
1

Axilica
Accelerating Silicon Design

David Mulvaney

Vassilios Chouliaras

Axilica Limited

• Axilica is a spin out from Electronic and

Electrical Engineering at Loughborough

• Company formed in September 2007 with

investment from IPSO Ventures and Lachesis

• Staff
� VP business development/project manager

� 5 technical development team members

� 2 consultants

� Admin, legal and financial staff (IPSO)

2

Axilica history
• Oct 2004 - Sept 2005 CTES scholarship

� original concept

� broad market analysis

• Oct 2005 - July 2006 Gatsby innovation fellowship
� produce prototype

� develop initial plans for exploitation

• Aug 2006 - Sept 2007 Loughborough University support
� produce mature prototype

� patents filed

� develop commercialisation route

• Sept 2007 - Dec 2008 IPSO and Lachesis funding
� build company team

� work with beta customers to develop product and build initial customer base

• Jan 2009 onwards Second phase funding
� launch of full product

� develop customer partnerships

First product - FalconML
• FalconML is a UML design tool to accelerate chip design

• Aims to meet the market demand to continually upgrade

and enhance products

• FalconML delivers a faster design flow at reduced cost

and shorter time to market

• Uses UML to capture specification diagrammatically, as in

software design

• Automates the laborious and time consuming manual

translation of specification into hardware design code

• Currently working with beta testers in the defence,

telecomms and semiconductor markets

• End of year release

3

The Unified Modeling Language

• UML version 2.1.2
released Nov 2007

• De-facto standard in
software engineering

• Defines 13 types of
diagram, representing
different aspects of a
system

• Supported by many
commercial modelling
tools

VideoDecode

+ frameCount : int

+ expandFrame()

MPEGDecode

+ expandFrame()

busy

entry / processData();
request()

/ acknowledge();
idle

Typical software design process

• Software specification
and design in UML

• Implementation in UML
and C++/Java/C#...

• Tools ensure that
model and code are
consistent

specification

(UML)

design

(UML)

implementation

(UML + C++/Java/C#…)

4

FalconML design flow

• Specification, design
and implementation in
UML and C++

• SystemC generated for
rapid functional
simulation

• VHDL generated for
hardware
implementation

VHDLSystemC

synthesis

realisation

simulation

FalconML

UML model

(XMI file)

Example designs

• MD5 cryptographic

checksum

• Mandelbrot/Julia

fractal rendering

• GZip decompression

• JM H264 decoder
Layout for the GZip decompression unit

synthesised for TSMC 0.13 µm ASIC

technology

5

GZip deflate

WNS=-0.917

Cycle time = 5-(-0.917) = 5.917 or 169 MHz

JM H264 decoder

• TSMC 0.13 µm 8M1P
process

110 MHz post-route

Gate area 5.0922 µm2

Gates 2585146

Cells 415127

Area 13164081.2 µm2

• Un-optimized P&R flow

• From UML to GDS2 in
6 hrs

6

Axilica Limited

Loughborough Innovation Centre

Epinal Way

Loughborough LE11 3EH

UK

www.axilica.com

enquires@axilica.com

+44 (0)1509-227131

FalconML will be available for

purchase in the foyer

JM H264 Decoder

Step 1: Design Entry

• ArgoUML 0.24

– Classes/methods

shown

• Design saved in

‘zargo’ format

• Exported as XMI

for behavioural

synthesis

7

JM H264 Decoder

Step 2: Behavioural Synthesis
• Clean command line I/F (Unix)

– Command line I/F hidden in
Windows GUI

– Number of experimental variables
available

• Not exposed to user (yet)

• Reasonably fast compile times

• Output is
– RTL VHDL files (one per class)

and top-level design

– Collection of SC_MODULES (one
per class) and top-level

• Ready for:
– Validation (Algorithmic)

– Co-simulation (RTL vs Algorithm)

– Performance modelling
(Area/Timing optimization)

• On to downstream flows

JM H264 Decoder

Step 3: SystemC simulation

• Algorithmic validation

• Performance modelling

• RTL Co-simulation

8

JM H264 Decoder

Step 4: VHDL RTL Verification

• I/O equivalency established across

– Machine-generated RTL

– SystemC model

– Precise performance data collected

• Clean RTL for synthesis

