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Introduction

▶ Precise determination of lattice form factors requires a systematic
treatment of QED corrections → perturbative matching to
continuum renormalisation schemes.

▶ O(α) matching between the RI′-MOM scheme and the W-Mass
scheme in [Di Carlo et al., 2019].

▶ In this talk I will present our newly derived RI-MOM scheme and
relative results for the conversion to the MS at O(α αs).
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Lattice Renormalisation
▶ Osem(x) = d̄(x)γµPLu(x)⊗ ν̄l(x)γµPLl(x), PL = (1− γ5)/2

Figure: Kinematic conventions for the four-point diagrams.

▶ RI′-MOM [Martinelli et al., 1995] (This talk’s focus)

p1 = p2 = p3 = p4 = p, p2 = −µ2;

▶ RI-SMOM [Sturm et al., 2009] (main paper for details)

p1 = p3, p2 = p4, p21 = p22 = −µ2, p1 · p2 = −1

2
µ2.
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Lattice Renormalisation

▶ Off-shell renormalisation conditions and the projector P define the
RI schemes

σA
f ≡ 1

4 p2
Tr(S−1

f , A(p)/p)
A=RI
= 1, λA ≡ ΛA

αβγδPA
αβγδ

A=RI
= 1.

▶ The scheme conversion factors are

CMS→RI
f =

(
σMS
f

)−1/2

, CMS→RI
O = λMS

(
σMS
u σMS

d σMS
ℓ

)1/2

.

▶ Crucial role of P → What is a “good” projector?

▶ Conventionally [Garron, 2018], PRI′-MOM = − 1
16 (γ

µPR ⊗ γµPR).

▶ Non-trivial renormalisation of conserved current → scale dependence
of the conversion factor already in pure QCD.
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Lattice Renormalisation

Figure: One-loop pure QCD correction.

▶ Neglecting QED → Λb = Λb,µ(p)⊗ γµPL +O(α), where

Λb,µ(p) = F1(p)γ
µPL + F2(p)

pµ
/p

p2 PL.

▶ Ward Identity: Λb,µ(p) = ∂
∂pµ

Sb(/p)−1 → F1(p) = S−1(p2).

▶ ZMS
OO = 1 +O(α) & ZRI′-MOM

OO = 1 +O(αs).
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Lattice Renormalisation

▶ Imposing P(γµPL ⊗ γµPL) = 1 and P(
pµ

/p

p2 PL ⊗ γµPL) = 0 →

PRI-MOM = − 1
12 p2

(
/pPR ⊗ /pPR + p2

2 γ
νPR ⊗ γνPR

)
.

▶ In this newly derived scheme → ZRI-MOM
OO = 1 + O(α).

▶ No artificial scale dependence when the perturbative matching to
continuum schemes is performed.

▶ Similar results for SMOM kinematics are presented in our work.
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Results
RI′-MOM Wilson Coefficient

CRI′-MOM
O (µL, p

2) = CRI′-MOM
α +CRI′-MOM

αs
+

α

4π

(
CRI′-MOM
α,αs LL + CRI′-MOM

α,αs NLL

)
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Figure: Residual µ-dependence of the low-scale Wilson coefficient
CRI′-MOM
O (µL, p

2 = −9). It is evident that the leading strong corrections
introduce an artificial scale dependence at low scales µ ∼ µL.



11

Results
RI-MOM Wilson Coefficient

CRI-MOM
O (µL, p

2) = CRI-MOM
α +

α

4π

(
CRI-MOM
α,αs LL + CRI-MOM

α,αs NLL

)
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Figure: Scale dependence of CRI-MOM
O (µL, p

2 = −9). The boundaries of the
light green shaded area are obtained with different values of the three-loops
operator’s anomalous dimension γ

(2)
O : γ

(2)
O =-100 (top) and γ

(2)
O =100 (bottom).

The dark green curve is obtained with γ
(2)
O = 0.
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Ongoing Work & Future Outlooks

▶ We derived the two-loops O(α αs) MS Wilson Coefficient at the
high scale

CMS
O (µW ,MZ ) =

αs(µW )

4π

α

4 π
CF

(
3

(
ln

(
µW

MZ

)
− csc2(θW )

(
cot2(θW ) ln

(
MW

MZ

)
+ 1

))
+

95

24

)

▶ Currently working on the derivation of the three-loops O(α α2
s )

anomalous dimension γ
(2)
O .

▶ Phenomenological application of our results, e.g. CKM matrix
elements extraction.

▶ Thank You!
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W-Mass

▶ The W-Mass renormalization scheme was traditionally used in the
determination of the Fermi constant GF [Sirlin, 1978] and is still in
use in the calculation of electroweak corrections for the semi-leptonic
decays [Seng et al., 2020]

1

q2
→ 1

q2 −M2
W

+
M2

W

M2
W − q2

1

q2

▶ The O(α) matching between RI′-MOM and W-Mass was given in
[Di Carlo et al., 2019].

▶ We believe that the MS, where an EFT framework for EW
corrections is very well established, allows for a better scale
separation.
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EFT Approach

▶

low−scale︷ ︸︸ ︷
λi (µL, p

2) CMS→i
O

high−scale︷ ︸︸ ︷
U(µL, µW ) CMS

O (µW ,MZ ) → scale independent.

▶ RI Wilson Coefficient:
CRI
O (µL, p

2) = U(µL, µW ) CMS
O (µW ,MZ ) CMS→RI

O (µL, p
2) =

CRI
α + CRI

αs
+ α

4π

(
CRI
α,αs LL + CRI

α,αs NLL

)
▶ CRI

α and CRI
αs

are the resummed QED and leading QCD
contributions. Neglecting threshold corrections

CRI
α,αsLL

= − γ
(1)
O

2β
(5)

(0)

ln( αs (µL)
αs (µW ) ), C

RI
α,αsNLL

= αs (µL)
4π (Ces

O (−p2, µ2
L) + γ̄(5))

+αs (µW )
4π

(
C es
O (µW ,MZ )− γ̄(5)

)
, γ̄(Nf ) = 1

2β
(Nf )

0

(
γ
(1)
O

β
(Nf )

1

β
(Nf )

0

− γ
(2)
O

)

▶ Systematic inclusion of higher order corrections.
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RI-SMOM

▶ In the case of SMOM kinematics, the decomposition of the vertex
function Λb,µ(p1, p2) is more complicated

T(1)(p1, p2) = γµPL, T(2)(p1, p2) =
1

µ2 /p1p
µ
1 PL,

T(3)(p1, p2) =
1

µ2 /p1p
µ
2 PL, T(4)(p1, p2) =

1

µ2 /p2p
µ
1 PL,

T(5)(p1, p2) =
1

µ2 /p2p
µ
2 PL, T(6)(p1, p2) =

1

µ2
γµ

/p2/p1PL.

▶ Imposing the relations that follows the WI we get

PRI/SMOM = 1
4

(
− 1

2γ
νPR ⊗ γνPR + 1

p2 /p1PR ⊗ /p1PR

+ 1
p2 /p2PR ⊗ /p2PR − 1

p2 /p1PR ⊗ /p2PR − 1
p2 /p2PR ⊗ /p1PR

)
.
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RI-SMOM
RI-SMOM Wilson Coefficient:
CRI-SMOM
O (µL, p

2) =

U(µL, µW ) CMS
O (µW ,MZ ) CMS→RI-SMOM

O (µL, p
2) =

CRI-SMOM
α + α

4π

(
CRI-SMOM
α,αs LL + CRI-SMOM

α,αs NLL

)
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Figure: Scale dependence of CRI-SMOM
O (µL, p

2 = −9). The boundaries of the
light green shaded area are obtained with different values of the three-loops
operator’s anomalous dimension γ

(2)
O : γ

(2)
O =-100 (top) and γ

(2)
O =100 (bottom).

The dark green curve is obtained with γ
(2)
O = 0.
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