

Bottom to Charm Decays with Heavy-HISQ

Judd Harrison, University of Glasgow

UKLFT Annual Meeting - May 2022

Background

Many interesting $B_{(s,c)}$ semileptonic decays with recent results/currently under active investigation

- $ightharpoonup B_c o D_s \ell^+ \ell^- \text{ and } B_c o D \ell
 u^1$
- $ightharpoonup B_c o D_s^* \ell^+ \ell^-$
- \triangleright $B \rightarrow \pi, B \rightarrow K, B_s \rightarrow K$

¹2111.06782

- ▶ Here, focus on three related $b \to c$, pseudoscalar to vector decays: $B_{(s)} \to D_{(s)}^* \ell \nu$ and $B_c \to J/\psi \ell \nu$
 - General outline of the heavy-HISQ method, applied to form factor calculations.
 - Complementary determinations of V_{cb} ,
 - Comparison of observables sensitive to lepton flavor universality violation (LFUV) to experiment

Kinematic variables:

$$q^{2} = (p - p')^{2}$$

$$w = \frac{p' \cdot p}{M_{B_{q}} M_{D_{q}^{(*)}}}$$

$$z = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}}$$

$$B_{(s)} \rightarrow D_{(s)}^* \ell \nu$$
, $B_c \rightarrow J/\psi \ell \nu$

Pseudoscalar to vector decay has the following structure in the SM:

$$\frac{d\Gamma}{dq^2} = \chi(q^2) \times \mathcal{F}^2(q^2) |V_{cb}|^2$$

$$\mathcal{F}^{2}(q^{2}) = \left[\left(1 + \frac{m_{\ell}^{2}}{2q^{2}} \right) \left(H_{+}^{2}(q^{2}) + H_{-}^{2}(q^{2}) + H_{0}^{2}(q^{2}) \right) + \frac{3m_{\ell}^{2}}{2q^{2}} H_{t}^{2}(q^{2}) \right]$$

Helicity amplitudes expressed in terms of form factors

$$\{H_{+}(q^2), H_{-}(q^2), H_{0}(q^2)\} \leftrightarrow \{A_{1}(q^2), A_{2}(q^2), V(q^2)\}$$

 $H_{t}(q^2) \propto A_{0}(q^2)$

- ▶ Theoretical predictions for vector meson final state require:
 - 4 form factors within the Standard Model
 - 3 additional tensor form factor for New Physics

- $lacksquare{V_{cb}}$ compare experimental value of $\eta_{\mathrm{EW}}\mathcal{F}(q_{\mathrm{max}}^2)|V_{cb}|$ to lattice calculations of $\mathcal{F}(q_{\mathrm{max}}^2)$
 - preferred over $B_{(s)} o D_{(s)}$ due to favorable kinematics near zero-recoil.
 - Sensitive to choice of parameterisation scheme, preferable to compute using full kinematic range.
- $P(D^*) = \Gamma(B \to D^* \tau \bar{\nu}_\tau) / \Gamma(B \to D^* \mu \bar{\nu}_\mu)$
 - Sensitive to LFUV
 - Theory for $R(D^*)$ relies on experimental fits + HQET for A_0
 - On the lattice, typically use unphysically heavy pions and treat $D^*\to D\pi$ resonance using $\chi{\rm PT}$
- ▶ Lattice calculation of FFs for $B_c o J/\psi \ < \ B_s o D_s^* \ < \ B o D^*$
 - Computational cost of propagators for c < s << u/d
 - $-J/\psi$ and D_s^* are 'gold-plated'
 - $B o D^*$ requires careful treatment of chiral effects

Overview of Lattice Results

- ▶ SM FFs for $B \to D\ell\nu$ available away from zero recoil²
- ▶ SM FFs for $B_s \to D_s \ell \nu$ now available across the full kinematic range, tensor FF available close to zero-recoil, with work also ongoing³
- ▶ SM FFs for $B \to D^*\ell\nu$ recently became available from Fermilab-MILC away from zero-recoil⁴, with lattice calculations also underway by JLQCD as well as HPQCD.
- ▶ SM FFs for $B_s \to D_s^* \ell \nu$ and $B_c \to J/\psi \ell \nu$ available across full kinematic range from HPQCD⁵
- (Preliminary) SM FFs for $B \to D^* \ell \nu$ across full kinematic range from HPQCD

²e.g. 1503.07237,1505.03925

³1906.00701.1310.5238.2110.10061

^{42105.14019}

⁵2105.11433, 2007.06957

Current Results - $R(D^*)$

Current Results - V_{ch}

Current Results

	Lattice only	$Lattice {+} Exp^6$	Experiment	Tension
R(D)	$0.293(4)^7$	0.299(3)	0.340(30)	1.4σ
$R(D^*)$	0.265(13)	0.2483(13)	0.295(14)	3.3σ
$R(D_s)$	0.299(5)	_	_	_
$R(D_s^*)$	0.249(7)	_	_	_
$R(J/\psi)$	0.258(4)	_	$0.71(25)^8$	1.8σ

 $HFLAV\ average,\ Fermilab-MILC,\ HPQCD.$

	V_{cb}	
$B \to D$	$39.58(94)_{\mathrm{exp}}(37)_{\mathrm{th}} imes 10^{-3}$	HFLAV
$B o D^*$	$38.76(42)_{\rm exp}(55)_{\rm th} imes 10^{-3}$	
$B_s o D_s^{(*)}$	$42.3(1.2)_{\rm exp}(1.2)_{\rm th} imes 10^{-3}$	LHCb (2001.03225)
$B \to X_c \ell \nu$	$42.16(51) imes 10^{-3}$	Bordone et al.(2107.00604)

⁶Assumes new physics only possible in semitauonic mode

⁷FLAG review

⁸LHCb-1711.05623

Experimental Outlook

- ▶ Need precise SM form factors across full kinematic range
 - Resolve discrepancy between inclusive and exclusive determinations of V_{cb}
 - Make first principles predictions for $R(D_{(s)}^*)$ independent of experimental measurements
- ▶ Need tensor form factors to disentangle possible new physics effects

$b \rightarrow c$ Pseudoscalar to Vector Form Factors

In the standard model $\mathcal{F}(q^2)$ is a simple function of the form factors, $A_1(q^2)$, $A_0(q^2)$, $A_2(q^2)$ and $V(q^2)$, defined in terms of matrix elements. For example, for $B_s \to D_s^* \ell \nu$:

$$\begin{split} \langle D_{s}^{*}(p',\lambda) | \bar{c} \gamma^{\mu} b | B_{s}^{0}(p) \rangle &= \frac{2i V(q^{2})}{M_{B_{s}} + M_{D_{s}^{*}}} \varepsilon^{\mu\nu\rho\sigma} \epsilon_{\nu}^{*}(p',\lambda) p'_{\rho} p_{\sigma} \\ \langle D_{s}^{*}(p',\lambda) | \bar{c} \gamma^{\mu} \gamma^{5} b | B_{s}^{0}(p) \rangle &= 2 M_{D_{s}^{*}} A_{0}(q^{2}) \frac{\epsilon^{*}(p',\lambda) \cdot q}{q^{2}} q^{\mu} \\ &+ (M_{B_{s}} + M_{D_{s}^{*}}) A_{1}(q^{2}) \Big[\epsilon^{*\mu}(p',\lambda) - \frac{\epsilon^{*}(p',\lambda) \cdot q}{q^{2}} q^{\mu} \Big] \\ &- A_{2}(q^{2}) \frac{\epsilon^{*}(p',\lambda) \cdot q}{M_{B_{s}} + M_{D_{s}^{*}}} \Big[p^{\mu} + p'^{\mu} - \frac{M_{B_{s}}^{2} - M_{D_{s}^{*}}^{2}}{q^{2}} q^{\mu} \Big] \end{split}$$

Form Factors Across the Full q^2 Range with Lattice QCD¹⁰

Use "Heavy-HISQ" approach:

- ► Compute form factors using multiple heavy masses ranging up to close to the physical b-quark mass
- ► Use **H**ighly **I**mproved **S**taggered **Q**uark action⁹ for all quarks fully relativistic, small discretisation effects
- Nonperturbatively renormalised currents, using PCVC and PCAC relations for vector and axial-vector, RI-SMOM for tensor
- ► Fit the form factor data including am_h discretisation effects, physical heavy mass dependence, and lattice spacing dependence
 - For $B_s o D_s^*$ and $B_c o J/\psi$ first convert to z space, e.g.

$$P(q^2) \times A_1(q^2) = \sum_{n=0}^{3} a_n z^n (q^2) \mathcal{N}_n$$

$$a_n = \sum_{j,k,l=0}^{3} b_n^{jkl} \left(\frac{2\Lambda_{\text{QCD}}}{M_{\eta_h}} \right)^j \left(\frac{am_c^{\text{val}}}{\pi} \right)^{2k} \left(\frac{am_h^{\text{val}}}{\pi} \right)^{2l}$$

⁹hep-lat/0610092

 $^{^{10}}B_s \rightarrow D_s^*:2105.11433, B_c \rightarrow J/\psi:2007.06957$

We use the second generation MILC HISQ gauge configurations with u/d, s and c quarks in the sea.

► The subset of configurations we use include physical u/d quark masses, and have small lattice spacings allowing us to come very close to the physical b mass.

 $P(q^2) \times A_1$ for $B_c \to J/\psi$, plotted in z space, showing the physical continuuum form factor as a blue band

$B_c \to J/\psi$ Results - 2007.06956, 2007.06957

$$R(J/\psi) = 0.2582(38)$$

 $\Gamma(B_c^- \to J/\psi \mu^- \bar{\nu}_\mu)/\eta_{\rm EW}^2 |V_{cb}|^2 = 1.73(12) \times 10^{13} s^{-1}$

- ▶ Experimental results for $B_c \to J/\psi$ are currently much less precise than our lattice results, but expect this to improve in future.
- In addition to $R(J/\psi)$, other observables and ratios may be constructed with high precision from our form factor results
 - Can study the effect of NP couplings full details in 2007.06956

$B_s \rightarrow D_s^*$ Results - 2105.11433

$$\begin{split} R(D_s^*) &= 0.249(6)_{\rm latt}(4)_{\rm EM} \\ \Gamma(B_s^0 \to D_s^{*-} \mu^+ \nu_\mu)/\eta_{\rm EW}^2 |V_{cb}|^2 &= 2.06(16) \times 10^{13} s^{-1} \end{split}$$

$$R(D_s^*), V_{cb}...$$

Many new lattice predictions for $B_s \to D_s^*$ quantities:

	This work	Exp. ¹¹	$B o D^{*}$ 12
$\frac{\Gamma(B_s^0{ o}D_s^-\mu^+ u_\mu)}{\Gamma(B_s^0{ o}D_s^{*-}\mu^+ u_\mu)}$	0.443(40)	0.464(45)	0.457(23)
$R(D_{(s)}^*)$	0.249(7)	_	0.2483(13)
$F_L^{(')}$	0.440(16)	_	0.464(10)
$\mathcal{A}_{\lambda_{ au}} = -P_{ au}$	0.520(12)	_	0.496(15)

Can also infer a total experimental rate Γ from LHCb analysis of V_{cb} in 2001.03225, we can use this with our results to give a value of V_{cb}

$$|V_{cb}| = 42.2(2.3) \times 10^{-3}$$

▶ Consistent with the result using lattice data only at zero-recoil.

¹¹LHCb 2001.03225

¹²HFLAV 1909.12524, Bordone et. al 1908.09398

$B_s \to D_s^*$ Shape

We can compare the binned experimental differential rate ^13 for the $B_s \to D_s^*$ shape to our results

 $\chi^2/\mathrm{dof} = 1.8$ (0.62 excluding third bin)

¹³LHCb:2003.08453

$B_s \to D_s^*$ Shape Parameters

In the CLN parameterisation, the shape of the decay for massive leptons in the SM is fully described by the four parameters ρ^2 , $R_1(1)$, $R_2(1)$ and $R_0(1)$, with ρ^2 , $R_1(1)$, $R_2(1)$ determined from experiment and $R_0(1)$ known to NLO in HQET¹⁴

Our results are broadly consistent with the measured values of ρ^2 , $R_1(1)$ and $R_2(1)$ for $B_s \to D_s^*$, and with the NLO HQET value of $R_0(1)$

¹⁴LHCb:2001.03225+2003.08453, HFLAV:1909.12524, HQET:1703.05330

Preliminary results for $B \rightarrow D^*$

For $B \to D^*$, use HQET form factors:

$$\begin{split} &\frac{\langle D^*(p',\lambda)|\bar{c}\gamma^{\mu}b|B(p)\rangle}{\sqrt{M_BM_{D^*}}} = h_V(w)\varepsilon^{\mu\nu}_{\rho\sigma}\epsilon^*_{\nu}(v_{D^*},\lambda)v^{\rho}_{D^*}v^{\sigma}_{B}\\ &\frac{\langle D^*(p',\lambda)|\bar{c}\gamma^{\mu}\gamma^5b|B(p)\rangle}{\sqrt{M_BM_{D^*}}}\\ &= i\epsilon^*_{\nu}\left[g^{\mu\nu}(w+1)h_{A_1}(w) - v^{\nu}_{B}\left(v^{\mu}_{B}h_{A_2}(w) + v^{\mu}_{D^*}h_{A_3}(w)\right)\right] \end{split}$$

Computation completed on $a=0.045 {\rm fm}$, $a=0.06 {\rm fm}$ and $a=0.09 {\rm fm}$ $m_I=m_s/5$ lattices and $a=0.09 {\rm fm}$ physical m_I lattices. In the process of generating correlation functions on $a=0.06 {\rm fm}$ physical m_I lattices. Fit form factors to HQET inspired form, including chiral terms:

$$egin{aligned} F &= \sum_{nijk} a_{ijk}^n (w-1)^n \left(rac{am_c}{\pi}
ight)^i \left(rac{am_h}{\pi}
ight)^j \left(rac{\Lambda_{
m QCD}}{M_B}
ight)^k \mathcal{N}_n \ &+ X_{
m log}(M_\pi/\Lambda_\chi) + A \left(rac{M_\pi}{\Lambda_\chi}
ight)^2 \end{aligned}$$

Preliminary results for $B \to D^*$

We include data from $B_s \to D_s^*$ in our chiral extrapolation.

Preliminary results for $B \to D^*$

Preliminary results for $B \to D^*$

Joint fit to HPQCD lattice and Belle untagged data - $\chi^2/\mathrm{dof} = 1.6$

$$V_{cb} = 39.3(0.7)_{\text{latt}}(0.5)_{\text{exp}} \times 10^{-3}$$
 (PRELIMINARY)

Comparison to Fermilab-MILC (2105.14019)

Comparison to Fermilab-MILC (2105.14019)

Future Work

- **E**xtend to unstable final states, $B_s \to \phi$, $B \to K^*$
- ▶ Extend to baryonic decays, $\Lambda_b \to \Lambda_c$
 - 6 SM FFs, 4 additional tensor FFs
 - Complementary determination of V_{cb}
 - $-R(\Lambda_c)$

Summary

- ▶ Published lattice results for $B_c \to J/\psi$ form factors, corresponding experimental measurements are currently imprecise, but expected to improve.
- ▶ Results for the $B_s \to D_s^*$ form factors on arXiv.
 - Model independent determinations of $R(D_s^*)$ and other observables
 - Model independent determination of $|V_{cb}|$, though ideally would use experimental results directly
- ▶ Work on $B \to D^*$ form factors almost complete, including tensor FFs and update to $B_c \to J/\psi$ and $B_s \to D_s^*$ to include tensor FFs
 - Preliminary value of V_{cb} consistent with existing exclusive determinations
 - Preliminary lattice only determination of $R(D^*)$ higher than lattice+experiment

Thanks for listening!