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Abstract

This paper focuses on the multi-agent credit assignment
problem. We propose a novel multi-agent reinforcement
learning algorithm called meta imitation counterfactual
regret advantage (MICRA) and a three-phase framework
for training, adaptation, and execution of MICRA. The
key features are: (1) a counterfactual regret advantage
is proposed to optimize the target agents’ policy; (2) a
meta-imitator is designed to infer the external agents’
policies. Results show that MICRA outperforms
state-of-the-art algorithms.

Background: Stochastic Game

A stochastic game is defined as a 7-tuple
G = 〈S ,N ,A,T ,R ,O,Ω〉, where:

I S is a set of states. s t is the state at time t;
I N = {1, ..., n} is a set of n agents;
I A = A1 × ...× An is a set of joint actions, where Ai is the agent i ’s

action set. ~at = [at1, ..., a
t
n] is the joint action at time t;

I T : S × A× S → [0, 1] is the transition probability function;
I O = O1× ...×On is a set of joint observations, where Oi is the agent

i ’s observation set. Joint observation at time t is ~ot = [ot1, ..., o
t
n];

I Ω : S × A→ O is the observation function;
I R = {R1, ...,Rn} is the reward function set, where Ri : S × A→ R is

the reward function for agent i . �

Background: Meta Learning

The objective of meta learning can be described as
follows:

min
θ
ETi∼T [

Hi∑
t=1

Li(x
t, at)]

where xt+1 ∼ Pi(·|xt, at), at ∼ f (·|x0, x1, ..., xt; θ)

(1)

Meta-learning has been widely used in supervised
learning, and single-agent reinforcement learning.

Framework

The proposed three-phase framework integrates
the CTDE (Lowe,17) paradigm with the
meta-learning process (Finn,17).
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Algorithm: Counterfactual Regret Advantage

(1) A centralized critic evaluates a regret value
for an agent with the assumption that other
agents follow the current policies; (2) Multiple
actors independently update their individual
policies minimizing the regret value.
Immediate counterfactual regret advantage:

AT ,i ,πT(s, ~a) = vπT |s 7→ai(s)− vπT(s)

=
∑
~aτ−i ,~aε

πTτ−i(~aτ−i |s)πTε (~aε|s)Q(s, [ai , ~aτ−i , ~aε])

−
∑
~aτ ,~aε

πTτ (~aτ |s)πTε (~aε|s)Q(s, [~aτ , ~aε])

(2)

CRA based policy gradient:

gcr,i = Es t∼D,~at∼π

[ H∑
t=0

∇θai
log(πi(a

t
i |oti ; θai ))Aγi ,π(s t, ~at)

]
(3)

Algorithm: Meta Imitation Learning

The objective of MI is:

min
θi

∑
Ti∼p(T )

LimHi
(δ(·; θ′i))

s.t. θ′i = θi − αadp∇θiL
im
Hi

(δ(·; θi))

(4)

where p(T ) is the distribution of all external
agents’ policies. θi is the meta parameters
which will be used as initial parameters in
online adaptation phase.

Algorithm: Network Structures
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I State feature extractor, which extracts the high-level
feature from the raw data.

I Meta-imitator, which monitors the external agents’
observation-action pairs, and learns an inference model
to predict their behaviors with meta-imitation learning.
The module’s output layer is softmax, which generates
the probability of all available actions to the external
agents.

I Actor, which trains the individual policy for each
targeted agent using the CRA policy gradient.

I Critic, which trains a joint Q-function using temporal
difference learning and computes CRA for instructing
each actor to update its policy correctly.
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Figure: Offline training: the learning curves on different tasks (red line
is ours).
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