
From POETS to SONNETS:
Taking Event-Triggered Computing to the Cloud

Dr Graeme Bragg

UKDF, The National Museum of Computing,
Bletchley Park, 21st of March 2024

School of Electronics
 and Computer Science

Most slides kindly “donated” by Professor David Thomas

2

POETS : What is was it?

• EPSRC £5M Programme Grant

– Running 2016 till 2022

• Four university partners:

– Cambridge

– Imperial

– Newcastle

– Southampton

3

POETS : The big idea

“Create a new framework for developing and executing event-triggered applications
using asynchronous algorithms in distributed hardware”

 Event-triggered = millions of shared-nothing threads sending tiny messages

• Research challenges:

– Applications: what should event-first algorithms look like?

– Languages: what language do we use?

– Compilation: how do we describe and compile such applications?

– Hardware: what does this distributed hardware look like?

4

POETS : What we achieved over six years

• Applications: portfolio of asynchronous event-based applications

– Flagship is “Dissipative Particle Dynamics (DPD)”

– Allowed us to provide large speed-up for published computational chemistry research

• Compilers: multiple compilers and simulators for one language

– Performs place and route for applications with 1M+ logical threads

– Includes run-time management for input and output

• Architecture: bespoke CPU architecture and network called “Tinsel”

– Custom RISC-V architecture with deeply embedded routed network

– Supports 50K hardware threads in a low-latency communication mesh

5

ETC: Event Triggered Computing

• Applications are split into devices
– “device” = finite state machine

• Device state is a tiny part of the global state

• Devices interact through event handlers:
– Receive: a message m is sent to device d

d’ = receive_handler(d, m)

– Send: device d sends a message m

 (d’,m) = send_handler(d)

State changes only occur on send or receive

All state changes are atomic

Hardware schedules both sends and receives

6

ETC: Inversion of control

class MyDevice
{
 int state;

 void run()
 {
 while(1){
 msg = recv();
 state = receive_handler(state, msg);

 while(more_messages(state)){
 (state,msg) = send_handler(state);
 send(msg);
 }
 }
 }
};

class MyDevice
{
 int state;

 void on_recv(const Message &msg)
 {
 state = receive_handler(state, msg);
 }

 bool ready_to_send() const
 {
 return more_messages(state);
 }

 void on_send(Message &msg)
 {
 (state,msg) = send_handler(state);
 }

};

Software is “in control”
Devices are finite state
Hardware buffering is un-bounded

Hardware+compiler is “in control”
Software must wait for network capacity
Both devices and hardware can be finite state

7

Simple Graph Example:
Single Source Shortest Path

• Messages give distance from source over edge

• State is the current distance to source

• Receive message:

– Calculate transitive distance from target

– Update vertex to new distance if it is lower

• Ready to send if new distance not yet shared

• Send message:

– Send message to share new distance

– Mark state as not ready to send

struct Message {
 int distance;
};

struct State {
 int currDistance;
 bool isDirty;

 void on_recv(const Message &msg) {
 int newDistance = msg.distance + 1;
 if (newDistance < currDistance) {
 currDistance=newDistance;
 isDirty=true;
 }
 }

 bool ready_to_send()
 { return isDirty; }

 void on_send(Message &msg) {
 msg.distance = currDistance;
 isDirty = false;
 }
};

8

Application model : semantics

• The ETC execution model is primarily mathematical

– Described in terms of sets and functions

– Formalised in TLA+ and Coq

• Sometimes quite loose: favour hardware efficiency

– Message sending is opportunistic: hardware decides when software is allowed to send

– No guarantees on message delivery order: arbitrary re-ordering is allowed

• Sometimes quite strong: enable software

– Atomic broadcasts: any message sent eventually delivered to all recipients

– All messages will eventually be delivered: no message loss

9

Challenges

• Asynchronous software design is… hard

– Message ordering is non-deterministic

– Can’t rely on a shared global clock

• We have to solve a number of big problems

– Performance: creating enough parallelism

– Correctness: avoiding deadlock and livelock

– Exfiltration: getting the answer out

10

What should ETC hardware look like?

• Opportunities : the ETC model is designed to enable scalable hardware

– Millions of asynchronous devices (small FSMs) provides scheduling freedom

– Loose messaging and execution timing allows for latency hiding

– Very constrained ETC software model reduces need for full OS services

– Small messages : typically 16-64 bytes

• Constraints : the ETC model pushes all messaging and scheduling into hardware

– Thousands of small FSMs need to be scheduled on each “CPU”

– Messaging needs to be integrated at a deep level

– Compute schedule is driven by unpredictable message arrival times

– Practically: it had to be something we could prototype and evaluate using lots of FPGAs

11

Tinsel core: multithreaded RV32IMF

One instruction per thread in pipeline
at any time: no control / data hazards

Latent instructions
are resumed

16 threads per core
(barrel scheduled)

Latent instructions
are suspended

12

Tinsel tile: FPUs, caches, mailboxes

Custom instructions
for message-passing

Mixed-width
memory-mapped scratchpad

Data cache: no global
shared memory

13

Tinsel network-on-chip

2D dimension-ordered router

Reliable inter-FPGA
links: N, S, E and W

2 ⨉ DDR3 DRAM and
4 ⨉ QDRII+ SRAM

in total

Separate message and memory NoCs reduce
congestion and avoid message-dependant deadlock

14

POETS Performance: Dissipative Particle Dynamics

15

POETS: The Good, the Bad and the Ugly

Strengths:

• Complete application + toolchain +
hardware stack

• Large-scale hardware evaluation
platform

• It worked!

• Good performance in many
application domains

– It exceeded standard performance in
some domains

• Many untapped opportunities

Weaknesses:

• Raw hardware performance

– We had to use old FPGAs : 10 years
old when we started in 2016

– Never completed roll-out to new
FPGAs : covid supply-chain fun

– GPUs and multi-core chips are just
newer and faster

• Lack of a clear “best” hardware
configuration to harden to ASIC

– Different applications needed
different parameterisations of Tinsel

16

SONNETS: The Next 5 Years

• EPSRC £7M Programme Grant

– Started on 1st of Jan 2024

• Three university partners:

– Imperial

– Newcastle

– Southampton

• Numerous industrial and
academic collaborators

17

SONNETS: The research vision

We will address three inter-related challenges:

Compute for next-gen AI: what do compute systems for 3rd wave AI look like, once we move beyond
black-box Convolutional Neural Networks and tensors?

Event-triggered computing (ETC): how do we program and manage billions of heterogeneous
processors spread across the cloud?

Avoiding the next crash: how do you evaluate the financial risk of the entire UK financial system; it cost
~£500bn last time – how do we avoid something worse?

SONNETS views these problems as a spectrum: the solutions support each other

18

Contemporary Machine Learning

• Regular inputs from single source : images, audio, text

• Algorithms optimized for GPUs assumes dense regular inputs

• Black-box algorithms that make simple classifications

GPU

Neural
Net.

Cat!

19

Next-generation Machine Learning

• Many input data formats

20

Next-generation Machine Learning

• Many input data formats

• Complex relationships

21

Next-generation Machine Learning

• Many input data formats

• Complex relationships

• Many pools of computation

• Many types of computer

GPU

TPU

FPGA

22

Next-generation Machine Learning

• Many input data formats

• Complex relationships

• Many pools of computation

• Many types of computer

• Complex and nuanced answers

• Explainability

GPU

TPU

FPGA

“Cats are likely to catch
covid because … “

23

Next-generation Machine Learning

• Many input data formats

• Complex relationships

• Many pools of computation

• Many types of computer

• Complex and nuanced answers

• Explainability

• We can achieve this with
Event-Triggered Computing (ETC)

GPU

TPU

FPGA

“Cats are likely to catch
covid because … “

24

Driver: UK financial risk

• We stress-test institutions individually

– Ignores inter-dependencies

– Hides correlations and patterns

25

Driver: UK financial risk

• We stress-test institutions individually

– Ignores inter-dependencies

– Hides correlations and patterns

• Nation-wide stress-tests are too expensive

– Must model billions of interacting positions

– Need data sourcing in each institution

26

Driver: UK financial risk

• We stress-test institutions individually

– Ignores inter-dependencies

– Hides correlations and patterns

• Nation-wide stress-tests are too expensive

– Must model billions of interacting positions

– Need data sourcing in each institution

• SONNETS : make use of ML and ETC

– Real-time picture of UK risk exposure

– Use next-gen ML to look for patterns

– Use ETC to co-ordinate billions of cores

27

Timeliness: push and pull factors
• Pull factors : what we need right now

– A new direction for ML : CNNs, GPUs and tensors only get us so far

– Nation-level modelling is critical : risk-analysis, pandemic models, energy, …

– Programming capability gap: software is lagging the hardware we can build

• Push factors : what has just become available

– Cloud computing : cost per CPU thread is decreasing

– Event-triggered compute : POETS provides a new programming paradigm

 already validated on large-scale computational chemistry

SONNETS bridges the gap between current availability and immediate need

28

Work-packages

ETC Abstractions

Tsetlin machines

Neural Networks

Risk Models

Government

Industry

Academia

Regulators

Regulator Needs

ETC Applications

Programmers

Cloud Providers

Other machine
Learning

Applications

Other Algorithmic
Paradigms

WP1 : National-Level Financial
Risk analysis

WP2 : Next-generation AI
using Event-Triggered Compute

WP3 : ETC infrastructure -
Algorithms, Software, and Hardware

Cloud
Technologies

29

Selected Challenges related to computation

• Computation problems we want to address

– Heterogeneity : how do we describe large distributed heterogeneous applications?

– Verification : how do we prove large distributed heterogeneous apps actually work?

– Scaling : how do we actually scale the apps up/down and in/out at run-time?

– Fault-tolerance : how do we keep apps running when nodes or networks fail?

• Some techniques we want to use

– Event-triggered Computing

– Formal methods : e.g. Event-B and System refinement

– Heterogenous cloud compute instances

– Leverage existing event-streaming and event-broker infrastructure

30

Collaboration opportunities

What we have: 5 years of funding

• 2.5 FTE/year over 10 academic staff

– ML, risk analysis, heterog. compute,...

• 6 FTE/year of research fellows

• 9 PhD positions

• A mandate to do blue-sky research

What we need

• Input on future architectures

• Challenging platforms to program

• Accelerated libraries (e.g. ML)

What you have (?)

• Interest in cloud/data-centre/edge

• Interest in ML accelerators (?)

• Optimised building-blocks

• Heterogeneous SoCs and CPUs

• Platforms for scale-out

What you need (?)

• New complex driver applications

• Academics with strange ideas

31

Conclusion

• Event-triggered Computing is a simple but useful abstraction

– Has allowed us to develop complex fine-grain asynchronous applications

– Enabled creation of massively concurrent Tinsel architecture

• With SONNETS we want to tackle large distributed heterogenous problems

– Real-time national risk analysis: a big problem to drive innovative solutions

– Machine learning and modelling: complex application domains to work withing

– New programming paradigms: support design, verification, and execution in the cloud

• We know where we’re going...
 ... but not yet how we’ll get there

	From POETS to SONNETS: �Taking Event-Triggered Computing to the Cloud
	POETS : What is was it?
	POETS : The big idea
	POETS : What we achieved over six years
	ETC: Event Triggered Computing
	ETC: Inversion of control
	Simple Graph Example:�Single Source Shortest Path
	Application model : semantics
	Challenges
	What should ETC hardware look like?
	Tinsel core: multithreaded RV32IMF
	Tinsel tile: FPUs, caches, mailboxes
	Tinsel network-on-chip
	POETS Performance: Dissipative Particle Dynamics
	POETS: The Good, the Bad and the Ugly
	SONNETS: The Next 5 Years
	SONNETS: The research vision
	Contemporary Machine Learning
	Next-generation Machine Learning
	Next-generation Machine Learning
	Next-generation Machine Learning
	Next-generation Machine Learning
	Next-generation Machine Learning
	Driver: UK financial risk
	Driver: UK financial risk
	Driver: UK financial risk
	Timeliness: push and pull factors
	Work-packages
	Selected Challenges related to computation
	Collaboration opportunities
	Conclusion

