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Outline
● Motivations and Project Structure

○ Big-picture reasons to consider QAs for QFTs, and our collaboration

● Quantum State Preparation
○ Why is quantum state preparation a hard problem?
○ How are variational algorithms effective solutions?

■ The choice of an ansatz

● Specialising towards Lattice Gauge Theories
○ Adiabatic Preparation for the Schwinger Model
○ VQE and QAOA for the Schwinger Model
○ Accelerating VQE with equivariant ansatze
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Quantum Scale-up
● All low-qubit, low-depth QAs can 

be simulated classically.
● Noisy intermediate-scale 

quantum (NISQ) technology may 
show quantum advantage.
○ 50-100s of qubits
○ 1000s of gate operations 

before noise dominates.
● Stepping stone towards 

fault-tolerant QC (2030s)
○ Why wait to do physics?   [Figure by Funcke (Lattice2022)]
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Physics drives 
● Collider phenomenology

○ Parton showers, S-matrices
● Strongly-interacting systems

○ Lattice QCD, hadronisation
● Neutrino (astro)physics

○ Oscillations, mean-field
● Early-universe cosmology

○ Inflation, CP-violation
● Gauge-gravity duality

○ QEC, SYK / matrix models
  [Bauer et al., Snowmass 2021]
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Quantum Simulation Protocols

● Circuit depth O(2^n / n) needed to prepare generic n-qubit state
○ Can be reduced to O(n) with O(2^n) ancilla qubits

● We want eigenstates of given Hamiltonians, physicality/symmetry advantages
9



   Quantum Phase Estimation (QPE) 
   vs Variational Quantum Algorithms

QPE:

● Purely quantum algorithm, O(1) shots needed but O(1/ε) depth to achieve precision ε.
○ M = 1/log2(ε) ancilla qubits needed
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   Quantum Phase Estimation (QPE) 
   vs Variational Quantum Eigensolver

VQE:

● Iterative quantum state preparation with a classical optimiser – a “hybrid” algorithm.
○ O(1/ε^2) shots needed but only O(1) depth,
○ Although QPE has better asymptotics, VQE ideal for NISQ
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Ansatz Selection
● Desirable qualities:

○ Low circuit depth
○ Minimally contain physical spectrum
○ Avoid barren plateaus for larger # qubits

● Heuristic approaches: k-local gatesets
● Adaptive approaches: ADAPT-VQE, Generative VQE
● Model-driven approaches:

○ Coupled-cluster
○ Quantum Approximate Optimisation (QAOA)
○ Efficient symmetry-preservation (ESP)
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(1+1)d Kogut-Susskind Hamiltonian
● Lattice gauge theory with group G, staggered fermion:

● In (1+1)d, gauge redundancy given boundary conditions
○ Solve Gauss’s Law to “fermionise” the Hamiltonian
○ For d > (1+1), we will have to be clever.

● Map fermions to qubits, e.g. Jordan-Wigner, Bravyi-Kitaev
○ For G = SU(n) or U(n), one fermion ⇒ n qubits.

16



Adiabatic State Prep, Schwinger Model
● Take G = U(1) with theta term.          [Chakraborty et al., PRD 105.9 (2022)]
● Evolve from H[m=0,w=0,th=0] vacuum to vacuum of interest.
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ASP for the Schwinger Model
● Example for 4 qubits, lattice spacing a = 1.43 , masses m = 0,1

○ Deterministic evolution to true vacuum
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VQE for the Schwinger Model
● VQE guarantees exact convergence for good ansatz

○ Six-parameter ESP ansatz which spans charge-subspace (adjustable)
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QAOA for the Schwinger Model
● QAOA sacrifices exactness for ease of construction

○ Ansatz determined by Hamiltonian, plus flexible choice of “mixer”
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EƵciency Comparison
● Total “runtime” = evaluation count * circuit depth

Per eval:      18 CNOT + 13 R                    7 CNOT + 7 R                                14 CNOT + 10 R                  23

QAOAVQEASP



Equivariance and Expressivity
● Geometric ML:

○ Predictions invariant to symmetries of data.
● Geometric VQE:

○ Observables invariant to symmetries of Hamiltonian.

● Equivariant embeddings restrict to a symmetry sector
○ Also provides desirable parameter-dependence
○ Must sacrifice some expressivity of the ansatz

● In simple (1+1)d cases, equivariance reproduces ESP, better explanatory power
○ In general, will provide a (very) competitive toolbox for ansatz design 24



Summary
● State preparation is a crucial bottleneck for near-term quantum simulations.
● Variational algorithms are a leading contender for low-depth QAs for physics. 
● Continued developments of ansatze required if we are to:

○ Take maximal advantage of the hardware frontier as it moves.
○ Extend QAs to otherwise inaccessible LGTs, etc.

 
● Next step: (2+1)d

○

THANK YOU FOR LISTENING!
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