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POETS : What is was it?

• EPSRC £5M Programme Grant

– Running 2016 till 2022

• Four university partners:

– Cambridge

– Imperial

– Newcastle

– Southampton
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POETS : The big idea

“Create a new framework for developing and executing event-triggered applications 
using asynchronous algorithms in distributed hardware”

   Event-triggered = millions of shared-nothing threads sending tiny messages

• Research challenges:

– Applications: what should event-first algorithms look like?

– Languages: what language do we use?

– Compilation: how do we describe and compile such applications?

– Hardware: what does this distributed hardware look like?
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POETS : What we achieved over six years

• Applications: portfolio of asynchronous event-based applications

– Flagship is “Dissipative Particle Dynamics (DPD)”

– Allowed us to provide large speed-up for published computational chemistry research

• Compilers: multiple compilers and simulators for one language

– Performs place and route for applications with 1M+ logical threads

– Includes run-time management for input and output

• Architecture: bespoke CPU architecture and network called “Tinsel”

– Custom RISC-V architecture with deeply embedded routed network

– Supports 50K hardware threads in a low-latency communication mesh
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ETC: Event Triggered Computing

• Applications are split into devices
– “device” = finite state machine

• Device state is a tiny part of the global state

• Devices interact through event handlers:
– Receive: a message m is sent to device d

d’ = receive_handler( d, m )

– Send: device d sends a message m

 (d’,m) = send_handler( d )

State changes only occur on send or receive

All state changes are atomic

Hardware schedules both sends and receives
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ETC: Inversion of control

class MyDevice
{
  int state;

  void run()
  {
    while(1){
      msg = recv();
      state = receive_handler(state, msg);

      while( more_messages(state) ){
        (state,msg) = send_handler(state);
        send( msg );
      }
    }
  }
};

class MyDevice
{
    int state;

  void on_recv(const Message &msg)
    {
        state = receive_handler(state, msg);
    }

  bool ready_to_send() const
    {
        return more_messages(state);
    }

  void on_send(Message &msg)
    {
        (state,msg) = send_handler(state);
    }

};

Software is “in control”
Devices are finite state
Hardware buffering is un-bounded

Hardware+compiler is “in control”
Software must wait for network capacity
Both devices and hardware can be finite state
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Simple Graph Example:
Single Source Shortest Path

• Messages give distance from source over edge 

• State is the current distance to source

• Receive message:

– Calculate transitive distance from target

– Update vertex to new distance if it is lower

• Ready to send if new distance not yet shared

• Send message:

– Send message to share new distance

– Mark state as not ready to send

struct Message {
  int distance;
};

struct State {
  int currDistance;
  bool isDirty;

  void on_recv(const Message &msg) {
    int newDistance = msg.distance + 1;
    if (newDistance < currDistance) {
       currDistance=newDistance;
       isDirty=true;
    }
  }

  bool ready_to_send()
  { return isDirty; }

  void on_send(Message &msg) {
    msg.distance = currDistance;
    isDirty = false;
  } 
};



8

Application model : semantics

• The ETC execution model is primarily mathematical

– Described in terms of sets and functions

– Formalised in TLA+ and Coq

• Sometimes quite loose: favour hardware efficiency

– Message sending is opportunistic: hardware decides when software is allowed to send

– No guarantees on message delivery order: arbitrary re-ordering is allowed

• Sometimes quite strong: enable software

– Atomic broadcasts: any message sent eventually delivered to all recipients 

– All messages will eventually be delivered: no message loss
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Challenges

• Asynchronous software design is… hard

– Message ordering is non-deterministic

– Can’t rely on a shared global clock

• We have to solve a number of big problems

– Performance: creating enough parallelism

– Correctness: avoiding deadlock and livelock

– Exfiltration: getting the answer out
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What should ETC hardware look like?

• Opportunities : the ETC model is designed to enable scalable hardware

– Millions of asynchronous devices (small FSMs) provides scheduling freedom

– Loose messaging and execution timing allows for latency hiding

– Very constrained ETC software model reduces need for full OS services

– Small messages : typically 16-64 bytes

• Constraints : the ETC model pushes all messaging and scheduling into hardware

– Thousands of small FSMs need to be scheduled on each “CPU”

– Messaging needs to be integrated at a deep level

– Compute schedule is driven by unpredictable message arrival times

– Practically: it had to be something we could prototype and evaluate using lots of FPGAs
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Tinsel core: multithreaded RV32IMF

One instruction per thread in pipeline
at any time: no control / data hazards

Latent instructions
are resumed

16 threads per core
(barrel scheduled)

Latent instructions
are suspended
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Tinsel tile: FPUs, caches, mailboxes

Custom instructions
for message-passing

Mixed-width
memory-mapped scratchpad

Data cache: no global 
shared memory
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Tinsel network-on-chip

2D dimension-ordered router

Reliable inter-FPGA
links: N, S, E and W

2 ⨉ DDR3 DRAM and
4 ⨉ QDRII+ SRAM

in total

Separate message and memory NoCs reduce 
congestion and avoid message-dependant deadlock
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POETS Performance: Dissipative Particle Dynamics
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POETS: The Good, the Bad and the Ugly

Strengths:

• Complete application + toolchain + 
hardware stack

• Large-scale hardware evaluation 
platform

• It worked!

• Good performance in many 
application domains

– It exceeded standard performance in 
some domains

• Many untapped opportunities

Weaknesses:

• Raw hardware performance

– We had to use old FPGAs : 10 years 
old when we started in 2016

– Never completed roll-out to new 
FPGAs : covid supply-chain fun

– GPUs and multi-core chips are just 
newer and faster

• Lack of a clear “best” hardware 
configuration to harden to ASIC

– Different applications needed 
different parameterisations of Tinsel
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SONNETS: The Next 5 Years

• EPSRC £7M Programme Grant

– Started on 1st of Jan 2024

• Three university partners:

– Imperial

– Newcastle

– Southampton

• Numerous industrial and 
academic collaborators
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SONNETS: The research vision

We will address three inter-related challenges:

Compute for next-gen AI: what do compute systems for 3rd wave AI look like, once we move beyond 
black-box Convolutional Neural Networks and tensors?

Event-triggered computing (ETC): how do we program and manage billions of heterogeneous 
processors spread across the cloud?

Avoiding the next crash: how do you evaluate the financial risk of the entire UK financial system; it cost 
~£500bn last time – how do we avoid something worse?

SONNETS views these problems as a spectrum: the solutions support each other
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Contemporary Machine Learning

• Regular inputs from single source : images, audio, text

• Algorithms optimized for GPUs assumes dense regular inputs

• Black-box algorithms that make simple classifications

GPU

Neural
Net.

Cat!
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Next-generation Machine Learning

• Many input data formats
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Next-generation Machine Learning

• Many input data formats

• Complex relationships
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Next-generation Machine Learning

• Many input data formats

• Complex relationships

• Many pools of computation

• Many types of computer

GPU

TPU

FPGA
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Next-generation Machine Learning

• Many input data formats

• Complex relationships

• Many pools of computation

• Many types of computer

• Complex and nuanced answers

• Explainability

GPU

TPU

FPGA

“Cats are likely to catch 
covid because … “
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Next-generation Machine Learning

• Many input data formats

• Complex relationships

• Many pools of computation

• Many types of computer

• Complex and nuanced answers

• Explainability

• We can achieve this with
Event-Triggered Computing (ETC)

GPU

TPU

FPGA

“Cats are likely to catch 
covid because … “
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Driver: UK financial risk

• We stress-test institutions individually

– Ignores inter-dependencies

– Hides correlations and patterns
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Driver: UK financial risk

• We stress-test institutions individually

– Ignores inter-dependencies

– Hides correlations and patterns

• Nation-wide stress-tests are too expensive

– Must model billions of interacting positions

– Need data sourcing in each institution

• SONNETS : make use of ML and ETC

– Real-time picture of UK risk exposure

– Use next-gen ML to look for patterns

– Use ETC to co-ordinate billions of cores
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Timeliness: push and pull factors
• Pull factors : what we need right now

– A new direction for ML :                  CNNs, GPUs and tensors only get us so far

– Nation-level modelling is critical : risk-analysis, pandemic models, energy, …

– Programming capability gap:       software is lagging the hardware we can build

• Push factors : what has just become available

– Cloud computing :               cost per CPU thread is decreasing

– Event-triggered compute : POETS provides a new programming paradigm

     already validated on large-scale computational chemistry 

SONNETS bridges the gap between current availability and immediate need
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Work-packages

ETC Abstractions

Tsetlin machines

Neural Networks

Risk Models

Government

Industry

Academia

Regulators

Regulator Needs

ETC Applications

Programmers

Cloud Providers

Other machine
Learning 

Applications

Other Algorithmic 
Paradigms

WP1 : National-Level Financial
Risk analysis

WP2 : Next-generation AI
using Event-Triggered Compute

WP3 : ETC infrastructure -
Algorithms, Software, and Hardware

Cloud 
Technologies
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Selected Challenges related to computation

• Computation problems we want to address

– Heterogeneity : how do we describe large distributed heterogeneous applications? 

– Verification : how do we prove large distributed heterogeneous apps actually work? 

– Scaling : how do we actually scale the apps up/down and in/out at run-time?

– Fault-tolerance : how do we keep apps running when nodes or networks fail?

• Some techniques we want to use

– Event-triggered Computing

– Formal methods : e.g. Event-B and System refinement

– Heterogenous cloud compute instances

– Leverage existing event-streaming and event-broker infrastructure
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Collaboration opportunities

What we have: 5 years of funding

• 2.5 FTE/year over 10 academic staff

– ML, risk analysis, heterog. compute,...

• 6 FTE/year of research fellows

• 9 PhD positions

• A mandate to do blue-sky research

What we need

• Input on future architectures

• Challenging platforms to program

• Accelerated libraries (e.g. ML)

What you have (?)

• Interest in cloud/data-centre/edge

• Interest in ML accelerators (?)

• Optimised building-blocks

• Heterogeneous SoCs and CPUs

• Platforms for scale-out

What you need (?)

• New complex driver applications

• Academics with strange ideas
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Conclusion

• Event-triggered Computing is a simple but useful abstraction

– Has allowed us to develop complex fine-grain asynchronous applications

– Enabled creation of massively concurrent Tinsel architecture

• With SONNETS we want to tackle large distributed heterogenous problems

– Real-time national risk analysis: a big problem to drive innovative solutions

– Machine learning and modelling: complex application domains to work withing

– New programming paradigms: support design, verification, and execution in the cloud

• We know where we’re going...
                                                ... but not yet how we’ll get there
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