i - \alpha_{adp} \nabla_{\theta_i} L^{\prime m}_{\mathcal{H}_i}(\delta(\cdot; \theta_i))$

where $p(\mathcal{T})$ is the distribution of all external agents' policies. θ_i is the meta parameters which will be used as initial parameters in online adaptation phase.

Algorithm: Network Structures

- State feature extractor, which extracts the high-level feature from the raw data.
- Meta-imitator, which monitors the external agents' observation-action pairs, and learns an inference model to predict their behaviors with meta-imitation learning. The module's output layer is softmax, which generates the probability of all available actions to the external agents
- Actor, which trains the individual policy for each targeted agent using the CRA policy gradient.
- Critic, which trains a joint Q-function using temporal difference learning and computes CRA for instructing each actor to update its policy correctly.

Evaluation

is ours).

Figure: Offline training: the learning curves on different tasks (red line

AAMAS, May 3--7, 2021 Online