Coverage Control under Connectivity Constraints

Shota Kawajiri, Kazuki Hirashima, and Masashi Shiraishi (Mitsubishi Electric Corporation)

1. Introduction

Coverage Control
Cooperative agents

Minimize a coverage function by optimizing agent positions

Connectivity constraints on a communication graph

- Consideration of the communication range of agents
- Constraint that the communication graph is connected

Proposal of a distributed control law for coverage control under connectivity constraints

2. Method

Approach: Formulation of the problem as a continuous optimization problem with an inequality constraint

Minimizing the sum of the coverage function and a function to avoid agents being trapped in bad local minima

Algebraic connectivity $\lambda_2 \geq \varepsilon$ (small positive value)
- Sufficient condition for the connectivity
- λ_2 is a function of agent positions
- The graph is disconnected if $\lambda_2 = 0$

Proposed law: Based on the active set method (a well-known algorithm for constrained optimization)

First: $\lambda_2 > \varepsilon$

Control input: $-\nabla J'$

Contour of the objective function J'

After a certain time: $\lambda_2 = \varepsilon$

Control input: Projection of $-\nabla J'$ to the feasible region

Legend
- : Agent
- : Centroid of the agent positions
White Circle: Centroid of a Voronoi region assigned to an agent
Dotted Circle: Communication range
Gray Line: Edge of the graph

3. Simulation Results

As expected, the agents deploy over the coverage region while maintaining connectivity

Coverage Control
As expected, the agents deploy over the coverage region while maintaining connectivity

Deploy

Coverage Region

Communicable -> connected by Edge
Agent=Vertex