Non-Perturbative Renormalisation with Interpolating Momentum schemes

Nicolas Garron (Liverpool Hope University) In collaboration with Caroline Cahill, Martin Gorbahn, John Gracey, Paul Rakow (University of Liverpool)

> UKLFT Annual Meeting 26/27 May 2022

In collaboration with

- Caroline Cahill, Martin Gorbahn, John Gracey, Paul Rakow (Liverpool)
- Thanks to RBC-UKQCD collaborations, in particular Tobias Tsang (Southern Danemark)
- Thanks to Holger Perlt (Leipzig) and QCDSF
- Thanks to CalLat (Henry Jose Monge Camacho, Amy Nicholson, André Walker-Loud)

Proceedings and preprint (submitted to PRD)

- https://arxiv.org/abs/2202.04394
- https://arxiv.org/abs/2112.11140

The RBC & UKQCD collaborations

UC Berkeley/LBNL

Aaron Meyer

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

CERN

Andreas Jüttner (Southampton)

Columbia University

Norman Christ Duo Guo Yikai Huo Yong-Chull Jang Joseph Karpie Bob Mawhinney Ahmed Sheta Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum Luchang Jin (RBRC) Michael Riberdy Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Tim Harris Raoul Hodgson Nelson Lachini Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

<u>KEK</u> Julien Frison

<u>Liverpool Hope / UoL</u> Nicolas Garron

<u>Michigan State University</u> Dan Hoying <u>Milano Bicocca</u> Mattia Bruno

<u>Peking University</u> Xu Feng

University of Regensburg

Davide Giusti Christoph Lehner (BNL)

University of Siegen

Matthew Black Oliver Witzel

University of Southampton

Nils Asmussen Alessandro Barone Jonathan Flynn Ryan Hill Rajnandini Mukherjee Chris Sachrajda

<u>University of Southern</u> <u>Denmark</u> Tobias Tsang

<u>Stony Brook University</u> Jun-Sik Yoo Sergey Syritsyn (RBRC)

On the importance of the renormalisation scheme

based on RBC-UKQCD 2010-now

. . [NG Hudspith Lytle'16] , [Boyle NG Hudspith Lehner Lytle '17] [...Kettle, Khamseh, Tsang 17-19]

Four-fermion operators

Let us consider the four-quark operators that occur for example in BSM neutral $\langle \bar{K}^0 | {\cal O}^{\Delta F=2} | {\cal K}^0 \rangle$

Similar matrix elements in the heavy physics contribution to neutrinoless double beta decay (in the $\pi^- \rightarrow \pi^+$ transitions)

[Nicholson, Berkowitz, Monge-Camacho, Brantley, NG, Chang, Rinaldi, Clark, Joo, Kurth, Tiburzi, Vranas, Walker-Loud '18]

Four-fermion operators

(27,1)
$$O_1^{\Delta S=2} = \gamma_\mu \times \gamma_\mu + \gamma_\mu \gamma_5 \times \gamma_\mu \gamma_5$$

So the renormalisation matrix has the form

$$\mathcal{Z}^{\Delta S=2} = \begin{pmatrix} \mathcal{Z}_{11} & & & \\ & \mathcal{Z}_{22} & \mathcal{Z}_{23} & \\ & \mathcal{Z}_{32} & \mathcal{Z}_{33} & \\ & & & \mathcal{Z}_{44} & \mathcal{Z}_{45} \\ & & & \mathcal{Z}_{54} & \mathcal{Z}_{55} \end{pmatrix}$$

BSM kaon mixing - Results

BSM kaon mixing - Results

BSM kaon mixing - Results

Another example Z_A/Z_V

[C Chang, A Nicholson, E Rinaldi, E Berkowitz, N G, D Brantley, H Monge-Camacho, C Monahan, C Bouchard, M Clark, B Joó, T Kurth, K Orginos, P Vranas, A Walker-Loud, Nature 558 (2018)]

Non Perturbative Renormalisation (NPR)

Reminders - general strategy

We use Lattice QCD to compute the non-perturbative effects of the strong interaction in well-defined manner.

- We use Lattice QCD to compute the non-perturbative effects of the strong interaction in well-defined manner.
- As usual for a renormalisable QFT, in order to make some predicition we have to regularise and renormalise the theory.
- Inverse lattice spacing *a* plays the role of the UV regulator.

- We use Lattice QCD to compute the non-perturbative effects of the strong interaction in well-defined manner.
- As usual for a renormalisable QFT, in order to make some predicition we have to regularise and renormalise the theory.
- Inverse lattice spacing *a* plays the role of the UV regulator.
- Have to remove the UV divergences before taking the continuum limit $a \longrightarrow 0$.

Reminders - general strategy

1 First step: remove the divergences

For a generic composite operator $Q^{bare}(a)$ which renormalises multiplicatively, determine the Z-factor such that

$$Q^{\text{scheme}}(\mu, a) = Z^{\text{scheme}}(\mu, a)Q^{\text{bare}}(a)$$

has well-defined continuum limit.

This step can be done non-perturbatively.

2 Second step: match to phenomenology (e.g. $\overline{\rm MS}$), This step has to be done in (continuum) perturbation theory .

 $Q_i^{scheme}(\mu,0) \longrightarrow Q^{\overline{\mathrm{MS}}}(\mu) = (1 + r_1\alpha_5(\mu) + r_2\alpha_5^2(\mu) + \ldots)Q^{scheme}(\mu,0)$

Non-Perturbative Renormalisation (NPR)

There are two popular methods for the non-perturbative determination of the $Z\mbox{-}{\rm factors}$

- Schrödinger Functional (SF)
- Rome-Southampton: RI/MOM, RI/MOM', RI/SMOM, RI/mSMOM,

Here I am talking about extensions of the latter.

The Rome Southampon method [Martinelli et al '95]

Original setup [Martinelli et al '95].

Consider for example a quark bilinear build from quark propagators.

The Rome Southampon method [Martinelli et al '95]

Original setup [Martinelli et al '95].

Consider for example a quark bilinear build from quark propagators.

- Off-shell: Send $m_q \rightarrow 0$ (chiral limit) and the renormalisation scale is given by some momentum $\mu = \sqrt{p^2}$.
- Gauge fixed (Landau).

Prescription: one requires some amputated Green function(s) to be finite.

The Rome Southampon method [Martinelli et al '95]

Original setup [Martinelli et al '95].

Consider for example a quark bilinear build from quark propagators.

- Off-shell: Send $m_q \rightarrow 0$ (chiral limit) and the renormalisation scale is given by some momentum $\mu = \sqrt{p^2}$.
- Gauge fixed (Landau).

Prescription: one requires some amputated Green function(s) to be finite.

Several extensions and improvement, most notably

- Non-exceptional kinematics (SMOM) [RBC, RBC-UKQCD, Sturm et al., Lehner and Sturm, Almeida and Sturm, Gorbahn and Jäger, Gracey, ...]
- Momentum sources (QCDSF)
- Twisted boundary conditions [many references !]
- Massive momentum scheme [Boyle, Del Debbio and Khamseh, 2016]
- Step scaling [Alpha, RBC-UKQCD, ...]

Example: quark bilinear

Consider a quark bilinear $O_{\Gamma} = \bar{\psi}_2 \Gamma \psi_1$, where $\Gamma = \mathbb{1}, \gamma_{\mu}, \sigma_{\mu\nu}, \gamma_{\mu}\gamma_5, \gamma_5$ Define

 $\mathsf{\Pi}(x_2,x_1) = \langle \psi_2(x_2) \mathcal{O}_{\mathsf{\Gamma}}(0) \bar{\psi}_1(x_1) \rangle = \langle \mathcal{G}_2(x_2,0) \mathsf{\Gamma} \mathcal{G}_1(0,x_1) \rangle$

In Fourier space $G(p) = \sum_{x} G(x, 0)e^{ip.x}$ and $G(-p) = \gamma_5 G(p)^{\dagger}\gamma_5$ $V(p_2, p_1) = \langle G_2(-p_2)\Gamma G_1(p_1)^{\dagger}) \rangle$

Example: quark bilinear

Consider a quark bilinear $O_{\Gamma} = \bar{\psi}_2 \Gamma \psi_1$, where $\Gamma = \mathbb{1}, \gamma_{\mu}, \sigma_{\mu\nu}, \gamma_{\mu}\gamma_5, \gamma_5$ Define

 $\Pi(x_2,x_1) = \langle \psi_2(x_2) \mathcal{O}_{\Gamma}(0) \overline{\psi}_1(x_1) \rangle = \langle \mathcal{G}_2(x_2,0) \Gamma \mathcal{G}_1(0,x_1) \rangle$

In Fourier space $G(p) = \sum_{x} G(x, 0)e^{ip.x}$ and $G(-p) = \gamma_5 G(p)^{\dagger}\gamma_5$ $V(p_2, p_1) = \langle G_2(-p_2)\Gamma G_1(p_1)^{\dagger}) \rangle$

Amputated Green function

 $\Pi(p_2,p_1) = \langle G_2(p_2)^{-1} \rangle \langle G_2(p_2) \Gamma G_1(p_1)^{\dagger} \rangle \rangle \langle (G_2(p_1)^{\dagger^{-1}}) \rangle$

Example: quark bilinear

Consider a quark bilinear $O_{\Gamma} = \bar{\psi}_2 \Gamma \psi_1$, where $\Gamma = \mathbb{1}, \gamma_{\mu}, \sigma_{\mu\nu}, \gamma_{\mu}\gamma_5, \gamma_5$ Define

 $\mathsf{\Pi}(x_2,x_1) = \langle \psi_2(x_2) \mathcal{O}_{\mathsf{\Gamma}}(0) \bar{\psi}_1(x_1) \rangle = \langle \mathcal{G}_2(x_2,0) \mathsf{\Gamma} \mathcal{G}_1(0,x_1) \rangle$

In Fourier space $G(p) = \sum_{x} G(x, 0)e^{ip.x}$ and $G(-p) = \gamma_5 G(p)^{\dagger}\gamma_5$ $V(p_2, p_1) = \langle G_2(-p_2)\Gamma G_1(p_1)^{\dagger}) \rangle$

Amputated Green function

$$\Pi(p_2, p_1) = \langle G_2(p_2)^{-1} \rangle \langle G_2(p_2) \Gamma G_1(p_1)^{\dagger} \rangle \rangle \langle (G_2(p_1)^{\dagger^{-1}}) \rangle$$

Rome Southampton original scheme (RI/MOM), $p_1 = p_2 = p$ and $\mu = \sqrt{p^2}$

$$\frac{Z_{\Gamma}}{Z_{q}}(\mu, a) \times \lim_{m \to 0} \operatorname{Tr}(\Gamma \Pi(p, p))_{\mu^{2} = p^{2}} = \operatorname{Tree}$$

Rome-Southampton windows

Ideally, in order to keep the discretisation effects under control $_{\rm [G.\ Martinelli\ et\ al\ 94]}$ $\mu \ll 1/a$

and to apply perturbation theory

 $\Lambda_{\rm QCD} \ll \mu$

In practice, might be tight if $1/a \sim 2 \,\mathrm{GeV}$

Rome-Southampton windows

Imagine you have computed the hadronic matrix elements on a coarse lattice

 $1/a_{coarse} \sim 1.4\,{\rm GeV}$

and want the renormalised answer at a scale of $\mu \sim 3\,{
m GeV}$

Rome-Southampton windows

Imagine you have computed the hadronic matrix elements on a coarse lattice

 $1/a_{coarse} \sim 1.4\,{\rm GeV}$

and want the renormalised answer at a scale of $\mu \sim 3\,{
m GeV}$

Improvement inspired by step-scaling methods à la [Alpha collaboration]

$$Z(a_{coarse},\mu) = \lim_{a_{fine} \to 0} \left\{ Z(a_{fine},\mu) Z^{-1}(a_{fine},\mu_0) \right\} \times Z(a_{coarse},\mu_0)$$

Where

• μ_0 is a lower scale, eg $\mu_0 \sim 1 \, {
m GeV}$

• the running is computed on finer lattices and extrapolated to the continuum

[Arthur and Boyle '10], [Arthur, Boyle, N.G., Kellu, Lytle '11]

Crucial for example in the computation of $K \to \pi\pi$ decays [RBC-UKQCD '11-']

RI/MOM vs RI/SMOM

Kinematics

■ In the original RI/MOM setup, $p_1 = p_2 \Rightarrow q = 0$ and $\mu = \sqrt{p_1^2}$. Lead to IR poles, for example in $1/\mu^2$

Kinematics

In the original RI/MOM setup, p₁ = p₂ ⇒ q = 0 and μ = √p₁². Lead to IR poles, for example in 1/μ²
 In RI/SMOM we have

$$p_1 \neq p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2 = (p_1 - p_2)^2$

Improved IR behaviour [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, ...]

Pole subtraction

- \blacksquare The Green functions might suffer from IR poles, $\sim 1/p^2,$ or $\sim 1/m_\pi^2$ which can pollute the signal
- In principle these poles are suppressed at high μ but they appear to be quite important at $\mu\sim$ 3 GeV for some quantities which allow for pion exchanges
- The traditional way is to "subtract " these contamination by hand

Pole subtraction

- \blacksquare The Green functions might suffer from IR poles, $\sim 1/p^2,$ or $\sim 1/m_\pi^2$ which can pollute the signal
- In principle these poles are suppressed at high μ but they appear to be quite important at $\mu\sim$ 3 GeV for some quantities which allow for pion exchanges
- The traditional way is to "subtract " these contamination by hand
- However these contaminations are highly suppressed in a SMOM scheme, with non-exceptional kinematics
- We argue that this pion pole subtractions is not-well under control and that schemes with exceptional kinematics should be discarded

Pole subtraction (I)

Pole subtraction (I)

In [Boyle, NG, Hudspith, Lehner, Lytle, '17 (1708.03552)] we did a careful study and argued that the disagreement observed between different computations is due to the renormalisation procedure. We argued that the pole-subtraction procedure is prone to systematic errors.

SMOM and IMOM

More MOM schemes

Renormalisation scale is μ , given by the choice of kinematics

Original RI-MOM scheme

$$p_1 = p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2$

But this lead to "exceptional kinematics' and bad IR poles

More MOM schemes

Renormalisation scale is μ , given by the choice of kinematics

Original RI-MOM scheme

$$p_1 = p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2$

But this lead to "exceptional kinematics' and bad IR poles

then RI-SMOM scheme

$$p_1 \neq p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2 = (p_1 - p_2)^2$

Much better IR behaviour [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, ...]
More MOM schemes

Renormalisation scale is μ , given by the choice of kinematics

Original RI-MOM scheme

 $p_1=p_2$ and $\mu^2\equiv p_1^2=p_2^2$

But this lead to "exceptional kinematics' and bad IR poles

then RI-SMOM scheme

$$p_1 \neq p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2 = (p_1 - p_2)^2$

Much better IR behaviour [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, ...]

■ We are now studying a generalisation (see also [Bell and Gracey, Perlt])

$$p_1
eq p_2$$
 and $\mu^2\equiv p_1^2=p_2^2, \quad (p_1-p_2)^2=\omega\mu^2$ where $\omega\in[0,4]$

Note that $\omega = 0 \leftrightarrow {\it RI}/{\it MOM}$ and $\omega = 1 \leftrightarrow {\it RI}/{\it SMOM}$

IMOM schemes

 $\omega = 2(1 - \cos \alpha)$

Implementation (1)

We want to achieve p_1^2

$$p_1^2 = p_2^2 \equiv \mu^2 \,, \quad q^2 = (p_1 - p_2)^2 = \omega \mu^2 \,,$$

Implementation (1)

We want to achieve $p_1^2 = p_2^2 \equiv \mu^2$, $q^2 = (p_1 - p_2)^2 = \omega \mu^2$, One possibility, for example [QCDFF17]

$$p_1 = \frac{2\pi}{L} (m, m, m, m)$$
, $p_2 = \frac{2\pi}{L} (-m, -m, -m, m)$

$$\Rightarrow q = \frac{2\pi}{L}(2m, 2m, 2m, 0)$$

gives

$$\mu^2 = \left(\frac{2\pi}{L}\right)^2 4m^2$$
, and $q^2 = 3\mu^2$

Implementation (1)

We want to achieve $p_1^2 = p_2^2 \equiv \mu^2$, $q^2 = (p_1 - p_2)^2 = \omega \mu^2$, One possibility, for example [QCDFF17]

$$p_1 = \frac{2\pi}{L} (m, m, m, m) , \quad p_2 = \frac{2\pi}{L} (-m, -m, -m, m)$$

$$\Rightarrow q = \frac{2\pi}{L}(2m, 2m, 2m, 0)$$

gives

$$\mu^2 = \left(rac{2\pi}{L}
ight)^2 4m^2$$
 , and $q^2 = 3\mu^2$

The number of - signs in p_2 gives the value of $\omega = 0, 1, \ldots, 4$.

Implementation (2)

Another possibility is to take advantage of twisted boundary conditions, say take

$$p_1 = \frac{2\pi}{L}(l,0,0,0)$$
 $p_2 = \frac{2\pi}{L}(m,n,0,0)$

$$\Rightarrow q = \frac{2\pi}{L}(I-m,-n,0,0)$$

And for each pair of desired (μ, ω) , just need to solve

$$\mu = 2\pi/L$$

$$l^2 = m^2 + n^2$$

$$\omega l^2 = (l-m)^2 + n^2$$

Definitions

We call Λ_{Γ} the projected-amputated Green function, normalised by its tree value

For example
$$\Lambda_S = \frac{1}{12} \operatorname{Tr} (\Pi_S)$$
.

Definitions

We call Λ_{Γ} the projected-amputated Green function, normalised by its tree value

For example
$$\Lambda_S = \frac{1}{12} \operatorname{Tr} (\Pi_S)$$
.

We define $Z_m = 1/Z_S$ and compute the Z-factors for the scalar density

$$\left(rac{Z_{\mathcal{S}}}{Z_{q}}(\mu,\omega)
ight)^{\mathrm{IMOM}} imes(\Lambda_{\mathcal{S}})_{q^{2}=\omega\mu^{2}}=1$$

For Z_q we use the vector current

$$\left(rac{Z_V}{Z_q}(\mu,\omega)
ight)^{\mathrm{IMOM}-\gamma_\mu} imes \left(\Lambda_V^{(\gamma_\mu)}
ight)_{q^2=\omega\mu^2}=1$$

and

$$\left(\frac{Z_V}{Z_q}(\mu,\omega)\right)^{\mathrm{IMOM}-\not{q}} \times \left(\Lambda_V^{(\not{q})}\right)_{q^2=\omega\mu^2} = 1$$

Projectors

The difference between $\mathrm{IMOM}-\gamma_{\mu}$ and $\mathrm{IMOM}-{q\!\!\!/}$ lies in the projector

$$\begin{split} \Lambda_V^{(\gamma_\mu)} &= \frac{1}{48} \mathrm{Tr} \left(\gamma_\mu \Pi_{V^\mu} \right) \\ \Lambda_V^{(\not q)} &= \frac{q^\mu}{12q^2} \mathrm{Tr} \left(\not q \Pi_{V^\mu} \right) \end{split}$$

Ward-Takahashi identities (I)

In the continuum we have

$$\begin{array}{ll} q_{\mu}\Pi_{V^{\mu}}(p_{1},p_{2}) &=& -i(G^{-1}(p_{2})-G^{-1}(p_{1})) \ , \\ q_{\mu}\Pi_{A^{\mu}}(p_{1},p_{2}) &=& 2im\Pi_{P}(p_{1},p_{1})-i\left(\gamma_{5}G^{-1}(p_{2})+G^{-1}(p_{1})\gamma_{5}\right) \ , \end{array}$$

Ward-Takahashi identities (I)

In the continuum we have

$$\begin{array}{ll} q_{\mu}\Pi_{V^{\mu}}(p_{1},p_{2}) &=& -i(G^{-1}(p_{2})-G^{-1}(p_{1})) \ , \\ q_{\mu}\Pi_{A^{\mu}}(p_{1},p_{2}) &=& 2im\Pi_{P}(p_{1},p_{1})-i\left(\gamma_{5}G^{-1}(p_{2})+G^{-1}(p_{1})\gamma_{5}\right) \ , \end{array}$$

and using the decomposition

$$G^{-1}(p) = i p (1 + \Sigma^{V}) + m(1 + \Sigma^{S}),$$

Ward-Takahashi identities (I)

In the continuum we have

$$\begin{array}{ll} q_{\mu}\Pi_{V^{\mu}}(p_{1},p_{2}) &=& -i(G^{-1}(p_{2})-G^{-1}(p_{1})) \ , \\ q_{\mu}\Pi_{A^{\mu}}(p_{1},p_{2}) &=& 2im\Pi_{P}(p_{1},p_{1})-i\left(\gamma_{5}G^{-1}(p_{2})+G^{-1}(p_{1})\gamma_{5}\right) \ , \end{array}$$

and using the decomposition

$$G^{-1}(p) = i p (1 + \Sigma^{V}) + m(1 + \Sigma^{S}),$$

leads to

and therefore expect $Z_V^{(a)}$ to be ω -independent.

Ward-Takahashi identities (II)

The strategy might depend on the discretistation of the Dirac operator.

If chiral symmetry is explicitly broken, one can impose the VWI and use it as a renormalisation condition.

Ward-Takahashi identities (II)

The strategy might depend on the discretistation of the Dirac operator.

If chiral symmetry is explicitly broken, one can impose the VWI and use it as a renormalisation condition.

Here we employ Domain-Wall fermions with good chiral-flavour symmetry. We can therefore use the VWI as a consistency check of our strategy.

Numerical results

Simulation

We use RBC-UKQCD ensembes, IW, 2+1 Domain-Wall fermions We have two lattice spacings:

$$a^{-1} = 1.785(5) \text{ GeV} (24^3)$$
 (1)
 $a^{-1} = 2.383(9) \text{ GeV} (32^3),$ (2)

sea quark masses, am = 0.005, 0.010, 0.020 for the $24^3 \times 64 \times 16$ lattice and am = 0.004, 0.006, 0.008 for the $32^3 \times 64 \times 16$ lattice.

We take the chiral limit on each lattice spacing using the values

$$am_{res} = 0.003152(43)$$
 (24³), (3)
 $am_{res} = 0.0006664(76)$ (32³). (4)

Our values for Z_V are

$$Z_V = Z_A = 0.71651(46) \quad (24^3), \tag{5}$$

$$Z_V = Z_A = 0.74475(12) \quad (32^2). \tag{6}$$

Results

Non-perturbative scale evolution (running), taking the continuum limit

$$\sigma(\mu, \omega, \mu_0, \omega_0) = \lim_{a^2 \to 0} \frac{Z(\mu, \omega)}{Z(\mu_0, \omega_0)}$$

We have computed the perturbative prediction at NNLO, $U(\mu, \omega, \mu_0, \omega_0)$

In the next slides, I show some plots for the ratios

 $\frac{\sigma(\mu,\omega,\mu_0,\omega_0)}{U(\mu,\omega,\mu_0,\omega_0)}$

for fixed μ_0, ω_0 and various order in PT

Results for $Z_m^{(\gamma_\mu)}$

Nicolas Garron (Liverpool Hope University)

IMOM schemes

Results for $Z_m^{(q)}$

Nicolas Garron (Liverpool Hope University)

IMOM schemes

Results for $Z_m^{(\gamma_\mu)}$

Results for $Z_m^{(q)}$

Study of the systematic effects

- Chiral symmetry breaking effects
- Vector Ward Identity
- Disctretisation effects

Results for Z_V/V_A

Results for Z_V/V_A

Results for $(\Lambda_S - \Lambda_P)/\Lambda_V$

Results for $(\Lambda_S - \Lambda_P)/\Lambda_V$

Results for $\sigma_q^{({\not\!\!q})}$

Results for $\sigma_q^{({\not\!\!q})}$

Results for $\sigma_q^{({\not\!\!q})}$

Results for $\sigma_q^{(q)}$ vs lattice spacing

Results for $\sigma_q^{(q)}$ vs lattice spacing

- Proof of concept, first simulation of $\omega \neq 0, 1$
- Computation of Z_m , Z_q and non-perturbative running
- \blacksquare Perturbative matching factor to $\overline{\mathrm{MS}}$ at NNLO

- \blacksquare Proof of concept, first simulation of $\omega \neq 0,1$
- Computation of Z_m , Z_q and non-perturbative running
- \blacksquare Perturbative matching factor to $\overline{\mathrm{MS}}$ at NNLO
- $\blacksquare \ \omega > 1$ has the potential to reduce some systematic errors
 - Chiral symmetry breaking, eg $Z_S Z_P$
 - Discretisation effects, eg Z_q

- \blacksquare Proof of concept, first simulation of $\omega \neq 0,1$
- Computation of Z_m , Z_q and non-perturbative running
- \blacksquare Perturbative matching factor to $\overline{\mathrm{MS}}$ at NNLO
- $\blacksquare \ \omega > 1$ has the potential to reduce some systematic errors
 - Chiral symmetry breaking, eg $Z_S Z_P$
 - Discretisation effects, eg Z_q
- Further studies
 - Third lattice spacing
 - Four-quark operators

...

- \blacksquare Proof of concept, first simulation of $\omega \neq 0,1$
- Computation of Z_m , Z_q and non-perturbative running
- \blacksquare Perturbative matching factor to $\overline{\mathrm{MS}}$ at NNLO
- $\blacksquare \ \omega > 1$ has the potential to reduce some systematic errors
 - Chiral symmetry breaking, eg $Z_S Z_P$
 - Discretisation effects, eg Z_q
- Further studies
 - Third lattice spacing
 - Four-quark operators

...

Proceedings and preprint (submitted to PRD)

- https://arxiv.org/abs/2202.04394
- https://arxiv.org/abs/2112.11140

Backup

Results for $Z_q^{(\gamma_\mu)}$

Results for $Z_q^{(q)}$

Nicolas Garron (Liverpool Hope University)

IMOM schemes

What is going on for Z_q ?

Results for Z_q

Scheme	LO	NLO	NNLO	NNNLO	NP
$\overline{\mathrm{MS}}$	1.0	1.0048	1.0062	1.0064	
$\overline{\mathrm{MS}} \leftarrow \gamma_{\mu}$	1.0	1.0069	1.0078	N.A.	
$\overline{\mathrm{MS}} \leftarrow \phi$	1.0	1.0195	1.0175	1.0146	
γ_{μ}	1.0	1.0017	1.0020	N.A	1.0037(20)
¢	1.0	1.0048	1.0081	1.0113	1.0195(25)

Table: Running between 2 and 2.5 GeV for the quark wave function in \overline{MS} and in the SMOM schemes $\gamma_{\mu}(\omega = 1)$ and ϕ . In this case the running is known at NNNLO.

Results for Z_q

Scheme	NLO-LO	NNLO-NLO	NNNLO-NNLO	
MS	0.0048	0.0013	0.0003	
γ_{μ}	0.0017	0.0003		
ģ	0.0048	0.0033	0.0032	

Table: Study of the convergence of the perturbative series for running of the quark wave function between 2 and 2.5 GeV in \overline{MS} , SMOM- γ_{μ} and \not{q} .

Results for Z_m

Scheme	NLO-LO	NNLO-NLO	NNNLO-NNLO
MS	-0.0081	-0.0015	-0.0002
γ_{μ}	-0.0126	-0.0054	-0.0040
¢	-0.0096	-0.0026	-0.0017

Table: Study of the convergence of the perturbative series for running of the quark mass between 2 and 2.5 GeV in \overline{MS} , SMOM- γ_{μ} and ϕ .

Results for Z_m

Scheme	LO	NLO	NNLO	NNNLO	NP
$\overline{\mathrm{MS}}$	0.9537	0.9456	0.9441	0.9439	
$\overline{\mathrm{MS}} \leftarrow \gamma_{\mu}$	0.9537	0.9350	0.9389	0.9426	
$\overline{\mathrm{MS}} \leftarrow \phi$	0.9537	0.9451	0.9462	0.9475	
γ_{μ}	0.9537	0.9411	0.9357	0.9318	0.9307(62)
¢	0.9537	0.9441	0.9415	0.9400	0.9436(46)

Table: Running between 2 and 2.5 GeV for the quark mass.

Results for $Z_q^{(\gamma_\mu)}$

$\omega/\mu =$	1.0	1.5	2.5	3.0	3.5	4.0
0.5	0.972(8)	0.993(4)	1.008(4)	1.014(8)	1.023(14)	1.040(26)
1.0	0.976(8)	0.994(3)	1.004(2)	1.007(5)	1.012(8)	1.021(15)
1.5	0.978(4)	0.998(2)	1.003(1)	1.005(2)	1.006(3)	1.004(3)
2.0	0.990(7)	0.998(2)	1.003(0)	1.005(1)	1.007(1)	1.008(1)
2.5	0.987(5)	0.997(2)	1.001(1)	1.002(2)	1.002(3)	1.003(4)
3.0	0.985(4)	0.999(2)	1.000(2)	0.998(4)	0.993(9)	0.978(18)
3.5	0.989(5)	1.001(2)	0.997(2)	0.993(6)	0.982(13)	0.959(27)
4.0	0.990(5)	0.999(1)	0.994(3)	0.983(8)	0.957(22)	0.887(60)

Results for $Z_q^{(q)}$

$\omega/\mu =$	1.0	1.5	2.5	3.0	3.5	4.0
0.5	0.935(27)	0.974(7)	1.018(7)	1.035(16)	1.059(31)	1.096(56)
1.0	0.951(19)	0.978(6)	1.017(6)	1.035(14)	1.058(28)	1.096(51)
1.5	0.950(15)	0.973(4)	1.017(4)	1.037(11)	1.064(25)	1.106(49)
2.0	0.942(15)	0.976(3)	1.020(3)	1.040(8)	1.069(20)	1.118(45)
2.5	0.942(14)	0.974(3)	1.019(1)	1.039(3)	1.060(9)	1.087(20)
3.0	0.937(12)	0.978(4)	1.017(2)	1.033(2)	1.048(2)	1.060(2)
3.5	0.943(10)	0.979(3)	1.014(2)	1.027(3)	1.039(3)	1.050(2)
4.0	0.940(10)	0.975(4)	1.013(3)	1.027(8)	1.046(18)	1.084(40)