Composite Dark Matter from Sp(2N) gauge theories

Fabian Zierler

UKLFT Meeting, Plymouth, March 18, 2024

mostly based on 2202.05191, 2304.07191, 2311.18549

slides available at: fzierler.github.io/talks/

Outline

- Composite, self-interacting Dark Matter models
 - Strongly Interacting Massive Particles (SIMPs)
 - \circ A specific model: Sp(4) with two Dirac fermions
- Lattice Field Theory and numerical results
 - Meson spectroscopy
 - Goldstone scattering
 - Conclusions for Phenomenology and model building

Dark Matter - Why?

- Strong observational evidence at many scales! ^[1]
- Modified Gravity ^[2] is a potential alternative
- New particles beyond the Standard Model (BSM) promising!

[1] see e.g. Bullock,Boylan-Kolchin [1707.04256], Tulin, Yu [1705.02358] Dark Matter properties

- DM self-interaction phenomenologically allowed^[1] and potentially relevant for small-scale structure problems
 - \circ non-vanishing scattering cross-sections $\sigma_{
 m 2DM
 ightarrow 2DM}$
 - \circ velocity dependence of $\sigma_{2{
 m DM}
 ightarrow 2{
 m DM}}$ preferred

QCD-like Dark Matter can those provide self-interactions!

Strongly Interacting Gauge Theories in DM Models

- With fermions: Global symmetries make DM stable
- With mediator: Dark sector coupled to SM

$$\underbrace{DM}_{\text{MMMMM}} \text{ mediator} \underbrace{SM}_{\text{SM}} \mathcal{L}_{\text{DM}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi}_f (i D + m_f) \psi_f$$

• Non-vanishing self-scattering cross-section arise

 $\langle v \sigma_{\pi\pi o \pi\pi}
angle
eq 0$

• Relic density driven by strong processes

Dark meson scattering: Determine DM relic density

- Any model must predict the current density of DM correctly
 - \circ number density n can be calculated using Boltzmann equations

$$\partial_t n + 3Hn = f(\langle v\sigma_{ ext{number changing}} \rangle)$$

- Cross-sections $\langle \sigma v
 angle$ are input for Boltzmann equations
 - describe non-equilibrium dynamics
 - $\circ~H$ is the Hubble rate

Strongly Interacting Massive Particles (SIMPs)

- Depletion via $3{
m DM}
ightarrow 2{
m DM}$ $^{[1]}$, i.e. $3\pi
ightarrow 2\pi$

 \circ same as $KK
ightarrow 3\pi$ in QCD $^{[2]}$

- Dark matter depletion process: *freeze-out*
- LO ChiPT matches relic density at $m_\pi pprox {\cal O}(100){
 m MeV} {\cal O}(1){
 m GeV}$
- Other mass scales than QCD are relevant! $\circ~g^2$ and m_f are free parameters

Dark Matter with 3DM \rightarrow 2DM depletion and self-interactions

[1] Hochberg et. al. [1411.3727] [1512.07917] [2] Choi et.al. [1801.07726] Bernreuther et.al. [2311.17157]
 [3] Kulkarni et.al. [2202.05191] [4] Chu et.al. [2401.12283] Kondo et.al. [2205.08088]

Other relevant channels

- decay to Standard Model: $2\pi o SM$ $^{[1]}$
- involvement of vector mesons: $\pi\pi o \pi
 ho$, $3\pi o \pi
 ho$ $^{[2]}$
- influence of light singlets: $\eta'\eta' o \pi\pi, \pi\pi o \eta'\pi$, \dots $^{[3]}$
- ullet resonances and multi-hadron states: $2\pi o 2\pi$, $2n\pi o 2\pi$ $^{[4]}$

- The relevance depends on the spectrum
- lattice investigations inform EFT construction

[1] Kosower (Phys.Lett.B. 1984) [2] Hochberg et. al. [1411.3727] [1512.07917]

SIMPs from Sp(4) gauge theory

• Pseudo-real representation: ^[1]

 \Rightarrow more pseudo-Goldstones

 \Rightarrow no fermionic bound states

• $N_f=2$: exactly 5 Goldstones \circ Allows $3{
m DM}
ightarrow 2{
m DM}$ $^{[2]}$

Sp(4) with two fermions is a minimal SIMP DM realisation

Meson multiplets of $Sp(4)_c$ with $N_f=2$

The same patterns persist for other channels.

BSM wishlist from the lattice

- Masses and decay constants of dark hadrons
- Scattering of dark pions: $2\pi o 2\pi$ and $3\pi o 2\pi$
- Applicability of $\chi {\rm PT}$ and related EFTs
- Composite Higgs studies can be repurposed
 Composite Higgs model usually allow SIMP DM

Lattice Investigations:

Quantitative Insights

Calculating the meson correlator

ullet Evaluate diagrams in terms of fermion propagator D^{-1}

- Disconnected diagram (left) particularly challenging
 only appears for singlets (gluonic propagation)
- Constant term arises for singlets

 \circ vacuum term for σ , fixed topological charge for η'

Non-singlet spectrum

The pseudoscalar and vector mesons are the lightest non-singlets.¹⁴

Bennett et. al. [1909.12662]

The pseudoscalar singlet η' is surprisingly light!

• Phenomenologically relevant: $\circ \; m_
ho > m_{\eta'} \; {\sf different from QCD}$ relevant low-energy dof \circ η' relevant for $\pi\pi$ scattering more accessible channels for decays into SM

Interesting! Is this surprising?

Consider different theories:

- Large N_c : $m_{\eta'} m_\pi \propto N_f/N_c$
 - $\circ \; N_f = 2 \; {\sf could} \; {\sf be} \; "{\sf small}"$
 - $\circ~N_c=4$ could be "large"

SU(2) and SU(3) comparison:

- Similarities:generic $N_f = 2$ feature?
- QCD: strong N_f dependence
- Differences may arise $m_\pi/m_
 ho o 0$ mass driven by flavour content!

Consequences for Dark Matter models

- Mass hierarchies: limit χ PT validity
 - \circ inclusion of other states than π required, e.g. η' and ho
- Light unprotected state η' : decay into SM allowed \circ could be turned off at large N

Are these fermion masses phenomenologically relevant?

Dark Matter Scattering on the Lattice

- Pions are in the 5-dimensional representations
- A two pion scattering is in one of three irreps $5 imes 5 = 14 \oplus 10 \oplus 1$
- Corresponds to the usual QCD channels
 - $\circ~14 \Leftrightarrow {\sf isospin}~I=2$ in QCD, e.g. $\pi^+\pi^+$
 - $\circ \ 10 \Leftrightarrow {\sf isospin} \ I = 1 \ {\sf in} \ {\sf QCD}$, e.g. $\pi\pi o
 ho$

 $\circ~0 \Leftrightarrow {\sf isospin}~I=0$ in QCD, e.g. $\pi\pi o \sigma/f_0$

Scattering information from the lattice

- Scattering phase shift $\delta_0(p)$ from finite volume energy

$$an(\delta_0(q)) = rac{\pi^{rac{3}{2}}q}{{\mathcal Z}_{00}^{ec 0}(1,q^2)}, \hspace{0.3cm} q = p^*rac{L}{2\pi}
onumber \ \cosh\left(rac{E_{\pi\pi}}{2}
ight) = \cosh(m_{\pi\pi}) + 2\sin\left(rac{p^*}{2}
ight)^2$$

- Low-velocity behaviour: Scattering length
 - \Rightarrow relation between $\pi\pi$ energy $E_{\pi\pi}$ and m_{π} on a lattice $^{[1]}$

$$\frac{\delta E_{\pi\pi}}{m_{\pi}} = \frac{4\pi m_{\pi} a_0}{(m_{\pi}L)^3} \left(1 + c_1 \frac{m_{\pi} a_0}{m_{\pi}L} + c_2 \left(\frac{m_{\pi} a_0}{m_{\pi}L} \right)^2 \right)$$

[1] Dengler et.al. [2311.18549] see also Arthur et. al. [1412.4771] for SU(2) Blum et.al. [2301.09286] for SU(3)

First investigation of isospin-2 scattering

- repulsive $\pi\pi$ interaction
- few lattice energy levels

available \Rightarrow systematics

- finite volume effects present
- roughly matches ChiPT

First investigation of isospin-2 scattering

- phase shift $\delta(p)$ gives velocity dependence $\langle \sigma v
 angle$
- No velocity dependence in

isospin-2 channel

 Overall scale chosen to match low velocity behaviour

Summary

- Full light hadron spectrum of two-flavour Sp(4) $_{\circ}$ surprisingly light η'
 - \circ input for EFTs: masses and decay constants
 - \circ first determination of isospin-2 $\pi\pi$ scattering

Outlook

- Full scattering analysis of $2\pi o 2\pi$ and $3\pi o 2\pi$

velocity dependence from strong resonances?

- Better understanding of singlets and scattering states
- Singlet spectroscopy closer to the chiral limit