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Before the ocean and the earth appeared– before the skies had overspread them all–
the face of Nature in a vast expanse was naught but Chaos uniformly waste.
It was a rude and undeveloped mass, that nothing made except a ponderous weight;
and all discordant elements confused, were there congested in a shapeless heap.

(Ovid, Metamorphoses)



Chaos

“When the present determines the future but the approximate
present does not approximately determine the future.”

An attempt at definition:

Deterministic: The future is entirely determined by the past.

Sensitive: A small perturbation drastically affects the future.

Aperiodic: No “end-points” or “cycles”.
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Butterflies

The Lorenz Attractor (Lorenz ’63).

dx/dt = σ(y − x),

dy/dt = ρx− xz − y,

dz/dt = xy − βz.

Typically σ = 10, β = 8/3,
and ρ = 28.
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Demonstration of Lorenz Attractor Chaos

• Deterministic

• Sensitive

• Aperiodic

Mark plays lorenz_anim.mp4.
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Chaos is Pervasive

• Meteorology: Met Office public weather service value est. 1.5B
GBP (2015). Private work?

• Economics: Predictability of the health of financial systems
(SONNETS). Risk management (governments) vs. trader
beneficiaries?

• Fluid mechanics

• Computational demography

• Circuits (Chua, PRNG)

• City planning

• Cryptography

• Optimisation/Design Search

Well, we had better get started then.
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What do you mean, “started”?!

• Chaos theory:

– Maxwell’s butterflies (1860s)

– Poincaré’s three-body problem (1880s)

– ENIAC predicts the weather (1950)

• Machine learning:

– McCulloch/Pitts develop first artificial neuron (1943)

– Turing’s learning machine (1950)

– Machines rival humans playing Backgammon (1992)

Science has been doing this for ≈70 years – why continue?
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What do you mean, “started”?!

Science has been doing this for ≈70 years – why continue?

In my opinion:

• Rise of GPGPU and increased computational power

• Algorithm advancement – deep learning, ensemble methods

• The big data boom

• Motivation: A deliberate use of chaos in engineering

• Interdisciplinary collaboration
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Why Learning?

• Prediction of higher-order behaviour breaks down with system
evolution – can the computer do better?

• Defining a numerical model is hard, let alone a computational
one. Can we reason purely from measured data?

• Universal approximation theorem suggests feed-forward learning is
generally viable, iff (Hornik ’90)

– We throw enough neurons at the problem

– Our activation function is “sufficiently rich in nonlinearity”
(e.g. tanh).
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Learning the Lorenz Attractor

One hidden layer, which computes x = (x, y, z)T for the next
timestep (xn+1) given the present (xn):

xn+1 = W2g(W1xn + b1) + b2

Train it on the Lorenz Attractor

dx/dt = σ(y − x),

dy/dt = ρx− xz − y,

dz/dt = xy − βz,

solved by (implicit) Adams Moulton (dt = 0.01).
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An Elementary Problem

The smallest “viable” case, with a four-neuron hidden layer. Mark
plays lorenz_nn_anim.mp4.
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An Elementary Problem

Not enough neurons/training?

In the end, the sensitivity
catches up with you.

|δx(t)| ≈ eλt|δx0|

Lyapunov exponent λ ≈ 0.906

(Figure: Li ’23)
(λ: Viswanath ’98)
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Why Not Learning?

You can book out Archer for ten years, but:

• You’re not learning the chaotic system - you’re learning a
numerical equivalent (Adams Moulton!)

• Practical measurement of quantities is often difficult.

• Practical systems can have ≫ 109 degrees of freedom.

• Identifying intervention strategies is even harder (particularly if
you are only reasoning from data).

In the end, sensitivity overcomes your approximations.

You can’t beat the Lyapunov exponent.
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So, the problem is hard.





Let’s do what any scientist would do. . .

. . . and move the goalposts:

• Explore/quantify sensitivity using a chaotic RNN (e.g. an echo
state network), training with noisy data (Mahata ’23)

• Understand mechanisms, instead of predicting outcomes, with
symbolic regression powered by a DNN (Boddupalli ’23) →
intervention analysis?
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Summary and Thoughts

• Chaos and machine learning are old, saturated fields of study.

• In a naive approach, you can make your network as complex as
you like, but inaccuracies will catch up with you:

– Integrator (top-down)

– Data measurement/frequency (bottom-up)

• Better to move the goalposts:

– What is the sensitivity of my system? To each degree of
freedom?

– How can my intervention alter its behaviour?

– How big does my computer need to be? How many Lyapunov
times is enough?
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