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L
The renormalization group
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Spin blocking transformation with a rescaling factor of b=2 and the majority rule

L

L’=L/2

The renormalization group
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L, ξ
L’=L/2, ξ’=ξ/2
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L, ξ, β
L’=L/2, ξ’=ξ/2, β’

The renormalization group
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This distance can be measured by defining the reduced inverse 
temperature for the original and the rescaled system:

Original Rescaled

The original and the rescaled systems have a different distance from the 
critical point.

Neural Networks as Physical Observables
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There is one inverse temperature where the original and the 
rescaled systems have the same correlation length: the inverse 

critical temperature β
c
=0.440687.

At the inverse critical temperature β
c
the correlation length diverges, it becomes infinite, 

and intensive observable quantities of the two systems will become equal.

The renormalization group

O’(βc)=O(βc)
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Can we devise an inverse renormalization group approach that can be 

applied for an arbitrary number of steps to iteratively increase the lattice 

size of the system?

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)

Inverse renormalization group
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Can we devise an inverse renormalization group approach that can be 

applied for an arbitrary number of steps to iteratively increase the lattice 

size of the system?

If yes, then we can obtain configurations of systems with larger lattice size 

without simulating them, hence evading the critical slowing down effect.

Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

In the inverse renormalization group new degrees of freedom will be 

introduced within the system.

IRG

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

+1

Original degree of freedom

Possible rescaled degrees of freedom

Inversion of a majority rule in the Ising model

+1 +1

+1 -1

-1 +1

+1 +1

-1 +1

+1 -1

-1 +1

+1 -1
…

Inverse Monte Carlo Renormalization Group Transformations for Critical Phenomena, D. Ron, R. Swendsen, A. Brandt, Phys. Rev. Lett. 89, 275701 (2002)

For the inverse renormalization group in the Ising model, see:
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Inverse renormalization group

Original degree of freedom

Possible rescaled degrees of freedom

Inversion of a summation in the φ4 model

0.01 0.36

0.02 0.01

…

0.40

-421.1 90.1

0.5 330.9

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

We can learn a set of transformations that can mimic the inversion of a 

standard renormalization group transformation.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

The benefit:
Once learned, we can apply this set of inverse transformations iteratively to 

arbitrarily increase the size of the system.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

The set of transformations can be applied iteratively to arbitrarily increase the lattice size:

However the increase in the lattice size will induce an analogous increase in the correlation 
length of the system:

What are the implications?

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

First, we verify that the standard MC renormalization group method works in the φ4 
theory:

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)

Then we invert the standard transformation that we verified as being successful. 
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Inverse renormalization group

Now, we start from a lattice size L0=32 in each dimension 
and apply the inverse transformations to obtain systems 

of lattice sizes L1=64, L2=128, L3=256, L4=512.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Can we now use the inverse renormalization group approach to calculate critical 
exponents?

The relations that govern the critical behaviour of the magnetization for an original 
(i) and a rescaled (j) system are

They can be equivalently expressed in terms of the correlation length as

where ν is the correlation length exponent

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

By dividing the magnetizations (or magnetic susceptibilities), taking the natural 
logarithm, and applying L'Hôpital's rule, we obtain

We can use the expressions above to calculate the critical exponents without ever 
experiencing a critical slowing down effect.

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)
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Inverse renormalization group

Ising universality class: γ/ν=1.75, β/ν=0.125.
Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)



Can we view machine learning as part of 

quantum field theory?

And why?

30

Quantum field-theoretic machine learning

Construction of quantum fields from Markoff fields, E. Nelson, J. Funct. Anal. 12, 97 (1973)

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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A probability distribution is a product of strictly positive and appropriately normalized factors (or 
potential functions) ψ:

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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A probability distribution is a product of strictly positive and appropriately normalized factors (or 
potential functions) ψ:

1. Factors are the fundamental building blocks of probability distributions. 

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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A probability distribution is a product of strictly positive and appropriately normalized factors (or 
potential functions) ψ:

1. Factors are the fundamental building blocks of probability distributions. 

2. By controlling the factors we are able to control the probability distribution.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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We require some form of representation to construct the probability distribution. We 
are going to use a finite set 𝛬 that we express as a graph 𝐺(𝛬,e) where e is the set of 

edges in 𝐺.

A clique c is a subset of 𝛬 where the points are pairwise connected. A maximal clique is 
a clique where we cannot add another point that is pairwise connected with all the 

points in the subset.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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On the square lattice a 
maximal clique is an edge.

On a triangular lattice a 
maximal clique is a triangle.

On the square lattice with 
both diagonals a maximal 

clique is a square.

On the bipartite graph, 
which represents standard 

neural network 
architectures a maximal 

clique is an edge.

Quantum field-theoretic machine learning
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Hammersley-Clifford theorem

A strictly positive distribution p satisfies the local Markov property of an 
undirected graph 𝐺:

if and only if p can be represented as a product of strictly positive potential 
functions ψc over 𝐺, one per maximal clique c, i.e.

where Z is the partition function and φ are all possible states of the system.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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The φ4  lattice field theory is, by definition, formulated on a square lattice which is 
equivalent to a graph 𝐺(𝛬,e). A non-unique choice of potential function per each 

maximal clique is:

The probability distribution is expressed as a product of strictly positive potential 
functions ψ, over each maximal clique:

The φ4 theory satisfies Markov properties and it is therefore a Markov random field.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Having established that certain physical systems are Markov random 

fields, how do we use them for machine learning?

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Having established that certain physical systems are Markov random 

fields, how do we use them for machine learning?

Exactly in the same way as any other machine learning algorithm...

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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The φ4 theory has a probability distribution p(φ;θ) with action S(φ;θ):

 We now consider a quantum field theory with action Α and a target probability 
distribution q(φ):

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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 We can then define an asymmetric distance between the probability distributions p(φ;θ) and 
q(φ), which is called the Kullback-Leibler divergence:

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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 We can then define an asymmetric distance between the probability distributions p(φ;θ) and 
q(φ), which is called the Kullback-Leibler divergence:

We want to minimize the Kullback-Leibler divergence.

By minimizing it we would make the two probability distributions equal. We can then use the 
probability distribution p(φ;θ) of the φ4 theory to draw samples from the target distribution 

q(φ) of action A.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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We substitute the two probability distributions in the Kullback-Leibler divergence to obtain:

There are two important observations on the above equation:
1. It sets a rigorous upper bound to the calculation of the free energy of the system with action A.
2. The bound is dependent entirely on samples drawn from the distribution p(φ;θ) of the φ4 theory.

Bogoliubov Inequality
<> denotes expectation value

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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We have conducted a variety of proof-of-principle applications to demonstrate that the 
inhomogeneous action

is able to represent more intricate actions, such as actions that include longer range 
interactions

See Ref.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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What if the target probability distribution q(φ) is unknown?

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Earlier we defined the Kullback-Leibler divergence as:

We will now consider the opposite divergence:

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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We are searching for the optimal values of the coupling constants in the φ4 action 
that are able to reproduce the data as configurations in the equilibrium 

distribution.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Case of an image:

We are searching for the optimal values of the coupling constants in the φ4 action 
that are able to reproduce the data as configurations in the equilibrium 

distribution.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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φ4 Markov random field φ4  neural network

Hidden layer

Visible layer

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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From the joint probability distribution of the φ4 neural network

We are able to marginalize out variables and derive marginal probability distributions 
p(φ;θ) and p(h;θ):  

Hidden layer

Visible layer

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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We now want to minimize the asymmetric distance between the empirical probability 
distribution q(φ) and the marginal probability distribution p(φ;θ):

In other words, we want to reproduce the dataset in the visible layer. The hidden 
layer will then uncover dependencies on the data.

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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Hidden layer

Visible layer

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).



53

Hidden layer

Visible layer

Examples of the coupling constants wij with j fixed

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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The φ4 neural network:

 is a generalization of other neural network architectures:

Gaussian-Gaussian 
restricted Boltzmann 

machine:

bi=nj=0

Gaussian-Bernoulli 
restricted Boltzmann 

machine:

bi=nj=mj=0
hj binary

Bernoulli-Bernoulli 
restricted Boltzmann 

machine:

bi=nj=mj=ai=0
φι,hj binary

φ4-Bernoulli restricted 
Boltzmann machine:

mj=nj=0
hj binary

φ4 equivalence with the Ising model (under an appropriate limit)

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).



Summary
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1) Inverse renormalization group with machine learning:

a) How to generate configurations of systems with larger lattice size without having to simulate 

these systems and without critical slowing down effect.

b) How do inverse renormalization group flows emerge.

c) How to calculate multiple critical exponents with the inverse renormalization group.

2) Quantum field-theoretic machine learning:

a) How to derive machine learning algorithms and neural networks from quantum field theories

Thank you for your attention!
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No. 813942



56

Inverse renormalization group

Inverse Renormalization Group in Quantum Field Theory, D. Bachtis, G. Aarts, F. Di Renzo, B. Lucini,  Phys. Rev. Lett. 128, 081603 (2022)

*
w11 w12

w21 w22

Example
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Learning

A first proof-of-principle demonstration is to use the inhomogeneous action S:

to learn a homogeneous action A:
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Learning

to learn an action that includes longer-range interactions:

Another proof-of-principle demonstration is to use the inhomogeneous action S:
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Three reweighting (simultaneous) steps: Make the (already trained) inhomogeneous action S:

g’

g’

Equal to the target action A (acts as a correction step):

Extrapolate in the parameter space along the trajectory of a coupling constant g’ of A

Extrapolate to an imaginary term

Learning
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Learning

The results include reweighting to a complex-valued coupling constant on the mass term and extrapolations in parameter space 
along the trajectory of the coupling constant g4 in the longer-range interaction.

g’
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To minimize the variational free energy we implement a gradient-based approach:

We then update the coupling constants θ at each step t until convergence.

After training we expect that, practically:

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).


