Southampton

State Preparation using Quantum Algorithms within Hamiltonian Formulations of Quantum Field Theories

Graham Van Goffrier

Science and Technology Facilities Council

Quantum Technologies for Fundamental Physics

gwvg1e23@soton.ac.uk

Cambridge-Southampton QA for QFT

Project Leaders: Dr. Bipasha Chakraborty (Soton)

Dr. Sergii Strelchuk (Cambridge/Warwick)

Postdocs:

Dr. Graham Van Goffrier (Soton)

Dr. Subhayan Roy Moulik (Cambridge)

PhD Student: Summ Alex Tomlinson (Soton)

Summer Research Student: Tejas Acharya (Oxford)

Outline

• Motivations and Project Structure

 \circ $\,$ Big-picture reasons to consider QAs for QFTs, and our collaboration $\,$

Quantum State Preparation

- Why is quantum state preparation a hard problem?
- How are variational algorithms effective solutions?
 - The choice of an ansatz

• Specialising towards Lattice Gauge Theories

- Adiabatic Preparation for the Schwinger Model
- \circ $\,$ VQE and QAOA for the Schwinger Model $\,$
- Accelerating VQE with equivariant ansatze

Outline

• Motivations and Project Structure

• Big-picture reasons to consider QAs for QFTs, and our collaboration

Quantum State Preparation

- Why is quantum state preparation a hard problem?
- How are variational algorithms effective solutions?
 - The choice of an ansatz

• Specialising towards Lattice Gauge Theories

- Adiabatic Preparation for the Schwinger Model
- \circ $\,$ VQE and QAOA for the Schwinger Model $\,$
- Accelerating VQE with equivariant ansatze

Quantum Scale-up

- All low-qubit, low-depth QAs can be simulated classically.
- Noisy intermediate-scale quantum (NISQ) technology may show quantum advantage.
 - **50-100s of qubits**
 - 1000s of gate operations before noise dominates.
- Stepping stone towards fault-tolerant QC (2030s)
 - Why wait to do physics?

[Figure by Funcke (Lattice2022)]

Quantum Scale-up

- All low-qubit, low-depth QAs can be simulated classically.
- Noisy intermediate-scale quantum (NISQ) technology may show quantum advantage.
 - **50-100s of qubits**
 - 1000s of gate operations before noise dominates.
- Stepping stone towards fault-tolerant QC (2030s)
 - Why wait to do physics?

Physics drives

- Collider phenomenology
 - Parton showers, S-matrices
- Strongly-interacting systems

 Lattice QCD, hadronisation
- Neutrino (astro)physics
 - Oscillations, mean-field
- Early-universe cosmology
 - Inflation, CP-violation
- Gauge-gravity duality
 - **QEC, SYK / matrix models**

Outline

• Motivations and Project Structure

 \circ $\,$ Big-picture reasons to consider QAs for QFTs, and our collaboration $\,$

Quantum State Preparation

- Why is quantum state preparation a hard problem?
- How are variational algorithms effective solutions?
 - The choice of an ansatz

• Specialising towards Lattice Gauge Theories

- Adiabatic Preparation for the Schwinger Model
- \circ $\,$ VQE and QAOA for the Schwinger Model $\,$
- Accelerating VQE with equivariant ansatze

Quantum Simulation Protocols

Circuit depth O(2ⁿ / n) needed to prepare generic n-qubit state
 Can be reduced to O(n) with O(2ⁿ) ancilla qubits

• We want eigenstates of given Hamiltonians, physicality/symmetry advantages

Quantum Phase Estimation (QPE) vs Variational Quantum Algorithms

QPE:

Purely quantum algorithm, O(1) shots needed but O(1/ ϵ) depth to achieve precision ϵ . \circ M = 1/log2(ϵ) ancilla qubits needed

Quantum Phase Estimation (QPE) vs Variational Quantum Algorithms

OPE:

- Purely quantum algorithm, O(1) shots needed but O(1/ε) depth to achieve precision ε.
 M = 1/log2(ε) ancilla qubits needed
- Iterative quantum state preparation with a classical optimiser
 - \circ O(1/ ϵ^2) shots needed but only O(1) depth, ideal for NISQ.

Quantum Phase Estimation (QPE) vs Variational Quantum Eigensolver

- Iterative quantum state preparation with a classical optimiser a "hybrid" algorithm.
 - \circ O(1/ ϵ^2) shots needed but only O(1) depth,
 - Although QPE has better asymptotics, VQE ideal for NISQ

Ansatz Selection

- Desirable qualities:
 - Low circuit depth
 - Minimally contain physical spectrum
 - Avoid barren plateaus for larger # qubits
- Heuristic approaches: k-local gatesets
- Adaptive approaches: ADAPT-VQE, Generative VQE
- Model-driven approaches:
 - Coupled-cluster
 - Quantum Approximate Optimisation (QAOA)
 - Efficient symmetry-preservation (ESP)

Ansatz Selection

- Desirable qualities:
 - Low circuit depth
 - Minimally contain physical spectrum
 - Avoid barren plateaus for larger # qubits
- Heuristic approaches: k-local gatesets
- Adaptive approaches: ADAPT-VQE, Gen. VQE
- Model-driven approaches:
 - Coupled-cluster
 - Quantum Approximate Optimisation (QAOA)
 - Efficient symmetry-preservation (ESP)

[Gard et al., 2020]

Outline

• Motivations and Project Structure

 \circ $\,$ Big-picture reasons to consider QAs for QFTs, and our collaboration $\,$

Quantum State Preparation

- Why is quantum state preparation a hard problem?
- How are variational algorithms effective solutions?
 - The choice of an ansatz

• Specialising towards Lattice Gauge Theories

- Adiabatic Preparation for the Schwinger Model
- \circ $\,$ VQE and QAOA for the Schwinger Model
- Accelerating VQE with equivariant ansatze

(1+1)d Kogut-Susskind Hamiltonian

• Lattice gauge theory with group G, staggered fermion:

$$H = w \sum_{n=1}^{N} \left(\phi_n^{\dagger} U_n^{j} \phi_{n+1} + h.c. \right) + m \sum_{n+1}^{N} (-1)^n \phi_n^{\dagger} \phi_n + J \sum_{n=1}^{N} \vec{L}_n^2$$

- In (1+1)d, gauge redundancy given boundary conditions
 - \circ $\,$ Solve Gauss's Law to "fermionise" the Hamiltonian $\,$
 - For d > (1+1), we will have to be clever.
- Map fermions to qubits, e.g. Jordan-Wigner, Bravyi-Kitaev \circ For G = SU(n) or U(n), one fermion \Rightarrow n qubits.

$$\begin{split} \hat{Q}_n^a &= \sum_{r,s} \hat{\phi}_n^{r,\dagger} \left[\hat{T}_j^a \right]_{rs} \hat{\phi}_n^s, \\ \hat{R}_n^a &= \sum_b 2 \text{Tr} \left[\hat{U}_n \hat{T}_j^a \hat{U}_n^\dagger \hat{T}_j^b \right] \hat{L}_n^b, \\ \hat{G}_n^a &= \hat{L}_n^a - \hat{Q}_n^a - \hat{R}_n^a = 0 \\ \hline \phi^\dagger U \phi &\mapsto X \otimes X + Y \otimes Y, \\ \phi^\dagger \phi &\mapsto Z, \\ L^2 &\mapsto \sum_{1 \le l \le n} Z_l \\ \end{split}$$

Adiabatic State Prep, Schwinger Model

- Take G = U(1) with theta term. [Chakraborty et al., PRD 105.9 (2022)]
- Evolve from H[m=0,w=0,th=0] vacuum to vacuum of interest.

ASP for the Schwinger Model

- Example for 4 qubits, lattice spacing a = 1.43 , masses m = 0,1
 - Deterministic evolution to true vacuum

ASP for the Schwinger Model

- Example for 4 qubits, lattice spacing a = 1.43, masses m = 0,1
 - Deterministic evolution to true vacuum

VQE for the Schwinger Model

- VQE guarantees exact convergence for good ansatz
 - Six-parameter ESP ansatz which spans charge-subspace (adjustable)

VQE for the Schwinger Model

- VQE guarantees exact convergence for good ansatz
 - Six-parameter ESP ansatz which spans charge-subspace (adjustable)

QAOA for the Schwinger Model

- QAOA sacrifices exactness for ease of construction
 - Ansatz determined by Hamiltonian, plus flexible choice of "mixer"

Efficiency Comparison

• Total "runtime" = evaluation count * circuit depth

Equivariance and Expressivity

- Geometric ML:
 - Predictions invariant to symmetries of data.
- Geometric VQE:
 - Observables invariant to symmetries of Hamiltonian.
- Equivariant embeddings restrict to a symmetry sector
 - Also provides desirable parameter-dependence
 - \circ Must sacrifice some expressivity of the ansatz
- In simple (1+1)d cases, equivariance reproduces ESP, better explanatory power
 In general, will provide a (very) competitive toolbox for ansatz design

Summary

- State preparation is a crucial bottleneck for near-term quantum simulations.
- Variational algorithms are a leading contender for low-depth QAs for physics.
- Continued developments of ansatze required if we are to:
 - Take maximal advantage of the hardware frontier as it moves.
 - Extend QAs to otherwise inaccessible LGTs, etc.
- <u>Next step: (2+1)d</u>

THANK YOU FOR LISTENING!

Works Cited

Atas, Yasar Y., et al. "SU (2) hadrons on a quantum computer via a variational approach." Nature communications 12.1 (2021): 6499.

Bauer, Christian W., et al. "Quantum simulation for high-energy physics." PRX quantum 4.2 (2023): 027001.

Chakraborty, Bipasha, et al. "Classically emulated digital quantum simulation of the Schwinger model with a topological term via adiabatic state preparation." Physical Review D 105.9 (2022): 094503.

Farhi, Edward, and Aram W. Harrow. "Quantum supremacy through the quantum approximate optimization algorithm." arXiv preprint arXiv:1602.07674 (2016).

Gard, Bryan T., et al. "Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm." npj Quantum Information 6.1 (2020): 10.

Meyer, Johannes Jakob, et al. "Exploiting symmetry in variational quantum machine learning." PRX Quantum 4.1 (2023): 010328.

Tilly, Jules, et al. "The variational quantum eigensolver: a review of methods and best practices." Physics Reports 986 (2022): 1-128.

Thank you to UKLFT, and our hosts here in Plymouth!

Cambridge-Southampton QA for QFT

Sergii Strelchuk (PI)

$\Leftarrow \textbf{Project Leaders}$

Postdocs \Rightarrow

Subhayan Roy Moulik

Graham Van Goffrier

PhD Students \Rightarrow

Mitchell Chiew (PhD student)

Tejas Acharya (Research Associate)