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Stochastic Estimation of the Trace of the Lattice Dirac

Operator

@ Evaluation of the disconnected contributions of the flavor-separated
Generalized Parton functions involves estimating Alexandrou et. al 2021

trTW(z)P,D™* (1)

with W(z) the Wilson line and P, a permutation operator that
displaces the inverse in the z-direction.
@ Trace estimate computed via Hutchinson's and given by

t(TW(z)P,D') = Nizzer(z)onflz,- (2)
with variance
Var(t(TW(2)P.D™) = [[TW(2)P.D 7 [E = > [(TW(2)P.D™ 1)l
i=0
(3)
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Frequency Splitting

Giusti et. al 2019

@ Splits the high and low frequency modes of the inverse by creating a
telescoping series of inverses separated by a set of real shifts, o, with
O<oi<...<o0og

D™l =D~ (D4o11) 1 +(D+or ) 1= ... —(D+o 1) (D40 1)t
(4
@ Use the “One End Trick” to turn a difference of inverses into a
product Boucaud et. al. 2008

(D+o1l) = (D +o14al) = (01 — 0111)! ()

(D+oyl) ™t =(D+opal) ™ = (orp1—a)(D+opal) H(D+oyl)
(6)

@ Allows us to expand D! as a telescoping series in terms of products

of inverses
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Frequency Splitting

@ Rewrite Equation (4) as

L-1
/=0

o For brevity, let ' = 'W(z)P,. Taking the trace gives

L—1
tr(FD™) = (o141 — o)tr(F(D + o)) (D + o1411) 1)
1=0
+tr(F(D + o, N)7Y) (8)

e But FS goes further! Multiplication of " on the left leaves the
singular spectra of (D + o;/)™}(D + 0/41/) ! unchanged.
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Frequency Splitting

@ Use the cyclic property of the trace and the fact that
[(D+ o)7L, (D +01411)7Y = 0 to yield
-1
trf D™ = (o111—0))tr(D+0y1) (D402 l) - trf (D+o 1)

i=0
(9)
o Insertion of [ changes singular spectra of product terms, reducing the
variance! Terms within the summation known as the “split-even”
estimator
@ The trace estimator is given by

L-1 N,
~ 1 ~
t(fD™1) = E N E z;r’,(cr/_H —a)(D+ o) (D +o1411) Pz
1=0 s=0

]_ -‘- A -1
+ m Zz&LF(D +oul) "zsy
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Multi Level Monte Carlo

Giles 2015
Given a sequence Xjp, ..., X;_1 that approximates the variable X; that you
want to estimate, we have

L
E[X1]) = E[Xo] + > E[Xi — X 4] (11)
=1

The total computational cost of the trace estimation is given by

L
Cue =€ 2D _VaV)? (12)

€2 is a target variance, and C; and V; are the cost and variance of the /th

level, respectively. In contrast to the total cost of the single level trace
estimation of D!
Csy =€ 2CV (13)
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Multilevel Monte Carlo

@ In the context of FS, the V| given by the estimator variance each
term in the multilevel trace estimator and C; the cost of solving the
associated linear equations of the level /. Ignoring the multiplicative
factor of (041 — oy) for now, let

trp1 =t((D + o) (D + o1411)7Y) (14)
t, =t(F(D+ o )7Y) (15)
Then
Vi = Var(ty j+1) = E[t] ;1 ti41] — E[tr ]  E[tr144] (16)
V, = Var(tL) = E[tzt[_] — E[tL]*E[tL] (17)
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Multilevel Monte Carlo

@ The variance of the multilevel trace estimator is then given by
Ve =Y+ (18)

with Nj = py/ %; and the Lagrangian multiplier u = e*Z(Z,LZO VViG)

Challenges
@ No a priori way to know the shifts that minimize the multilevel cost
@ Testing many different shifts to find an approximate minimum of the
multilevel cost too expensive
@ The optimal shifts, in general, are different for each combination of I
and P,.
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Sampling the Variances

Can we predict variances of the form of V; and V| with only a few samples
through interpolation to find shifts that approximately minimize the
multilevel cost function?

Need to define three different sets of shifts:

@ Sampling set: A set of m real shifts § used to sample the estimator
variances of the form Vj and V| with §§ =0< § < ... < §,_1

@ Evaluation set: A set of n real shifts s used to evaluate interpolating
polynomials with sp =0 < 51 < ... < sp_1 = §m—1

@ Optimal set: The set of L shifts chosen from s such that

o= argmin  Cui(So,Sjy,---Sj,)- (19)
1<ji<p<...<j1<n
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Sampling the Variances

In order to obtain estimates of the variances of the form V) and V|, we
need to solve linear equations of the form

(D+ 8 Ix=z2 fori=0,...,m-1 (20)

with z a random noise vector for N noise vectors.
Then compute

tiy =t(D+ &)W (D+4§N)) fori=j=0,...m—1 (21)
t =t(F(D +%1)™1) for j=0,..,m—1 (22)

And compute the variance as in Equations (16) and (17) to introduce the
shift-dependent functions

V(5 ) =Var(t;) (23)
Vi(§) =Var(t) (24)
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Interpolating the Variances

Input: The sampled variances V/, the m sampled shifts, 5 and n evaluation
shifts, s. ,
Output: Predicted variances V.

o forj=1:m-—1

w=In(V)(3,%)) withi=0,...,j

q = Interpolate(%y, ... j, w)

fork=0:n-1

Vi(sk, §) = e9Ck)

end
end
w=In(Vi(5,%)) withi=j=0,...,m—1
q = Interpolate(%y,... . m—1,w)
fork=0:n—-1

Vi(sg, sg) = e9(k) 10

end

fori=0:n—1
w = /n(\_/,(s,-,§j)) withj=0,...,m—1
q = Interpolate(3y,... .m—1,w) 0
fork=0:n-1 =

Vilsi» sk) = (s — s7)2e(%) "

0606066 HEH600000000




Parameters of the Calculation

@ 323 x 64 lattice, Wilson-Clover action with mg = —0.2390 and
Stout-link smearing (m, = 358MeV)

e Sampling set § = [0, 0.05, 0.25, 0.5, 1.00]

o Evaluation set s
= [logspace(—5, —2,4) logspace(log10(le — 2 + 1le — 3),0,76)]

@ Full spin-color dilution and p8k7 probing vectors with 5 Z; noise
vectors to estimate V; and V|

o Results in 960 inversions per shift in the sampling set, so 4800
inversions

@ Solver is even-odd MG preconditioned block FGMRES, so our level
cost Cj is given by the number of outer iterations of FGMRES

@ Test optimization for 3, 7574 and for displacements of size
p=0,..8.

@ Use HPE for terms V() when mgq +5; > 0
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Accuracy of Interpolation

Introduce Viotar, the sum of the variance of the estimators at each level

L
Vtotal = Z VI (25)
1=0
p | Pred. Viotar | Est. Vioras | Pred. Cgs (x10°) | Est. Crs (x10°)
0 4.9504 5.2968 0.2921 0.3422
1 82.1364 99.4092 1.4293 1.7824
2 20.8019 23.7536 0.7521 0.8781
3 4.4729 4.6869 0.2371 0.2665
4 1.1335 1.1263 0.0680 0.0742
5 0.3491 0.3578 0.0215 0.0245
6 0.1469 0.1528 0.0084 0.0094
7 0.0826 0.0887 0.0041 0.0052
8 0.0410 0.0367 0.0030 0.0030

Table: The predicted and estimated Vi.:s as well as the predicted and estimated
Crs while optimizing for [ = ~3 for all displacements of size p.
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Accuracy of Interpolation

p | Pred. Viotar | Est. Vioras | Pred. Crs (x10%) | Est. Crs (x10%)
0 18.8176 21.6828 4.8145 5.7190
1 9.3321 9.7361 3.9570 4.4446
2 2.4040 2.5149 1.4491 1.6664
3 0.7998 0.8279 0.4895 0.5648
4 0.3110 0.3111 0.1812 0.2080
5 0.1509 0.1443 0.0796 0.0875
6 0.0581 0.0464 0.0408 0.0389
7 0.0356 0.0279 0.0253 0.0227
8 0.0320 0.0234 0.0217 0.0185

Table: The predicted and estimated Vio:ay as well as the predicted and estimated
Crs while optimizing for I = 54 for all displacements of size p.
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Comparison to MG Deflation

—e—FS + probing —=—MG Deflation + probing —a—Random Noise
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come from an
optimization of
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Conclusions

@ FS can give some great speedups in conjunction with probing for large
displacements of the lattice over MG deflation

@ We can obtain a refined set of shifts through interpolation that
reliably predicts variance and multilevel cost

@ The shifts coming from an optimization of one configuration can be
used for other configurations from the same ensemble with little
penalty to performance

@ Combine with other variance reduction methods? Most of the
variance contained in the term trl (D + o /)~!, so possibly use other
methods to reduce the variance of that term, such as polynomials,
deflation etc.
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Variance Reduction Methods

Single Level Methods

@ “Spin-Color” dilution - removes correlation between individual matrix
elements W.Wilcox 1999, J. Foley et al. 2005

@ Probing - removes heaviest elements closest to the main (or displaced)
diagonal Tang et. al 2012, Stathopoulos et. al 2013, Switzer et. al. 2021

@ Deflation - removes contributions of largest singular values of the
inverse from the variance Baral et. al 2016, Gambhir et. al. 2016, Romero
et. al. 2020

@ Polynomial Subtraction - approximates the matrix inverse via a
polynomial of the matrix Liu et. al. 2014

@ And combinations!
Multilevel Methods

@ E.g. Chebyshev polynomials, multigrid, Frequency Splitting Hallmann
and Troester 2021, Frommer et. al 2021, Giusti et al 2019
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Frequency Splitting

Motivation: Shifting the Wilson-Dirac operator drastically decreases the
decay of the offdiagonal elements of D~! compared to deflation
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<
N
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Classical Probing

@ Classical Probing eliminates elements that correspond to distances up
to k by computing a distance-k coloring of the graph of A (which is
the same as the distance-1 coloring of Ak), i.e. the heaviest elements
near the main diagonal

@ Orthogonal set of probing vectors, z; = 1, ..., ¢ then formed as

Z(0) = {1 if color(i) = j 26)

0 otherwise

@ Remove the deterministic bias by performing the Hadamard product
with a noise vector z

Z=[20021,20® 20,...,20 ® Z(] (27)
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Probing for Lattice Displacements

Switzer et. al 2021

o As the lattice is displaced, the trace of D! becomes very small due
to the decay of offdiagonal elements and the variance increases as the
(previous) main diagonal becomes included in the offdiagonal elements

@ Probing then has to target the neighbor hood of the displaced
diagonal

@ The coloring performed on the symmetric part of P,AX, given by
P, Ak 4 (P,AK)T. For a node x = [x1, ..., x4] in the lattice, this
corresponds to a distance-k coloring of the neighborhoods centered at
xt = [x1, %2, x3 + p,xa] and x~ = [x1, x2, X3 + P, x4]

N

(a) Matrix 4, 1D torus  (b) Matrix of A% (c) Displace by 10 (d) Symmetrized
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Selection of Probing Vectors

Relative error at large displacements is large due to the trace now being
small in magnitude and the displaced trace now contributing to the
variance. We then choose probing vectors that target large displacements

1()—1E — L B I I B
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Figure: The FS variance given by Equation (18) (left) and relative error (right)
using ' = ~y3 for each set of chosen probing vectors.
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Shift Selection: Evaluation Set Discretization
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Figure: Slices of the 6D manifold of the predicted minimum cost, where we vary
one shift and let the others take on the value that minimizes Equation (12). The
shifts that approximately minimize Equation (12) are given in red.
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Shift Selection: The number of shifts

Need to choose both the number of shifts to use and the discretization of
the evaluation set, s

7 I=n =y

8 100:— ! i ‘75' 1T E 100: 1 1 E
= E +p=0 § +P=0§
= 3 \\’\‘_._‘ ——p=1 r +p=1:
T [ e pe2 N 4
A I - Dt
T E —~p=4 E —~p=47
[y 3 p=5 3 p=5
3 102k ——p=64 102k ——p=64
] E ——p=7 E ——p=77
= F ——p=8 F ——p =81
E E . o T T \ .p P R S N .p. 1
S 0 2 4 6 8 0 2 4 6 8

Number of Shifts Number of Shifts

Figure: The normalized predicted minimum cost for all displacements of
magnitude p in the z direction as a function of the number of chosen shifts.
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Multiple Configurations

73 574
Displacement | Mean Vioa | Rel. Std. Dev. Viotar Displacement | Mean Vioras | Rel. Std. Dev. Vipas
0 5.4108 0.0052 0 11.3365 0.0022
1 41.4419 0.0029 1 7.4778 0.0024
2 16.0299 0.0038 2 26171 0.0023
3 4.7654 0.0047 3 0.8827 0.0036
4 1.1777 0.0056 4 0.3455 0.0065
5 0.3883 0.0058 5 0.1727 0.0080
6 0.1772 0.0061 6 0.1079 0.0106
7 0.1123 0.0083 7 0.0826 0.0114
8 0.0932 0.0100 [ 0.0733 0.0130

Configuration Number
1 2 3 4 5
Est. Speedup | 4.8436 | 5.4360 | 4.8494 | 4.5541 | 5.0838
Configuration Number
6 7 8 9 10
Est. Speedup | 3.4911 | 4.9955 | 4.5245 | 4.5861 | 5.7280

Est. Wallclock Time FS
Est. Speedup — 2
st. Speedup = £ iock Time MG Deflation (28)
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Recursive Frequency Splitting

@ The MLMC analysis lets us know if we can push Frequency Splitting
even further. Can we create operators that are a product of three
inverses?

@ The gist of it: Use the One End Trick on the split-even operators
once again

@ The trace that we want to compute takes the following form

L—1
tracel D™ = (0741 — 07)?trace(D + o1411) 20 (D + o41) 7
0

—
=~

N (29)
+ (0/—0_1)trace(D + o)) (D 4 1) 71
1

+ tracel (D + o)7L

—
Il
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Recursive Frequency Splitting

Pros and Cons

@ Variance of the terms in the first sum of Equation (15) have variance
proportional to (041 — o;)* rather than (oj41 — ;)2

@ Solver cost of terms in the second sum reduced by a factor of 2 since
with full-spin color dilution we get the conjugate solution for free.
Terms within the second summation also have less variance than the
normal FS split-even operator due to the shifts being the same!

@ More costly to optimize as calculating (D + oy,1/)~? is required

@ Optimization now more difficult due to there being three types of
terms, but as we will see preliminary results suggest optimization of
RFS may not be necessary.
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Preliminary Results for One

Variance
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Hopping Parameter Expansion

HPE

@ Taking the inverse gives

1

(D+<;J-/)—1:(/—2 “1H)tat Z( ATTH)ATL (30)

@ Separating this out to the kK — 1 power gives

k—1
(D + 1) :Z( A"THY A- +Z A"TH) A1 (31)
i=0
@ The trace of the first term can be calculated exactly with an
appropriate set of probing vectors. Due to laplacian structure of D,
the trace is identically zero when k — 1 is less than your displacement.
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Hopping Parameter Expansion

HPE

@ The trace of the second term of Equation (11) can be estimated
stochastically by noting that

Loacivia-r (o amrne N L acigyia-r — (L a1k _
;_kj(QA HYA™Y = (SA71H) ?Oj(zA HY AT = (A" H) (Do)
(32)

o The factor of (A~1H)k greatly reduces the variance, and Equation

(12) is the only source of variance when estimating the trace of
(D + Uj/).
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