
Synthesis of Circuits from 

Parallel Programs

Satnam Singh

Microsoft Research Cambridge, UK

David Greaves
Computer Lab, Cambridge University, UK

UKDF



The Future is Heterogeneous

Liam



ray of light

Handel-C

System-C

CatapultC

Occam

Streams-C

ROCC

SPARK

Bluespec

Esterel

SpecC



Previous Work

• Starts with sequential C-style programs.

• Uses various heuristics to discover
opportunities for parallelism esp. in nested 
loops.

• Good for certain idioms that can be 
recognized.

• However, many parallelization opportunities 
are not discovered because they are not 
evident in the structure of the program.



Modelling Circuits in C++ is Nothing New

class Counter : public Process {
private:
// clock is in the base class
const Signal<std_ulogic> & enable; // input
Signal<std_ulogic>& iszero; // output
int count; // state

public:
Counter(
// interface specification
Clock& CLK,
const Signal<std_ulogic>& EN,
Signal<std_ulogic>& ZERO
)
// initializers - mapping ports
: Process(CLK), enable(EN), iszero(ZERO)
{ count = 15; } // process initialization
void entry();
};

void Counter::entry()
{ if (enable.read() == ‘1’) 
{ if (count == 0) 
{ write(iszero, ‘1’);
count = 15;

}
else 
{ write(iszero, ‘0’);
count—;

}
}
next();

}

sequential process declaration for a counter body of counter process



Parallel Programming

• We need to produce parallel programs:
– Multi-core, many-core

– GPUS

• But do we need to write parallel programs?
– Implicit parallelism?

– Automatic parallelization of C programs?

– Write with locks and threads?

– Write explicit data-parallel programs?

• Separated at birth:
– Hardware description languages

– Concurrent and parallel programming languages

6



Objectives

• A system for software engineers.

• Model synchronous digital circuits in C# etc.

– Software models offer greater productivity than 

models in VHDL or Verilog.

• Transform circuit models automatically into 

circuit implementations.

• Exploit existing concurrent software 

verification tools.



Kiwi

structural imperative (C)parallel
imperative

gate-level 
VHDL/Verilog Kiwi

C-to-
gates

&0

0

0

Q

Q
SET

CLR

S

R

;

;

;

jpeg.cthread 
2

thread 
3

thread 
1



The Accidental Semi-colon





systems level concurrency constructs
threads, events, monitors, condition variables

rendezvous join patterns
transactional

memory
data

parallelism

user 
applications

domain specific
languages



Join Patterns

Channel A Channel B Channel C Channel D

A(x) & C(y) -> print x+y

A(x) & D(y) & C(z) -> print x-y+z

A(x) & C(y) -> print x-y

6 25

join pattern handler

x=6, y=2, output = 4



Transactional Memory

• do {...this...} orelse {...that...} tries to run “this”

• If “this” retries, it runs “that” instead

• If both retry, the do-block retries.  GetEither() will thereby 

wait for there to be an item in either queue

Q1 Q2

R

void GetEither() {
atomic {

do { i = Q1.Get(); }
orelse { i = Q2.Get(); }

R.Put( i );
} }



14

COmega chords

using System ;

public class MainProgram
{ public class Buffer

{ public async Put (int value) ;
public int Get () & Put(int value)
{ return value ; }   

}

static void Main()
{ buf = new Buffer () ;

buf.Put (42) ;
buf.Put (66) ;
Console.WriteLine (buf.Get() + " " + buf.Get()) ;

}
}



Flat data parallel

• The brand leader: widely used, well understood, 
well supported

• BUT: “something” is sequential

• Single point of concurrency

• Easy to implement: 
use “chunking”

• Good cost model

e.g. Fortran(s), *C
MPI, map/reduce

foreach i in 1..N {

...do something to A[i]...

}

1,000,000’s of (small) work items

P1 P2 P3



Nested data parallel

• Main idea: allow “something” to be 
parallel

• Now the parallelism 
structure is recursive, 
and un-balanced

• Still good cost model

• Hard to implement!

foreach i in 1..N {

...do something to A[i]...

}

Still 1,000,000’s of (small) work items



Array 

comprehensions

vecMul :: [:Float:] -> [:Float:] -> Float

vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]

[:Float:] is the type of 
parallel arrays of Float

An array comprehension: 
“the array of all f1*f2 where 

f1 is drawn from v1 and f2 
from v2”

sumP :: [:Float:] -> Float

Operations over parallel array are 
computed in parallel; that is the only 
way the programmer says “do 
parallel stuff”

NB: no locks!



Venn Diagram

appropriate
concurrency

models 
for

circuits

appropriate
concurrency

models
for

software

Are there enough concurrency abstractions 
that make sense in hardware and software?

event-based simulation

Kahn networks

synchronous
data-flow

asynchronous
threads

monitors

events

priorities

multi-clock



Our Idea

• Write parallel programs in C# (F# etc.)

• Use the parallel decription to specify top-

level circuit architecture.

• Analyze existing concurrency idioms to see 

what can be efficiently translated to circuits.

• Capture useful design idioms and represent 

them in a concurrency library for circuit 

description: Kiwi.



Kiwi
Library

Kiwi.cs

circuit
model

JPEG.cs

Visual Studio

multi-thread simulation
debugging
verification

Kiwi Synthesis

circuit
implementation

JPEG.v



parallel
program

C#

Thread 1

Thread 2

Thread 3

Thread 3

C to
gates

C to
gates

C to
gates

C to
gates

circuit

circuit

circuit

circuit

Verilog
for system



System.Threading

• We have decided to target hardware 

synthesis for a sub-set of the concurrency 

features in the .NET library 

System.Threading

– Events (clocks)

– Monitors (synchronization)

– Thread creation etc. (circuit structure)



Kiwi Concurrency Library

• A conventional concurrency library Kiwi is exposed 
to the user which has two implementations:

– A software implementation which is defined purely in 
terms of the support .NET concurrency mechanisms 
(events, monitors, threads).

– A corresponding hardware semantics which is used to 
drive the .NET IL to Verilog flow to generate circuits.

• A Kiwi program should always be a sensible 
concurrent program but it may also be a sensible 
parallel circuit.



Higher Level Concurrency Constructs

• By providing hardware semantics for the 

system level concurrency abstractions we 

hope to then automatically deal with other 

higher level concurrency constructs:

– Join patterns (C-Omega, CCR, .NET Joins 

Library)

– Rendezvous

– Data parallel operations



Our Implementation

• Use regular Visual Studio technology to 
generate a .NET IL assembly language file.

• Our system then processes this file to 
produce a circuit:
– The .NET stack is analyzed and removed

– The control structure of the code is analyzed and 
broken into basic blocks which are then 
composed.

– The concurrency constructs used in the program 
are used to control the concurrency / clocking of 
the generated circuit.



public static int max2(int a, int b)
{ int result;
if (a > b)

result = a;
else

result = b;
return result;

}

.method public hidebysig static 
int32 

max2(int32 a,
int32 b) cil managed

{
// Code size       12 (0xc)
.maxstack 2
.locals init ([0] int32 result)
IL_0000:  ldarg.0
IL_0001:  ldarg.1
IL_0002:  ble.s IL_0008

IL_0004:  ldarg.0
IL_0005:  stloc.0
IL_0006:  br.s IL_000a

IL_0008:  ldarg.1
IL_0009:  stloc.0
IL_000a:  ldloc.0
IL_000b:  ret

}

max2(3, 7)

stack

local memory

0

3
7
7

7



public static int SumArray()
{
int[] a = new int[] { 7, 3, 5, 2, 1 };
int sum = 0;
foreach (int n in a)
sum += n;

return sum;
}



IL_0000:  ldc.i4.5
IL_0001:  newarr [mscorlib]System.Int32
...
IL_000c:  call       void 
[mscorlib]System.Runtime.CompilerServices.RuntimeHelpers::
InitializeArray(class [mscorlib]System.Array,

valuetype [mscorlib]System.RuntimeFieldHandle)
IL_0011:  stloc.0

dynamic 
memory 

allocation

native OO 
support

garbage 
collection



Stack-based to Register-based

ldc.i4.42
ldloc.5
mul
dup
add

loadreg r1 #42
loadreg r2 &5
mult r1, r2, r3
movereg r3 r2
add r2, r3, r1



Worked Example
using System;
using KiwiSystem; 
public class parallel_port
{ [Kiwi.OutputWordPort(“dout")] 
static byte dout; 
[Kiwi.OutputBitPort(“strobe")]   
static bool strobe; 
[Kiwi.InputBitPort(“ack")] 
static bool ack; 

public static void putchar(byte c) 
{ while (ack == strobe) 

Kiwi.Pause(); 
dout = c; 
Kiwi.Pause(); 
strobe = !strobe; 

} 
} 

Two-phase handshake on parallel port

implicit 
synchronization 

with a clock



Top Level Driver

class TopLevelPortDriver
{ 
public static void parallel_print(string s) 
{ 
for (int i = 0; i<s.Length; i++)    

parallel_port.putchar((byte)s[i]);
} 

public static void Main() 
{ parallel_print("Hello World\n"); } 

}



Internal Virtual Machine

• We use an internal virtual machine:

– .NET IL parsed into intermediate machine

– Intermediate machine supports imperative 

code sections

– Code sections can be in series or parallel 

(SER/PAR blocks)

– IL elaboration subsumes a number of 

variables including object pointers



IL Elaboration

• The IL elaborator takes the parse tree and list 
of root method names identified by the user.

• A symbol table is built up (heap) containing 
variables with different kinds of status:
– subsumed: value tracked entirely at compile time

– elaborated: value appears in output of machine

– undecided: no decision has been forced yet

• Stack eliminated using additional heap (spill) 
variables at IL transfer of control (jump or 
branch).



IL Elaboration

• Two passes:

1. Determine quantity and type of values on the stack

• Multiple branches to the same destination must share the same stack 

format

2. Emit HPR code from IL method body

• Elaboration involves direction translation of control structures.

• Symbolic manipulation of other structures

• Assignment for stind, stsfld, stfld

• Side effecting function call when code pops and discards something 

from stack

• A newobj and newarr instruction causes allocation of a symbolic 

constant: variables over such constants are subsumed.



Internal Virtual Machine Format

sensitivity=NONE Listing: id=Main 
0:test9_parallel_print_V_0 := 0; 
1:Xgoto(test9/parallel_print/IL_0018, 16); 
2:test9/parallel_print/IL_0007: 
3:Xgoto(cilreturn115, 4); 4:cilreturn115: 
5:Xgoto(parallel_port/putchar/IL_000a, 8); 
6:parallel_port/putchar/IL_0005: 
7:*APPLY:hpr_barrier(); 
8:parallel_port/putchar/IL_000a: 
9:beq(!!(parallel_port_ack^parallel_port_strob
e),parallel_port/putchar/IL_0005, 6) 
10:parallel_port_dout := "Hello 
World\n"[test9_parallel_print_V_0]&mask(7..0
); 
11:*APPLY:hpr_barrier(); 
12:parallel_port_strobe := 
!parallel_port_strobe; 13:Xgoto(cilreturn116, 
14); 14:cilreturn116:

15:test9_parallel_print_V_0 := 
test9_parallel_print_V_0+1; 
16:test9/parallel_print/IL_0018: 17:beq( 
10<=test9_parallel_print_V_0,test9/parallel_pr
int/IL_0007, 2) 18:Xgoto(cilreturn117, 19); 
19:cilreturn117: 20:return 0; 

•Stack eliminated 
•Subroutine calls flattened
•Main loop directly 
manipulates ports



Representation

• Finite-state machine edges have one two 
forms:

– (g, v, e)
• Assign e to v when g holds

– (g, f, [args])
• Call built-in function f with args when g holds

• Pending activation queue

– (p==v, g, S)
• When program counter is v and g holds perform 

variable updates in S



Strobe Example

0:(pc==0, true, [])

0:(pc==9, true, [0/V]) 

0:(pc==6, strobe==ack, [0/V]) 
0:(pc==10, strobe!=ack, [0/V]) 

0:(pc==10, strobe!=ack, [0/V]) 
0:(pc==11, strobe!=ack, [0/V, s[0]/dout]) 
11:(pc==12, true, []) 
11:(pc==15, true, [!strobe/strobe]) 
11:(pc==17, true, [V+1/V, !strobe/strobe]) 

0:(pc==6, strobe==ack, [0/V]) 

6:(pc==9, true, []) 



Conversion to a Finite State Machine

• A virtual machine to virtual machine 
transformation.

• A user provided unwind budget specifying 
how many basic blocks to consider in any 
loop unwind operation.

• When loops are nested or there is a fork in 
control flow the budget is appropriately 
divided.



Generated Verilog
module PARP(clk, reset, parallel_port_ack, 
parallel_port_dout, parallel_port_strobe); 
input clk; 
input reset; 
input parallel_port_ack; 
output [7:0] parallel_port_dout; 
reg [7:0] parallel_port_dout; 
output parallel_port_strobe; 
reg parallel_port_strobe; 
reg [1:0] pcnet119p; 
parameter str99 = "Hello World\n"; integer 
test9_parallel_print_V_0; 

always @(posedge clk) 
begin case (pcnet119p)

0: begin 
if (reset) pcnet119p <= 0; 
if (parallel_port_ack==parallel_port_strobe && 

!reset) pcnet119p <= 2; if



Example: I2C Bus Controller

• I2C is a commonly used serial protocol.

• Circuit developed to initialize a DVI video 
chip on a FPGA board.

• First version written by hand in VHDL with 
nested case statements (horrible).

• Second version written in C# and 
translated into Verilog using our system 
(much nicer!).



I2C Bus Control in VHDL



Ports and Clocks
public static class I2C

{  [OutputBitPort("scl")]

static bool scl;

[InputBitPort("sda_in")]

static bool sda_in;

[OutputBitPort("sda_out")]

static bool sda_out;

[OutputBitPort("rw")]

static bool rw;

circuit ports 
identified by 

custom attribute



System Composition

• We need a way to separately develop 
components and then compose them 
together.

• Don’t invent new language constructs: reuse 
existing concurrency machinery.

• Adopt channels for the composition of 
components.

• Model channels with regular concurrency 
constructs (monitors).



Channels and Condition Variables

public class channel<T>

{   T datum;

bool empty = true;

public void write(T v)

{

lock(this)

{

while (!empty)

Monitor.Wait(this) ;

datum = v ;

empty = false ;

Monitor.PulseAll(this);

}

}



Channels: Reading with Monitor

public T read()

{  T r ;

lock (this)

{

while (empty)

Monitor.Wait(this);

empty = true;

r = datum;

Monitor.PulseAll(this);

}

return r;

}



Producer/Consumer Example
class ConsumerClass

{  channel<int> x;

public ConsumerClass(channel<int> c)

{  x = c; }

public void process()

{ while (true)

{  int r = x.read();

Console.Write("{0} ", r);

}

}

}

class TimesTable
{

static int limit = 5;

public static void Main()
{  int i, j;

channel<int> mych = new channel<int>() 
ConsumerClass consumer = new ConsumerClass(mych);

Thread thread1 = 
new Thread(new ThreadStart(consumer.process));

thread1.Start();

Console.WriteLine("Times Table Up To " + limit);
for (i = 1; i <= limit; i++)
{

for (j = 1; j <= limit; j++) mych.write(i * j);
Console.WriteLine("");

}
}

}



Generated Verilog
reg hpr_testandset_res205;

reg hpr_testandset_res206;

reg hpr_testandset_res209;

reg hpr_testandset_res210;

always @(posedge clk) begin if (!nel_1____Orangelib_channel_1_empty && pcnet212p==0 || pcnet212p==1 && !nel_1____Orangelib_channel_1_empty) 
$write("%d "

, nel_1____Orangelib_channel_1_datum);

if (pcnet212p==1) hpr_testandset_res210 <= pcnet212p==1 ? 0: 1'bx;

if (!nel_1____Orangelib_channel_1_empty && pcnet212p==0 || pcnet212p==1 && !nel_1____Orangelib_channel_1_empty) process_V_0

<= !nel_1____Orangelib_channel_1_empty && pcnet212p==0 || pcnet212p==1 && !nel_1____Orangelib_channel_1_empty ? 
nel_1____Orangelib_channel_1_datum: 1'bx;

if (!nel_1____Orangelib_channel_1_empty && pcnet212p==0 || pcnet212p==1 && !nel_1____Orangelib_channel_1_empty) Orangelib_channel_1_read_V_0

<= !nel_1____Orangelib_channel_1_empty && pcnet212p==0 || pcnet212p==1 && !nel_1____Orangelib_channel_1_empty ? 
nel_1____Orangelib_channel_1_datum: 1'bx;

if (!nel_1____Orangelib_channel_1_empty && pcnet212p==0 || pcnet212p==1 && !nel_1____Orangelib_channel_1_empty) 
nel_1____Orangelib_channel_1_empty

<= !nel_1____Orangelib_channel_1_empty && pcnet212p==0 || pcnet212p==1 && !nel_1____Orangelib_channel_1_empty ? 1: 1'bx;

if (pcnet212p==0 || pcnet212p==1) nel_1_mutex <= pcnet212p==0 || pcnet212p==1 ? 0: 1'bx;

if (pcnet212p==0 || pcnet212p==1 && !nel_1____Orangelib_channel_1_empty) hpr_testandset_res209

<= pcnet212p==0 || pcnet212p==1 && !nel_1____Orangelib_channel_1_empty ? 0: 1'bx;

pcnet212p

<= reset ? 0

: pcnet212p==1 && !nel_1____Orangelib_channel_1_empty ? 1

: pcnet212p==1 && nel_1____Orangelib_channel_1_empty ? 1

: pcnet212p==0 && !nel_1____Orangelib_channel_1_empty ? 1: pcnet212p==0 && nel_1____Orangelib_channel_1_empty ? 1: pcnet212p;

if (4<Main_V_1 && nel_1____Orangelib_channel_1_empty && pcnet208p==1) $display("");

if (pcnet208p==0) $display("%s%d", "Times Table Up To ", 5);



The problem with int

[Kiwi.HwWidth(5)] [Kiwi.OutputPort(””)] static byte out



Temporal Assertions

[Kiwi.AssertCTL(“AG”, “pred1 failed”)]

public bool pred1()

{ return (... ); }



Current Limitations

• Only integer arithmetic and string handling.

• Floating point could be added easily.

• Generation of statically allocated code:

– Arrays must be dimensioned at compile time

– Number of objects on the heap is determined at 
compile time

– Recursive function calling must bottom out at 
compile time (so depth can not be run-time 
dependent)



Impedance Match with Synthesis Tools

• FPGA design tools come with efficient synthesis 
tools that translates behavioural Verilog/VHDL 
descriptions to decent hardware.

• Generating a totally synthesized netlist (AND 
gates, OR gates, flip-flops) does not exploit this 
power.

• At what level of abstraction should the 
Verilog/VHDL output of a .NET IL synthesizer be 
produced?

• We probably over-synthesize.



Next Steps

• Consider a series of concurrency 
constructs and their meaning in hardware:

– Transactional memory

– Rendezvous.

– Join patterns / chords

– Data Parallel Descriptions

• Solve impedance mismatch with back-end 
tools to improve performance.



C#

soft
processor



New Relevant Developments

• Separation Logic

– What part of a program uses what part of memory when

– A formal basis for partitioning C programs into parallel chunks

• Region Types

– Language level support for disciplined sharing of information 

between concurrent processes

• Termination Proofs

• These technologies can make a radical contribution to 

automatic C to gates technology.

54



The Future is Asynchronous

• There is no clock in my parallel program...

• Why is there a clk net in my Verilog 

netlist?



Summary

• Model circuits as parallel programs.

• Transform parallel circuit models into digital circuit 
implementations.

• Exploit shared memory and passage passing idioms for 
co-design.

• We don’t need to invent a new language:
– Exploit rich existing knowledge of concurrent programming.

• Initial small step towards programming models and 
techniques for manycore systems.

• More information about Kiwi synthesis at 
http://research.microsoft.com/~satnams

http://research.microsoft.com/~satnams


Conclusions

• Design techniques based on conventional 
HDLs will not work.

• Parallel hardware technology can be 
exploited by developers by exploiting 
concurrent and parallel programming 
models.

• Formal models of computation and 
composition essential.

• Verification and design intertwined from the 
start.





Co-Design

• FPGAs can now interface directly to Intel’s new 
front-side bus.

• Memory can be shared with the processor(s).

• Hardware processes can communicate and 
synchronize with software via shared memory.

• A Kiwi-style approach makes it feasible to provide 
a unified co-design environment.

• Imagine the applications:
– Accelerating web search functions.

– Accelerating image processing.

– Accelerating SAT solvers and model checkers.



Key Points

• This is early stage work on compiling parallel C# and F# 
programs into parallel hardware.

• Important because future processors will be 
heterogeneous and we need to find ways to model and 
program multi-core CPUs, GPUs, FPGAs etc.

• Previous work has had some success with compiling 
sequential programs into hardware.

• Our hypothesis: it’s much better to try and produce 
parallel hardware from parallel programs.

• Our approach involves compiling .NET concurrency 
constructs into gates.



Benefits of .NET

• We can exploit existing compilers, tools, 
debuggers for our hardware designs.

• We use custom attributes to mark up input 
ports, output ports, clock signals etc.

• We use existing concurrency constructs and 
re-map their semantics to appropriate 
hardware idioms.

• We try to always have a sensible piece of 
concurrent software that corresponds to each 
synthesized circuit.



I2C Control
private static void SendDeviceID()

{

Console.WriteLine("Sending device ID");

// Send out 7-bit device ID 0x76

int deviceID = 0x76;

for (int i = 7; i > 0; i--)

{

scl = false; sda_out = (deviceID & 64) != 0; Kiwi.Pause();        

// Set it i-th bit of the device ID

scl = true; Kiwi.Pause(); // Pulse SCL

scl = false; deviceID = deviceID << 1; Kiwi.Pause();

}

}



Generated Verilog

module i2c_demo(clk, reset, I2CTest_I2C_scl, I2CTest_I2C_sda);

input clk;
input reset;
reg i2c_demo_CS$4$0000;
reg I2CTest_I2C_SendDeviceID_CS$4$0000;
reg I2CTest_I2C_SendDeviceID_second_CS$4$0000;
reg I2CTest_I2C_ProcessACK_ack1;
reg I2CTest_I2C_ProcessACK_fourth_ack1;
reg I2CTest_I2C_ProcessACK_second_ack1;
reg I2CTest_I2C_ProcessACK_third_ack1;
integer I2CTest_I2C_SendDeviceID_deviceID;
integer I2CTest_I2C_SendDeviceID_second_deviceID;
integer I2CTest_I2C_SendDeviceID_i;
integer i2c_demo_i;
integer I2CTest_I2C_SendDeviceID_second_i;
integer i2c_demo_inBit;
integer i2c_demo_registerID;
output I2CTest_I2C_scl;
output I2CTest_I2C_sda;



Generated FPGA Circuit



FSM Synthesis (1)

• Resulting machine simulated with all 

inputs set to don’t care

– Discovery of compile time constants

– Constructor code must not depend on runtime 

inputs

• No stack or dynamic allocation.



FSM Synthesis (2)

• The next stage produces an array of machines, 
one per thread with the following kinds of 
statements:
– Assign

– Conditional branch

– Exit

– Calls to certain built in functions including:
• Atomic test and set

• “printf” for debugging

• Barrier

• All the usual arithmetic and logical operations in .NET

• String handling



FSM Synthesis (3)

• Final output form is stylised such that 

there is no program counter and every 

statement operates in parallel.

• This form is readily translated into 

hardware level netlists and then into VHDL 

or Verilog for the final synthesis to gates.


