Dr Chris RichardsonChristopher Richardson   (University of Cambridge)

 Could you tell us a little about yourself and how you became a Research Software Engineer?

I did a PhD in GeoPhysics, followed by a PostDoc in Japan, over 15 years ago. Although it was a numerical project (on transport of magma), it was rather frustrating to code in Fortran.

I might joke now, that I could solve some of my PhD problems in 5 minutes using some of the more modern tools that we are developing! Partly, that is because of the higher level of abstraction, and the offloading of more routine tasks to libraries.

When I finished my PostDoc, I decided to apply for a Computer Officer role, which I knew would involve some dull, standard IT support but it also came with interesting stuff… code, numerics etc., without the pressure of teaching, publishing and raising grants.

I have been involved with many different computational projects over the years, including calculating neutron diffraction of adsorbed monolayers (Chemistry), and dynamic geomorphology – how a landscape changes over time as a response to tectonics (Geophysics).

More recently, I started working with the FEniCS team, first via an EPSRC dCSE grant, administered by NAG. The idea of dCSE was to improve code for running on HPC systems – we needed to get better parallel I/O into FEniCS, so it was a perfect match. It was an opportunity for me to learn C++ and really get involved in some of the internal issues in parallel coding.

After the end of the project, I continued to work on FEniCS from time to time, and I gradually got accepted as a member of the core developer team. We applied for a (now rebranded) ECSE project and also some projects with commercial partners.

What do you think is the role of a Research Software Engineer? Is it different from a ‘normal’ researcher?

I suppose it depends what you mean by “normal”. Mostly, I would expect an RSE to work collaboratively with other scientists and engineers, and not to lead scientific projects themselves. So, whilst not being a PI on a project, they need to communicate effectively with the scientific team they are working with, provide the technical expertise to realise the computational aspects of the project, and have some scientific understanding too.

Ultimately, it is important to have something invested in a collaboration, so it is not just a service, but a personal involvement, which might result in a joint publication or another form of recognition. And that is not so different from many “normal” researchers below the PI level.

You’ve recently won an EPSRC RSE Fellowship – congratulations! Can you give a brief overview of your project?

I am part of a team, writing a finite element analysis library. Finite element analysis (FEA) goes way back to the early days of computing, and has been used by engineers for decades, because it is very good at modelling physics in arbitrary shaped objects. One of the problems of FEA is that it is tricky to program, so our library FEniCS takes care of some of the more difficult aspects, whilst allowing the user a great deal of flexibility in describing the equations or meshes to solve on.

I am extending FEniCS to use: (a) complex numbers – useful for wave-like phenomena, (b) powerful non-linear solvers, which can solve difficult problems more quickly, (c) curved boundaries – needed for interface problems, e.g. surface tension, and (d) dynamic meshes, which can change in geometry and topology over time.

As well as “just doing programming”, I want to engage with the scientific community to apply these techniques to actual physical problems, and form collaborations with domain scientists in their specialist areas. Ultimately, I want to build up a small RSE team who can help scientists across diverse fields to solve their computational problems, using FEniCS, or other relevant packages.

I also hope to be involved in teaching and training more sustainable practices in the scientific community, helping people to use revision control, and write more reusable code.