This paper focuses on the multi-agent credit assignment problem. We propose a novel multi-agent reinforcement learning algorithm called meta imitation counterfactual regret advantage (MICRA) and a three-phase framework for training, adaptation, and execution of MICRA. The key features are: (1) a counterfactual regret advantage is proposed to optimize the target agents' policy; (2) a meta-imitator is designed to infer the external agents’ policies. Results show that MICRA outperforms state-of-the-art algorithms.

Background: Stochastic Game

A stochastic game is defined as a 7-tuple $G = (S, N, A, R, O, \Omega)$, where:
- S is a set of states, s^i is the state at time t;
- $N = \{1, ..., n\}$ is a set of n agents;
- $A = A_1 \times ... \times A_n$ is a set of joint actions, where A_i is the agent i’s action set; a^i is the joint action at time t;
- $T : S \times A \times S \to [0, 1]$ is the transition probability function;
- $O = Q_1 \times ... \times Q_n$ is a set of joint observations, where Q_i is the agent i’s observation set. Joint observation at time t is $o^t = [o^1, ..., o^n]$;
- $\Omega : S \times A \to O$ is the observation function;
- $R = (R_1, ..., R_n)$ is the reward function set, where $R_i : S \times A \to \mathbb{R}$ is the reward for agent i.

The objective of meta learning can be described as follows:

$$\min_\theta \mathbb{E}_{T,T'} \left[\sum_{t=1}^{T} L(s^t, a^t) \right]$$
where $s^t \sim R(\cdot | s^t, a^t), a^t \sim \pi(\cdot | s^t, \theta)$.

Framework

The proposed three-phase framework integrates the CTDE (Lowe, 17) paradigm with the meta-learning process (Finn, 17).

Algorithm: Countertualfactual Regret Advantage

(1) A centralized critic evaluates a regret value for an agent with the assumption that other agents follow the current policies; (2) Multiple actors independently update their individual policies minimizing the regret value.

Immediate counterfactual regret advantage:

$$A_{i,t} (s, \bar{a}_i) = v_i(s) - v_i(s) \mid \bar{a}_i$$

$$= \sum_{a_i \in A_i} \pi_i(a_i \mid s) \mathbb{E} \left[R(s, a_i, \bar{a}_{-i}) \right] - \sum_{a_i \in A_i} \pi_i(a_i \mid s) \mathbb{E} \left[R(s, \bar{a}_i, \bar{a}_{-i}) \right]$$

CRA basic policy gradient:

$$\nabla_\theta \mathbb{E}_{s^t \sim \mathcal{D}(s^t), a^t \sim \pi(\cdot | s^t, \theta)} \left[\sum_{t=0}^{T} \nabla_\theta \log(\pi(a_t | s^t, \theta)) A_{i,t} (s^t, a^t) \right]$$

Algorithm: Meta Imitation Learning

The objective of MI is:

$$\min_{\theta_i} \mathbb{E}_{T} \left[L^n_i (\theta_i) \right]$$

s.t. $\theta_i = \theta_i - \alpha_{\theta_i} \nabla_{\theta_i} L^n_i (\theta_i)$

where $p(T)$ is the distribution of all external agents’ policies. θ_i is the meta parameters which will be used as initial parameters in online adaptation phase.

Evaluation

- State feature extractor, which extracts the high-level feature from the raw data.
- Meta-imitator, which monitors the external agents’ observation-action pairs, and learns an inference model to predict their behaviors with meta-imitation learning.
- The module’s output layer is softmax, which generates the probability of all available actions to the external agents.
- Actor, which trains the individual policy for each targeted agent using the CRA policy gradient.
- Critic, which trains a joint Q-function using temporal difference learning and computes CRA for instructing each actor to update its policy correctly.

Figure: Offline training: the learning curves on different tasks (red line is ours).