

Engineering and Physical Sciences Research Council

Event-driven concurrent programming in POETS

David Thomas dt10@imperial.ac.uk Imperial College London UKDF, May 2019

Andrew D. Brown (UoS), Simon W. Moore (Cam), Andrey Mokhov (UoN), Matt Naylor (Cam), Jonathon Beaumont (Imp)

Imperial College London

Southampton

nag®

POETS: The big idea

Hardware: 10⁵ concurrent threads
Application: 10⁷ isolated fragments
Network: 10⁹ messages / second

Asynchronous and event driven

Choose communication over computation

A potential niche

- Communication oriented
- Irregular
- Sparse
- Highly concurrent

Hardware: Tinsel Core

- Tinsel is a new RISC-V multi-threaded core
 - 9-stage in-order pipeline (no forwarding)
 - Switches threads to hide cache-misses

- Heavily optimised for LUT-based FPGAs
 - Can fit 250 cores in half a Stratix-V
 - 1 MIPS/LUT or 100 GOps/Sec/FPGA

Hardware: Multi-FPGA

- Box: 6 FPGAs
 - 6K threads/box
- Cluster: 4 boxes
 - 24K threads/cluster
- Next generation
 - 256K threads/cluster

POETS

Information Flow

Application Model

- Applications are split into *devices*
 - "device" = finite state machine

- Device state is a tiny part of the global state
 - Only the device can read and write it's state
 - No shared memory only messages

Receive: a message *m* is sent to device *d*

Send: device d sends a message m

State changes only occur on send or receive All state changes are atomic Hardware schedules both sends and receives

Graph Processing

