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The Soft Error Problem

transient fault soft error
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A 1->0 change at the above AND gate output may not cause soft error

Soft Error Rate Trends

Shivakumar 2002

Soft Error Rate Contributions

Mitra 2005
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Robust Systems in Scaled CMOS

“Acceptable” Outputs

Performance

Power

Data Integrity

Availability

Security

Inputs

Robust System

Radiation, 

Erratic bits

Design errors,

Software failures
Malicious attacks,

Human errors

Aging, Infant mortality, 

Process variation

Source: S Mitra

-Different  solutions for 

different  components

-Memory

-Logic

-Subsystem

Solution?
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Low Power Soft Error Tolerant RAM 

Architecture

Address, Data and Control Bus

Root Node

SWITCH NODE

(Sub-tree select, Buffers)

MEMORY NODES

� Consider  a 64 MB RAM

� This can be partitioned into 16   4MB  RAM 

Modules

The 16 leaf nodes B0, B1…B15 connected in a binary 

tree and laid out as a H-Tree as shown next.

Assume the rows in each module are encoded using 

different classes of codes shown below
� Hamming Code denoted as H
� Matrix-Product code denoted  as  M
� Reed Muller Codes

Error Tolerant Low Power RAM
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Error Tolerant Low Power RAM
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Different ECC Effectiveness

� Hamming Code denoted as H(single error 
correction)

� Matrix-Product code denoted  as  M(double
errror correction)

� Reed Muller Codes(two or more error 
correction)

A row is segmented into Different 
sized data bits and encoded
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Reduction in Power Consumption 

compared to traditional design

Power savings compared to traditional design
Guaranteed protection against certain number of Soft Errors

H- Uses Hamming

M- Uses Matrix 

product code

Performance improvement along with 

soft error correction

Delay is reduced compared to traditional design
Soft Error Protection Incorporated
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Reliability Results
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Logic Synthesis for Low Power

and Soft Error Robustness using

Finite Field Theory
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Finite Field

� Also called Galois Field, denoted by GF(N)

� N = pk, p is a prime number, and k an integer

� Each element is a k-tuple

� There are exactly N elements in the field (0, 1,…, 

N-1) or (0, 1, α, α2 , α3 ,... , αN-1) where , α -

primitive element 

Finite Field
� Two operators

� ‘+’ called addition operation forming Abelian 

Group

� ‘.’ called multiplication operation forming 

Abelian group.

� Additive and multiplicative identities 0 and 1 

respectively

� Additive and multiplicative inverse exists for each 

element
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GF(4) Elements

[0, 1, α, α2 ] = [0, 1, α, β]

Elements can be represented in GF(2n) as  2-tuples 

over GF(2) as shown below

Example GF(4)

(x+1)1 1ββββ

x1 0αααα

10 11

00 00

Polynomial Representation 2-tuple of GF(2)GF(4)

Let α2 = β

Thus we have 4 elements 0, 1, α and β
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Addition and Multiplication

� Addition and Multiplication in GF(4)

+ 0 1 α β
0 0 1 α β
1 1 0 β α

α α β 0 1

β β α 1 0

* 0 1 α β
0 0 0 0 0

1 0 1 α β

α 0 α β 1

β 0 β 1 α

��ββ is multiplicative inverse of is multiplicative inverse of αα, and vice versa., and vice versa.

Addition

The addition of any two elements in GF(4), can be 

performed as addition of polynomials over GF(2)

For example, consider α + β

α = x and β = x +1  

αααα + ββββ = x + x + 1 = 2 x + 1 

Since 2 x = 0 over GF(22) 

αααα + ββββ = x + x + 1 =  1 
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Multiplication

Multiplication is done by using polynomials mod a 
primitive polynomial P(x)

Let 
P(x) = x2 + x + 1 

Thus 
αααα * ββββ = x (x + 1) = x2 + x 

(x2 + x) mod x2 + x + 1 = 1

αααα * ββββ = 1  
So 

α and β are inverse of  each other

αααα -1 = ββββ , ββββ - 1 = αααα

An Expansion Theorem (Pradhan 1978)

Theorem: Any n-variable function f (x1,...,xi,...,xn) in 

GF(N) can be expanded as,

� where δ : IN → GF(N) is a one-to-one mapping, with 

IN = {0,1,...,N - 1}, and δ(0)=0.

� fxi=δ(e) is called the cofactor of f with respect to xi= δ(e)

� The term [1 - (xi - δ(e))
N - 1] is a multiple-valued 

literal in GF(N).
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Special Case

� Let N = 2

� Then,

But this is ShannonBut this is Shannon’’s expansion theorem!s expansion theorem!

i.e., the expansion theorem reduces to Shannoni.e., the expansion theorem reduces to Shannon’’s theorem in s theorem in 

GF(2).GF(2).
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GFMODD

� Galois Field Multiple Output Decision Diagram 

(GFMODD)

� Based on Finite Field  
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An Example 2-Bit Multiplier

ZYx
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2-Bit Multiplier Galois Expression

XYXYYXYXZ

XYYXYXXYYXYXXYYXZ

α+β+β+β=

+α+β+β+α++α+α=
2222

2

3323323223

1

• Inputs partitioned as X = (x1, x0), Y = (y1, y0)

• Outputs partitioned as Z1 = (z3, z2), Z2 = (z1, z0)

• GFMODD yields

Gfxpress (TCAD 2008)  uses an algorithm using the 

Polynomial description  as input to synthesize low power designs.

This has been recently augmented to incorporate soft

Error correction
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Power Aware Soft Error Robust 

Multiplier Design
Synopsys Tool Only Our Tool and Synopsys tool

Pimitive Poly (Area,Delay,Power) (EXOR,AND) (Area,Delay,Power)

131 (30866.1,7.7,39.1) (48,49) (1699.9,1.3,2.4)

137 (30356.5,8.3,39.9) (50,49) (1709.6,1.6,2.5)

143 (33375.6,8.0,40.3) (67,49) (1925.7,1.9,3.0)

145 (33469.1,8.1,42.3) (50,49) (1703.1,1.7,2.5)

157 (35020.6,7.4,42.7) (65,49) (1964.4,2.1,3.1)

167 (34978.7,7.7,39.7) (65,49) (1964.4,1.7,3.2)

171 (39023.2,8.5,49.1) (64,49) (1906.3,1.4,2.9)

185 (34797.9,8.7,42.1) (66,49) (2003.1,1.4,3.0)

191 (34843.1,8.8,41.0) (75,49) (2077.3,1.8,3.2)

193 (30321.0,8.0,38.8) (48,49) (1725.7,3.2,2.7)

203 (33875.6,8.0,42.0) (64,49) (1922.5,1.5,3.0)

211 (33440.1,8.2,40.3) (64,49) (1935.4,1.7,3.1)

213 (33488.5,8.0,38.9) (65,49) (2009.6,1.8,3.3)

229 (34578.6,8.2,41.3) (67,49) (1980.5,1.8,3.2)

239 (34123.9,9.9,41.5) (72,49) (2041.8,1.6,3.1)

241 (32298.3,8.7,36.7) (61,49) (1899.9,1.6,3.0)

247 (36704.1,7.2,45.0) (72,49) (2106.3,1.6,3.2)

253 (33782.0,8.3,41.3) (74,49) (2106.3,2.0,3.2)

Area in 10-6 mm2, 

delay in ns, 

power in microW at 1.8V

Power Aware Soft Error Robust 

Adder  Design

Synopsys Only With our technique

Adder (area,delay,power) (a,m) (area,delay,power)

2-bit (119.3,0.3,115.7) (4,5) (106.4,0.4,113.1)

3-bit (197.8,0.7,214.3) (11,6) (216.1,0.81,241)

4-bit (274.2,1.21,301.8) (17,8) (316.1,1.08,378.2)

5-bit (383.8,1.22,468.5) (23,10) (416.1,1.4,515.8)

6-bit (493.5,1.58,590) (29,12) (509.6,1.72,627.5)

7-bit (638.7,1.61,791.1) (35,14) (609.3,2.04,752.8)

8-bit (687.0,2.0,809.4) (41,16) (709.6,2.38,879)

9-bit (11877,3.7,13800) (47,18) (809.6,2.69,1000)

An order of magnitude improvement!
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Architecture Level Solution

Traditional Soft Error Tolerance at the 

system Level

Voter

M1

M2

M3

Input 1

Input 2

Input 3

Output

•TMR

- 3X power

Power Dissipation is too high and Errors

In Two or More Modules are not tolerated.
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Rollback Recovery

� Checkpoints are taken at regular intervals

� When an error is detected the program is 
rolled back to the last checkpoint and re-
executed

� Loss of performance. One checkpoint interval 
for every occurrence of soft error.

� Loss of Power

� Limited to one check point interval

t Checkpoint 1

P

t Checkpoint 2

T

t Checkpoint i

t Checkpoint i+1

X
Soft Error

Roll Back

t = Time to take checkpoint

T = Checkpoint Interval 

T

T

Rollback Recovery
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How to detect faults

� Diagnostic Program (single module)

� Time overhead  of running the diagnostic 
program.

� Fault coverage a problem 

� Duplicated System

� Requires two modules

� Comparison

� Fault coverage can be good

Traditional Duplex Rollback Schemes

tch tch

Ij

tu

tch tch

Ij

Rollback

tr

(a) (b)

A

B

A

B X
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A Novel Power Aware Soft Error 

Tolerant Scheme (Roll forward)

Ij
A

B

Ij+1

Ij

1 2

3

s

t0 t2
t1

Time

1: Copy state to the spare

2: Compare state of the spare with the state of A and B

3: Copy state from A to B

X A fault

X

Spare is released at time t2 and the system continues 

to operate as before 

Roll forward Cont.

� Spare is activated for a short duration (a 

single check point interval) when there is a 

soft error.

� This scheme tolerate all single 

transient/intermittent faults with minimum 

loss of performance and power.

� This scheme also tolerates hard faults and 

various multiple transient faults
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Ij
A

B

Ij+1

Ij

1 2

3

s

t0 t2
t1

Time

4: Compare state of the spare and module A

X

Ij+1

Ij+2

4

Roll Forward Scheme with additional checking 

of the spare

Better Reliability with Minimal loss of Performance with soft  errors

Ij
A

B

Ij+1

Ij

1 2

3

s

t0 t2
t1

Time

Spare replaces B
X

Ij+1

Ij+2

4

Roll Forward Scheme with a 

Permanent fault in B

X X X

Spare replaces faulty module
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Roll forward with minimal 

Power/performance penalty

I1A

B X
I1

I2

I2

roll-forward

Spare 

activated

I1

Spare 

released

3

2

1

S

Double failures can force a roll back. The 

additional power required still remains the same

I1A

B X
I1

I2

I2

rollback

Spare 
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I1

Spare 

released

3

2

1

S

X
I1

I1
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Future Challenges

� Develop new Design Paradigm: Soft Error Tolerant Low 
Power Design

� Hierarchical  Soft Error Tolerance with low Power

� Design for Testing under Process Variation

-It is a major challenge because variability 

may cause soft error

� Impact of  workload and speed on soft error rate

� Trade-off of  Soft error robustness againt power

Other ongoing Research in Our Group

� Memory Cell design for robustness against 

Soft Error

� Logic Synthesis for Low power using TED

� Logic Error Correction using Mutliple

Parity bits

� Soft Error Tolerant Lowpower Sensor 

Networks
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